
V-edge: Fast Self-constructive Power Modeling of Smartphones Based on
Battery Voltage Dynamics

Fengyuan Xu⇤ Yunxin Liu† Qun Li⇤ Yongguang Zhang†

College of William and Mary⇤ Microsoft Research Asia†

Abstract

System power models are important for power manage-
ment and optimization on smartphones. However, existing
approaches for power modeling have several limitations.
Some require external power meters, which is not con-
venient for people to use. Other approaches either rely
on the battery current sensing capability, which is not
available on many smartphones, or take a long time to
generate the power model. To overcome these limitations,
we propose a new way of generating power models from
battery voltage dynamics, called V-edge. V-edge is self-
constructive and does not require current-sensing. Most
importantly, it is fast in model building. Our implemen-
tation supports both component level power models and
per-application energy accounting. Evaluation results us-
ing various benchmarks and applications show that the
V-edge approach achieves high power modeling accuracy,
and is two orders of magnitude faster than existing self-
modeling approaches requiring no current-sensing.

1 Introduction

Energy consumption is a paramount concern in all battery-
powered mobile devices, including smartphones. Power
modeling is a key technology and an effective way to un-
derstand the power consumption of applications running
on mobile devices. Thus, it has attracted much research
effort. With a power model, users can identify the power-
hungry applications and better manage battery life of their
smartphone [1]. Developers are able to profile, and conse-
quently optimize, the energy consumption of their mobile
applications [2].

Existing approaches for power modeling have several
limitations. First, an accurate power model heavily de-
pends on individual smartphone’s hardware/software con-
figuration, battery age, and device usage [3]. Most exist-
ing work [4, 5, 6, 7, 8, 9] relies on external power mea-
surement equipment to generate accurate models. This is
labor-intensive and requires experts’ knowledge. Since
the power model of individual smartphone is different
and slowly changing [3, 10], it is expensive to apply this
approach to build models tailored to every phone. The
“self-metering” approach [3, 11, 12] has been proposed to
build individualized power models if a smartphone can

read the online voltage and current values from its built-in
battery interface. While most smartphones have voltage-
sensing capabilities, many smartphones today, including
popular models like Nexus S and some Samsung Galaxy
series, do not have the ability to sense current. Therefore,
the previous approach based on current sensing is not
applicable to many smartphones. The State-of-Discharge
(SOD) approach [13] sidesteps this problem by using the
SOD information in battery interface. It does not require
current-sensing but has very long model generation time
(days) due to the very slow changing nature of SOD. This
makes it impossible to have fast power model construc-
tion, which is often required to rebuild power models to
adapt to various changes in hardware and software, the
battery aging, and usage pattern changes (Section 3).

In this paper we propose a new approach for power
modeling, called V-edge, to address the limitations of
existing approaches. V-edge is self-constructive, does
not require current-sensing, and most importantly, is fast
in model building. V-edge is based on the following in-
sight to voltage dynamics on battery-powered devices:
when the discharge current of a battery is changed, the
instant voltage change, caused by the internal resistance,
has a reliable linear relationship with the current change.
Therefore, from the voltage change, we can determine the
change of current and consequently the power information
(see more details in Section 4). The V-edge power model-
ing requires only voltage-sensing and thus works for most
smartphones, and is able to generate power models much
faster than SOD-based approaches.

We have designed and implemented a power modeling
prototype based on V-edge. Our implementation supports
both component-level power models and per-application
energy accounting. Experimental evaluation results, us-
ing various benchmarks and real applications, show that
V-edge is able to generate accurate power models, compa-
rable to the power-meter-based approach. The building
time is much shorter than SOD-based approaches.

To the best of our knowledge, V-edge is the first work
to model smartphone power consumption by leveraging
the regularity of instant battery voltage dynamics. Prior
to our exploration, these instant dynamics are treated as
irregular fluctuations during slow supply voltage dropping
(i.e. SOD decreasing) [13]. Our key contributions are as
follows.



• We are the first to observe that the current informa-
tion can be inferred from instantaneous changes in a
battery’s voltage. We demonstrate that inferring cur-
rent in such a manner is fast, reliable, and accurate.

• Based on this observation, we propose V-edge to
facilitate the self-constructive power modeling on
most smartphones. V-edge is much faster than the ex-
isting solution, making it efficient to (re)build power
models for timely adapting of hardware and software
configurations with minimum interruption to users.

• We present the design and implementation of the
power modeling system that applies V-edge on pop-
ular smartphones, including power models of major
hardware components and the per-application energy
accounting.

• We evaluate our V-edge-based implementation us-
ing a diverse set of benchmarks and applications.
The results demonstrate that, given the same model,
the error range of the energy estimations of V-edge
is within 4%, on average, compared with those of
power-meter-based approaches. The model gener-
ation is two orders of magnitude faster than SOD-
based approaches.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce how power modeling works as back-
ground. In Section 3, we survey the related work and
motivate V-edge. In Section 4, we describe our observa-
tion on battery voltage dynamics and demonstrate how to
infer current information from voltage readings of battery
interface. We present the V-edge energy measurement
system in Section 5 and the power models in Section 6.
We describe the design and implementation of a system
built upon the V-edge power modeling in Section 7 and
evaluation results in Section 8. We discuss limitations
of V-edge and future work in Section 9 and conclude in
Section 10.

2 Background: Power Modeling

A power model estimates the power consumption of a
system, such as a smartphone, based on more readily
observable system statuses. Typically, the model is gen-
erated through a training phase. A set of well-designed
programs are run to explore various system states in this
phase and corresponding power values are measured at the
same time. Provided system states and their power mea-
surements as inputs, various modeling techniques like
Linear Regression (LR) can derive the relationship be-
tween these two sets of information, i.e., a power model.

It is common to simply take resource utilization as
the system status, such as screen brightness, CPU usage

and so on. As an example of such a utilization-based
power model, consider a system consisting of only a CPU.
To build a power model for this system, one would first
design several training programs generating different CPU
loads. Then one would run each training program and
exploit some measurement tool, like Monsoon Power
Monitor [14], to provide corresponding power value P.

Assuming that power consumption of the CPU has a
linear relationship with CPU utilization, a power model
can be formulated as Pcpu = a ⇤Ucpu + b, where a and
b are constant, Ucpu is CPU utilization, and Pcpu is the
estimated power consumption. Here, Ucpu is called a
predicator, as it is used to indicate the power consump-
tion of the CPU. There can be multiple predicators in
a power model. For example, if Dynamic Frequency
Scaling (DFS) is enabled on the CPU, one may use two
predicators, the frequency Fcpu and Ucpu, to estimate the
power consumption. Besides LR, other techniques (e.g.,
non-linear regression) can also be used to build alternative
(often more complicated) power models.

Once a power model is generated, it can be used in a
power estimation phase to predict the power consump-
tion of the system without requiring additional power
measurements. For example, if the CPU utilization of
a program is 25% for a duration of T , the the energy
consumption of this program is Etotal = (a⇤25+b)⇤T .
More generally, one can monitor and calculate the total
energy consumption of a program with dynamic CPU
usages as Etotal = Âi Pi

cpu ⇤DT , where Pi
cpu is the i-th mea-

surement of CPU utilization and DT is the time interval
of the measurement.

Similar to CPU, a power model can be built for other
hardware components, such as the screen, Wi-Fi, GPS
and so on. After power models of all the components are
generated, a power model of the whole system (e.g., a
smartphone) can be built on top of the component power
models. It is also possible to perform the energy consump-
tion accounting of individual applications or processes,
as we will describe in Section 6.

While a power model can give absolute values of en-
ergy cost, in practice relative values are often more mean-
ingful to end users. It is usually hard for most users to
map absolute energy values (e.g., 10 Joules) to what they
concern, such as what percentage of energy has been con-
sumed by screen or an application. As a result, most
power monitoring tools on smartphones show power con-
sumption information to users in terms of percentages
rather than absolute values [1].

From the above example, we can see that power mea-
surement is the foundation and an essential part of power
modeling. As we will see in Section 3, however, the ways
in which power measurement is currently done introduces
limits to the power modeling’s usability and applicability.



3 Related Work and Motivation

System power modeling has been an active research topic
and many approaches have been proposed. Based on how
power consumption is measured, existing literature can
be divided into two categories: external metering and self-
metering. Once power consumption is measured, various
training techniques to generate models have been studied.

External metering. Most existing work on smart-
phone power modeling relies on external and expensive
power meter to build power models [4, 5, 6, 7, 8]. Those
approaches are very accurate because a dedicated power
meter can precisely measure power consumption. How-
ever, they are labor-intensive and can be done only in a
lab. Due to hardware and software diversity of smart-
phone, each type of smartphones may have a different
power model. Any new configuration requires rebuilding
the model back in the lab again. Therefore, these in-lab
methods are very inflexible and thus not suitable to use in
the wild across a large number of users.

Recently, BattOr [9] extended the external meter to mo-
bile settings with a lightweight design. Nevertheless, it is
not easy for a layman to operate BattOr because it is not
deployed on smartphones. In fact, more and more smart-
phones use non-replaceable batteries to optimize layout,
so attaching any external equipment on them becomes
difficult and even dangerous to end-users.

Self-metering. Self-metering approaches [3, 11, 13,
12] collect energy information from smartphones’ built-
in battery interfaces to generate power models without
requiring a power meter. The battery interface consists
of battery status registers that the fuel gauge integrated
circuit exposes to smartphone operating systems, includ-
ing voltage, temperature, State-Of-Discharge (SOD), and
sometimes current information. The power can be cal-
culated if both voltage and current are provided by the
battery interface.

However, many smartphones, including popular ones
like the Nexus S and the Samsung Galaxy S2, provide
battery interfaces that are only capable of sensing volt-
ages. This means existing self-metering approaches, ex-
cept [13], are unable to work on a large amount of smart-
phones (the number is still increasing) already in use.

Zhang et al. [13] proposed building power models
based on SOD readings of batteries, which does not re-
quire current-sensing. However, the SOD-based approach
has a very long model generation time and is inaccurate
due to its SOD-based nature. The approach measures the
remaining battery capacity (a number from 0% to 100%)
to estimate the energy consumption. The granularity of
energy measurement is as coarse as 1% of the whole bat-
tery capacity. It not only takes tens of minutes to observe
a change of battery capacity but also introduces large
errors due to the coarse energy granularity.

Motivation of fast power model construction. Fast
power model construction is desirable because there are
many cases requiring model rebuilding. Besides hard-
ware and software changes, rebuilding is also necessary
for changes of software configurations as a simple CPU
policy modification may lead to up to 25% differences
in power estimation [3]. The battery aging problem [10]
also affects power modeling as battery capacity drops sig-
nificantly with battery age. Thus, a power model needs to
be rebuilt after a battery has been used for some time. Fur-
thermore, Dong et al. [3] showed that power models also
depend on device usage and demonstrated that a power
model should be continuously refined based on usage. In
addition, the complexity of modern hardware may require
many training cases to generate accurate power models.
For example, Mittal et al. [2] used 4096 training cases (for
different R, G, B color combinations) to generate a power
model for AMOLED display. If it were to take 15 minutes
to observe a change of SOD (the minimal time used by
Zhang et al. [13]), then it would take the SOD-based ap-
proach more than 1,000 hours to generate a single display
model, making it almost impossible for end-users to build
or rebuild power models on their smartphones.

In addition, the power measuring of a training program
need to be performed in a controlled environment. In fast
power modeling, short measuring time largely reduces
the chance that the user takes the system control back
during the running of a training program. Thus, the fast
power modeling is more robust because of the tolerance
of users’ interruptions. Also, the fast one is more flexible
because it is able to quickly suspend construction after
the completion of a training program and resume later.

Ideally, besides accuracy, a good power model ap-
proach should be self-modeling (i.e., it should not depend
on external power meters), work for most smartphones
(i.e., it should not require current-sensing), and be able to
generate models quickly. As shown in Table 1, no existing
approach can meet all three requirements. This motivates
us to look for a better power modeling approach.

Training techniques for power model construction.
Besides LR, other training techniques can also be used
for power model construction. For example, Dong et
al. [3] used Principal Component Analysis (PCA) to im-
prove the accuracy of a power model by identifying the
most effective predicators. Pathak et al. [4] proposed to
construct power models using system call tracing. They
created Finite State Machines (FSM) for power states of
system calls, thus achieving fine-grained power modeling.
Our work is complementary to those advanced (and more
complicated) model construction techniques. They can
be used on top of our battery voltage dynamics based
power measurement approach. In this paper, we show
that accurate power models can be generated using our
new power measurement approach even though we only



Table 1: Comparison of power modeling approaches
Self-modeling? Support most phones? Fast model adaptation?

External metering approaches 7 3 7
Self-metering approaches except SOD 3 7 3

SOD approach 3 3 7
Ideal approach 3 3 3

use basic training techniques for model construction.

4 Sensing Current from Battery Voltage
Dynamics

A smartphone is powered by the battery, where supplied
voltage is not constant. The voltage dynamics of the bat-
tery are exploited here to achieve all desired objectives
of the ideal power modeling approach. We show that it
is possible to infer discharging current information from
instantaneous voltage dynamics of a battery. This infer-
ence is reliable enough to be used for power estimation.
We also demonstrate that it is practical to detect instan-
taneous voltage changes by using battery interfaces on
smartphones. Based on this, a new energy measurement
system is introduced in the next section.

4.1 Battery Voltage Dynamics

The left part of Figure 1 shows the equivalent model of
battery electrical circuit [15]. It indicates that at a certain
point in time, the voltage reading V of the battery interface
can be obtained using

V = OCV �Vc�Rb ⇤ I

where OCV is the open-circuit voltage determined mainly
by the remaining capacity of battery, Vc is the voltage
drop on the capacitance, Rb is one of the two internal
resistors, and I is the discharge current.

When encountering a notable amount of current change,
OCV and Vc remain roughly the same value in a short time
frame, but the multiplication of Rb and I is sensitive to this
current change. As illustrated in the right part of Figure 1,
we can observe a sharp edge of voltage readings from
the battery interface immediately after the current change.
This is known as internal resistance effect. After the in-
stantaneous change, the voltage then slowly decreases due
to the current discharging on the battery. We define this
instantaneous voltage change, Rb ⇤DI, as V-edge, which
is in volts. Clearly, the value of V-edge has a linearly
proportional relationship with the change of current. If
we measure the V-edge values with the same baseline
current I0 (this can be achieved by starting all the train-
ing programs from the same baseline when generating a

power model), V-edge has a one-to-one mapping with the
current.

Vedge = Rb ⇤DI = Rb ⇤ I�Rb ⇤ I0

Or,

I =
1

Rb
⇤Vedge + I0

Via this relationship, we can quickly determine the
current value given the V-edge. Next we show that this
linear relationship is reliable (Section 4.2) and V-edge can
be detected accurately (Section 4.3). Thus, we can use
V-edge to further estimate the power consumption and
construct power models (Section 5).

4.2 Reliable Relationship between V-edge
and Current

The linear relationship between V-edge and current is
evident in theory, but because it requires a simplifying as-
sumption about the battery, we seek to understand whether
the relationship holds in practice. To this end, we design a
set of test trials that run various tasks with different stable
workloads on the smartphone. Five batteries for a Google
Nexus S phone and three for a Samsung Galaxy Nexus
phone were picked for experiments with consideration
of different aging stages and manufactures 1. We ran all
tests on these batteries and measured their V-edge values
(in µV ) respectively. The corresponding current levels
(in mA) of these tests were obtained on a Monsoon Power
Monitor at a constant voltage level. We then modeled
the relationship between V-edge and current using LR for
each battery.

Table 2 shows the regression results of eight batteries.
The first five batteries are for the Nexus S and the last
three are for the Galaxy Nexus. R2 is the Coefficient of
Determination, a widely used measure of how well the LR
is [16]. We can see that R2 values of these eight fittings
are all above 0.99, indicating very good fitting results.
More concretely, Figure 2 shows how well the regression
fits the data of battery 2, of which the R2 value is smallest.

Those real-world experimental results demonstrate that
the relationship between V-edge and current is indeed
reliable. This provides the foundation of our proposed
fast and accurate power modeling approach.

1new to one-year-old batteries from four manufactures



Figure 1: Battery voltage dynamics. Left: Equivalent electrical circuit model for batteries. Right: Battery voltage curve
when discharge current is changed. The deep drop of voltage is caused by current increasing on resistor Rb.

Battery Slope a Intercept b R2

1 0.0048 103.4 0.9987
2 0.0054 100.9 0.9945
3 0.0050 103.3 0.9992
4 0.0054 101.8 0.9991
5 0.0054 102.3 0.9985
6 0.0057 158.9 0.9978
7 0.0056 154.5 0.9979
8 0.0051 157.0 0.9976

Table 2: Linear mapping between V-edge and current on
eight batteries of two different smartphones, in the form
of current I = a ⇤Vedge + b . R2 is the metric indicating
the goodness of fitting.

4.3 Detecting V-edge

We show in this subsection that V-edge can be easily and
accurately captured by battery interfaces on smartphones.
Figure 3 illustrates the curve of voltage readings from the
battery interface of a Nexus S, when CPU utilization was
increased from idle to 95%. We can see a clear voltage
drop immediately after CPU utilization (thus the current)
was increased. After the instantaneous drop, the voltage
decreases very slowly, even with the high discharging
current of 95% CPU utilization (the slope will be even
gentle if the current draining is smaller). By sampling
voltage values from the battery interface before and after
the instantaneous voltage change, we can calculate the
value of V-edge. Depending on how soon we sample
the voltage value after the instantaneous voltage drop,
the calculation leads to certain error. Table 3 shows the
errors when the sampling happens at different times (i.e.,
sampling delay) after the instantaneous voltage drop.

We can see that the error is zero if the sample is taken
within three seconds of the instantaneous voltage drop.
The error increases when the sampling delay becomes
larger. If the sampling delay is 10 seconds, the error

0 1 2 3 4

x 10
4

0

50

100

150

200

250

300

V−edge value (uV)

Cu
rre

nt
 v

al
ue

 (m
A)

 

 

samples
fitting

Figure 2: Sampling vs. fitting on battery 2.

is 11.76%. Clearly, to reduce error, we should sample
voltage value as soon as possible after the instantaneous
voltage drop.

The battery interface of smartphones typically updates
the voltage value periodically but the updating rate may
vary drastically across different phones. For example,
the Galaxy S2 updates ten times less frequently than the
Nexus S (one update every ten seconds versus one per
second). In the case of a low update rate, we should
align our voltage sampling with the voltage updating. To
achieve this, we employ the following procedure to detect
battery interface parameters - the updating interval and
time.

We first put the smartphone into idle for a time period
longer than its battery interface updating interval (e.g.,
tens of seconds), then (at time t0) we increase CPU uti-
lization to a high level and immediately start sampling
voltage values at a rate of 1Hz. Once we detect a voltage
value change larger than a threshold (i.e., the instanta-
neous voltage drop caused by increased CPU utilization)
at time t1, we put the CPU into idle again and continue to
sample voltage values at 1Hz. When we detect a voltage
value change larger than the threshold again (i.e., the in-
stantaneous voltage increase caused by decreased CPU
utilization) at time t2, we stop sampling. Figure 4 de-



Table 3: Sampling error of V-edge in different sampling delays
Sampling delay (s) 1 2 3 4 5 6 7 8 9 10
Sampling error (%) 0% 0% 0% 2.94% 5.88% 5.88% 8.82% 11.76% 11.76% 11.76%

3720000

3740000

3760000

3780000

3800000

3820000

0 10 20 30 40 50 60

Vo
lta

ge
 (u

V)

Time (s)

Figure 3: Voltage curve on a Nexus S smartphone when
CPU utilization is increased from idle to 95%. Sampling
rate is 1Hz.

CPU Idle

90% 

Idle

Voltage readings

Time
t0 t1 t2

Figure 4: Estimate the voltage updating interval and time
of battery interface.

scribes this procedure. Then we treat Dt = t2� t1 as the
updating interval of the battery interface where t1 and t2
are the times when voltage updates are triggered. With the
sampling rate of 1Hz, the estimation error is within two
seconds. Once we know the updating interval and time of
the battery interface, we can align V-edge detection with
the voltage updating so that the delay of V-edge detec-
tion is limited to two seconds. Thus, we can accurately
measure the value of a V-edge.

The value of a V-edge is decided by the corresponding
current change. If the current change is very small, it is
hard to detect the V-edge. To study how likely we can
detect a V-edge, we conducted a set of tests with different
current changes. Table 4 shows the results. For each
current change, we repeated the test 50 times and report
the probability that the change was detected. We can
see that there is about a 64% chance that the V-edge is
detected along with just a 7.5 mA increment of current

Current increment (mA) Probability (%)
7.5 64%
15 90%

22.5 98%
30 98%

37.5 100%

Table 4: Probability of capturing current changes

value. With a 30 mA change we achieve up to 98% and
100% with 37.5 mA. On a Nexus S smartphones, 37.5
mA can be caused by a small change of only 4% CPU
utilization. To build a power model, we can easily design
training programs with a current change much larger than
37.5mA. We conclude that V-edge is sensitive enough for
component level power modeling.

5 V-edge Energy Measurement System

Once we derive the current information from V-edge, it
is feasible to calculate the power information and fur-
ther generate power models on top of it. Thus, in this
section, we show how to build an alternative energy mea-
surement system based on V-edge that is equivalent to the
traditional energy measurement systems. In traditional
energy measurement systems, the energy cost E of a task
is measured by power P and time T , E = P ⇤T . Power
is decided by current I and voltage V , P = I ⇤V . For
simplicity, we assume that a task has a constant power
consumption during its execution time. The same analy-
sis below can be easily extended to a task with dynamic
power consumption by dividing the whole execution time
into small time slots with a constant power consumption
and using Âi (Pi ⇤T i) to replace P⇤T . That is, the total
energy cost E = Âi (Pi ⇤T i) = Âi (Ii ⇤V i ⇤T i), where i
indicates the ith slot.

In our new energy measurement system, we introduce
a new term, the V-edge power Pedge, to replace the tradi-
tional power. The V-edge power is defined as

Pedge = Vedge ⇤V

where Vedge is the V-edge at the corresponding voltage
level V and the unit of Pedge is square volts. It does not
matter whether the value of V is the voltage value before
the instant voltage drop or after the instant voltage drop
(see Figure 1) because the difference between the two
voltage values is fixed as Vedge. That is, the two voltage



values are interchangeable. In our implementation, we
choose the voltage value before the instant voltage drop.

Similarly, we define the V-edge energy as

Eedge = Pedge ⇤T = Vedge ⇤V ⇤T

to replace the traditional energy.
As we show in Section 4.2, V-edge and current have a

linear relationship I = a ⇤Vedge +b . Thus, we have

P = I ⇤V = (a ⇤Vedge +b )⇤V

= a ⇤Pedge +Pedge0

where Pedge0 is a constant value denoting the baseline
V-edge power. That is, we can calculate the real power
consumption of a task from the V-edge power of the task.
Similarly, we have

E = P⇤T = (a ⇤Pedge +Pedge0)⇤T

= a ⇤Eedge +Eedge0

where Eedge0 is the baseline V-edge energy.
During power model generation, we can directly mea-

sure Pedge but not Pedge0 . To calculate Pedge0 , we em-
ploy the following procedure in the power model training
phase. We first design two tasks with constant but dif-
ferent stable workloads. We then run the two tasks to
consume the same amount of energy in terms of percent-
age of battery capacity (e.g., 2% of battery capacity which
can be achieved by reading SOD information provided
by the battery interface). The V-edge power of the two
tasks is P1

edge and P2
edge, their traditional power is P1 and

P2, and their execution time is T 1 and T 2. Without loss
of generality, we assume that T 1 is smaller than T 2. As
the tasks consume the same amount of energy, we have

P1 ⇤T 1 = P2 ⇤T 2

(a ⇤P1
edge +Pedge0)⇤T 1 = (a ⇤P2

edge +Pedge0)⇤T 2

Pedge0 = a ⇤Q

where Q =
P1

edge⇤T 1�P2
edge⇤T 2

T 2�T 1 is a known constant value
determined by running the two tasks. Note that here we
only need SOD readings to derive the value of baseline
power, which is done only once. In SOD-based power
modeling approaches, every model training program de-
pends on SOD readings, making the model generation
time unacceptably long as shown in Section 8.

In fact, even the determination of Pedge0 can be skipped
if we are only interested in the energy profile excluding
baseline, as is usually the case for end users and appli-
cation developers. Thus, the V-edge energy system is
a linear transformation of the corresponding traditional
method.

After knowing Pedge0 , in the power estimation phase,
when a set of tasks run together (e.g., multiple compo-
nents or processes), we can obtain energy percentage con-
sumed by each task, even without knowing the value of a .
For simplicity, let us assume that there are only two tasks,
i and j. We can calculate their power percentage from
their V-edge power as follows. The energy consumption
of task i is

Ei = Pi ⇤T i = (a ⇤Pi
edge +Pedge0)⇤T i

= a ⇤ (Pi
edge +Q)⇤T i

The calculations of task j are similar to task i, so they
are omitted due to space limitations.

Thus, the energy percentage of task i is

%Ei =
Ei

Ei +E j =
(Pi

edge +Q)⇤T i

Pi
edge ⇤T i +P j

edge ⇤T j +(T i +T j)⇤Q

In addition, we can also estimate how long the remain-
ing battery will last. If X% of battery has been used by
tasks i and j, we have

X%⇤C = Ei +E j

(100�X)%⇤C = (Pi +P j)⇤T i j
L

where C is the battery capacity and T i j
L is the remaining

time of the battery if we continue to run both task i and
task j at the same time. By solving the above equations,
we can get

T i j
L =

100�X
X

⇤
Pi

edge ⇤T i +P j
edge ⇤T j +(T i +T j)⇤Q

Pi
edge +P j

edge +2⇤Q

If T i = T j = T , we simply have T i j
L = 100�X

X ⇤T .
And if we run only task i in the future, the remaining

battery time will be

T i
L =

100�X
X

⇤ (1+
P j

edge +Q
Pi

edge +Q
)⇤T

In summary, the V-edge energy system is able to mea-
sure and estimate the power consumption of a system. In
the following section, we will develop a system based on
V-edge that can address common user concerns such as
how much energy a particular application consumes, or
how long the battery will last if the user continues running
one or more applications.

6 Power Modeling Based on V-edge

We model the power consumption of four major hardware
components of smartphones: CPU, screen, Wi-Fi and



GPS. The main purpose is to demonstrate the usability of
the V-edge energy measurement system underlying, so
we do not introduce new power models. Instead, we use
existing or modified ones which are simple and able to
capture the main power characteristics of the hardware. In
addition, we describe how to do per-application account-
ing based on generated component-level power models.
Power value is provided in the V-edge power Vedge ⇤V .

CPU Model. DFS is available on most CPUs and often
enabled to save power. Thus, for the CPU power model,
we consider both CPU frequency and CPU utilization.
For each possible CPU frequency, we model the power
consumption of the CPU as a linear function of

Pcpu = a⇤Ucpu +b

where Ucpu is the CPU utilization.
Screen Model. The power consumption of a screen is

decided not only by the brightness of backlight but also
by the pixel colors. For example, at the same backlight
level of 255, the power consumption of full-screen white
is almost three times that of full-screen red.

Dong et al. [17] used RGB values to create a linear
model of OLED (Organic Light-Emitting Diode) type dis-
plays’ power consumption. However, because this model
is not suitable for AMOLED (Active-Matrix OLED)
types, Mittal et al. [2] proposed another model to also cap-
ture the non-linear properties of AMOLED. However, the
full model requires 4096 colors, leading to high training
overhead. This neutralizes the advantage of self-metering
approaches, timely model adaptation. Therefore, we pro-
vide a simplified yet effective alternative using the func-
tion

Pscreen = f (L)⇤ (cr ⇤R+ cg ⇤G+ cb ⇤B)

where Pscreen is the screen power consumption, f (L) is a
quadratic function of the brightness level L, (R, G, B) is
the average RGB value of all pixels, and cr, cg and cb are
the coefficient of R, G, and B.

The goal of this screen model is to reduce the num-
ber of colors tested. Based on the above function, we
derive a preliminary model from only 216 measured RGB
colors (6⇥ 6⇥ 6) by first assuming the linear relation-
ship between the power and RGB color. Obviously, this
preliminary model does not work well on AMOLED. Ad-
ditionally, we measure the power of another 125 samples
uniformly distributed in the RGB color space. Then we
can obtain the power differences of these 125 colors be-
tween measured and modeled values. Because the power
of AMOLED gradually changes among similar colors,
the difference of one in these 125 colors can roughly rep-
resent the average offset between measured and modeled
power values for all colors nearby. Therefore, the final
estimated power value of a RGB color is the calculation

of the above function plus the difference of one of the
125 color samples that is closest to this estimated color.
In this way, the modeling error decreases to a low level,
while a lot of training time is saved.

Note that when we train a screen power model, the
power consumption of training programs will include the
power consumption of the CPU because the CPU cannot
be turned off to run any training program. Thus, we
need to remove the power consumption of the CPU from
the total power consumption of screen training programs.
This is done by generating the CPU power model first and
applying it in training screen power model.

Wi-Fi Model. We employ a simple model that consid-
ers the data throughput of both directions. A linear power
function

Pwi f i = d ⇤D+ e

is selected where D is the application data, incoming and
outgoing, through the Wi-Fi interface. Similar to the
screen model, we also remove the power consumption of
the CPU in training the power model of Wi-Fi.

GPS Model. We model the power consumption of GPS
based on the ON/OFF states, following the work [11, 18]:

PGPS = fGPS ⇤S

where fGPS is the the power coefficient and S is 1 when
GPS is enabled or 0 otherwise.

Per-application Accounting. Users often want to
know the power consumption of each individual applica-
tion so that they can identify where the energy was spent.
This per-application power accounting can be done on
top of the component-level power models. We can moni-
tor the activities of a process on each component (CPU,
screen, Wi-Fi and GPS) and account corresponding power
consumption as a function of

Pprocess = Â
i

Pi
cpu +Â

j
P j

screen +Â
k

Pk
wi f i +

1
N Â

l
Pl

GPS

where i, j, k, l are the ith, jth, kth and lth time when the
process uses CPU, screen, Wi-Fi and GPS, respectively.
N is the total number of processes using GPS at the same
time. Zhang et al. [13] found that the sum of all compo-
nent estimates is sufficient to estimate the whole system
consumption. Thus, we also adopt this assumption. The
power consumption of an application is the sum of the
power consumption of all its processes.

7 System Design and Implementation

We have designed a general V-edge-based architecture,
illustrated in Figure 5, to run on typical smartphone op-
erating systems. In our design, V-edge runs as a system
service in the background, collects data on system re-
source utilization and activities, generates power models



Battery CPU Wi-Fi …

Data Collector and Process Monitor

Model 
Generator

Power 
Profiler

Training 
Program

Power 
Models

ApplicationApplicationApplication

GUI

Kernel Space
User Space

Screen GPS

Figure 5: System architecture based on V-edge.

and uses them for power consumption estimation. It also
provides a tool with a GUI for users to review the power
consumption information of each component and applica-
tion.

Data Collection. The data collection part is designed
to run in the kernel due to two considerations. First, run-
ning in the kernel gives us more flexibility and less latency
compared with the user space. Second, it avoids the ex-
pensive user-kernel mode switching, thus introducing less
system overhead. We collect three types of data: voltage
readings from the battery interface, utilization information
of each hardware component (CPU, screen, Wi-Fi and
GPS), and process execution and switching information.
For Wi-Fi utilization, we capture the data packets trans-
mitted over Wi-Fi by intercepting the network stack. For
process execution and switching information, we hook
the kernel scheduler to collect thread scheduling informa-
tion. We add a new system call to fetch the collected data
from the kernel where power model generation and power
estimation are done. Voltage information is only used in
generating power models, while process information is
only used in estimating per-application power consump-
tion. Hardware utilization information is used for both
power model generation and power estimation.

Power Model Generation. The system, on top of
V-edge, automatically generates component-level power
models for CPU, screen, Wi-Fi, and GPS as formulated
in Section 6. This is done by running a set of training
programs for each component in a controlled way. For ex-
ample, to build the power model of the CPU, we run CPU
training programs with other components in their base-
line power states. All training programs of a component
run from the same initial state to ensure their measured
V-edge values are consistent. For example, each CPU
training program starts when the CPU is idle. The model
generator also aligns runs of training programs with the
voltage updating of the battery interface as we described
in Section 4.3, to reduce errors of the voltage sampling.
The modeling procedure is done without user awareness
when the smartphone is idle and not plugged in. If the user

suddenly interrupts the generation by using the phone, the
procedure can suspend and resume later with little time
penalty, thanks to the short estimation time of V-edge. We
also allow power model updates adaptively or through a
GUI tool described later in this section.

Power Consumption Estimation. Power estimation
is done by tracking hardware resource usage and apply-
ing generated models. When users use their smartphones
as normal, the data collector keeps running in the back-
ground to collect the usage information of each com-
ponent (frequency and utilization percentage for CPU,
brightness level and pixel colors for screen, packet size
and number for Wi-Fi and usage of GPS). Thus, the power
profiler is able to calculate the power consumption of
each component. By tracking process switching, we can
know which process is using the resources at a given
time. Therefore we can associate resources usage and
thus power consumption to the corresponding process, for
per-process and per-application accounting.

Power Profiling GUI Tool. On top of the power pro-
filer, we design a GUI tool to show the percentage of
the energy consumed by each hardware component and
provide a rebuilding option to users.

We have implemented the V-edge-based power model-
ing and monitoring system on the Android platform. Our
implementation in total consists of 2k lines of code for the
core components (data collection, model generation and
power estimation) and 4k+ lines of code for the training
programs.

8 Evaluation

We evaluate our implementation of the V-edge-based sys-
tem by answering the following questions. 1) How fast
can power models be generated? 2) How accurate is
the power estimation using the generated models, both
at component-level and in per-application accounting?
3) How much system overhead does the implementation
introduce in terms of CPU and memory usage?

8.1 Experimental Setup
Devices. We conduct all experiments on a Nexus S smart-
phone running Android 4.0. We use a Monsoon Power
Monitor to measure the actual power consumption of the
experiments as the ground truth and for comparison.

Training programs for model generation. We de-
velop a total of 412 training programs to generate power
models for CPU, screen, Wi-Fi, and GPS. For each CPU
frequency (there are five configurable CPU frequencies
on a Nexus S), we use eight training programs with CPU
usages randomly picked from eleven possible values (idle
to full). Similarly, for the screen we use 347 training
programs with different brightness levels and RGB colors



of different pixel blocks. For the Wi-Fi, we use 24 train-
ing programs with different packet sizes and transmission
rates. Finally, we use one training program for the GPS
module.

Benchmarks. We design a set of benchmarks to eval-
uate the accuracy of our implementation on component-
level power estimation. For the CPU we use four bench-
marks running for 60 seconds at a CPU frequency of 200
MHz, 400 MHz, 800 MHz and 1000 MHz. For the screen,
we use 15 benchmarks. Each of them displays a different
picture, as shown in Figure 7, for 10 seconds. For Wi-Fi,
we use a benchmark which sends UDP packets with a
randomly selected packet size of 50, 100 or 1000 bytes
and a random packet inter-arrival time from 1 to 50 mil-
liseconds. The total run time of the Wi-Fi benchmark 2

is 60 seconds. For the GPS, we use a benchmark which
uses the location service for 60 seconds.

Applications. We use six real applications to evalu-
ation the accuracy of our implementation on power es-
timation of real world applications. These applications
are Gallery where we use the default photo viewer on
Android to show 20+ photos (randomly taken by the cam-
era on Nexus S) in slide show mode, Browser where we
use the default Android browser to read news on Bing
News, Angry Birds where we play this free version game
with commercials, Video where we watch a homemade
video clip on the default player, Skype where we make a
VoIP call through Wi-Fi, and GPS Status where we run
a popular GPS-heavy app from Google Play [19]. Each
test performs for one minute.

8.2 Model Generation Time
Model generation time is the time period to run all the
training programs and construct power models. It is
mainly decided by how quickly power consumption can
be measured. In the V-edge approach, as shown in Sec-
tion 4.3, we can detect the instant voltage changes and
consequently measure power consumption in several sec-
onds. However, in a SOD-based approach, power mea-
surement time is much longer because it measures power
consumption by observing changes of SOD, at least 15
minutes [13]. Given our 412 training programs, it takes
the V-edge-based system for 1.2 hours in total (including
the stabilization time between the training cases which
can be further optimized) to generate the power models.
However, it would take more than 100 hours for the SOD
approach to generate the same power models. Our pro-
posed approach is two orders of magnitude faster than the
SOD approach.

More importantly, the long model building time of the
SOD-based approach demands multiple rounds of the bat-

2For the experiment purpose, a stable wireless environment is ex-
pected in order to remove the influence of outside factors

tery recharging, thereby requiring the user intervention.
As such, the SOD-based approaches are difficult to auto-
mate. With the short modeling time, our approach can be
easily done without the user involvement. For the sake
of optimization, we can further split the whole procedure
into small pieces and manage to complete them one by
one. Each piece of modeling tasks just takes minutes
of the smartphone idle time and consumes little energy.
Thus, the V-edge-based system is transparent to end users.

8.3 Accuracy

We evaluate the accuracy of the V-edge approach by
comparing its energy consumption estimations with both
ground-truth measurements and estimations from power-
meter-based models. These power-meter-based models
are built by measuring power consumption of training
programs using an external power meter in the model gen-
eration phase. This external-metering approach represents
the highest accuracy that one model can achieve because
its inputs are precise. Note that the energy comparison is
stricter than direct model parameter comparison because
model errors can be magnified.

Accuracy of CPU modeling. Figure 6 shows the en-
ergy consumption of the CPU benchmarks, including the
ground truth and the estimated results of the V-edge ap-
proach and power-meter-based approach. Compared to
ground truth, the errors of the V-edge approach are 1.45%,
7.89%, 9.71% and 4.18% (5.79% on average). The cor-
responding numbers of the power-meter-based approach
are 1.32%, 5.28%, 5.92%, and 1.54% (3.51% on aver-
age). The average difference between our approach and
the power-meter-based approach is only 3.65%.

The stable relationship between CPU usage and power
consumption introduces small errors to both V-edge-based
and power-meter-based approaches.

Accuracy of screen modeling. Figure 7 shows the
results of the screen benchmarks. Compared to ground
truth, the average error of the V-edge approach is 5.77%
(max 15.32%, min 1.22%) and the power-meter-based
approach is 5.55% (max 15.81%, min 0.11%). The av-
erage difference between our approach and power meter
approach is only 3.49%. Note that Figure 7 shows nor-
malized results. The absolute energy consumption of the
pictures are very different, as large as 3.3 times.

Our screen model is one of the most sophisticated
smartphone screen models considered in self-metering
approaches. Nonetheless, our experiments show that it
is of limited accuracy (relatively wide error range). The
reason is that this model relies on a small number of ref-
erence colors to correct initial estimations and provides
final answers. Therefore, if a photo has an average pixel
color similar to one reference, its estimation error is low.
Otherwise, it is a bit high. The model could be optimized,



1000 800 400 200
0

0.5

1

1.5

N
o
rm

a
liz

e
d
 e

n
e
rg

y 
co

st

CPU frequency (MHz)

 

 

V−edge power meter ground truth

Figure 6: Energy consumption of CPU benchmarks. Re-
sults are normalized relative to ground truth values.

WiFi GPS
0

0.5

1

1.5

n
o
rm

a
liz

e
d
 e

n
e
rg

y 
co

st

 

 

V−edge model meter model ground truth

Figure 8: Energy consumption of Wi-Fi and GPS bench-
marks. Results are normalized relative to ground-truth
values.

but it is out of the scope of this paper.
Accuracy of Wi-Fi modeling. Figure 8 shows the

results of the Wi-Fi benchmark. Compared to ground
truth, the error of the V-edge approach is 14% and the
power-meter-based approach is 10.65%. The difference
between two modeling approaches is only 3.75%.

The error of Wi-Fi benchmark is relatively large. This
is because our model is simple and served as the compar-
ison platform of two modeling approaches. More predi-
cators like packet numbers per second may improve the
accuracy of modeling. Additionally, there are more CPU
activities involved in both building and using the Wi-Fi
model, compared with other components. Thus, some
error is contributed from the CPU model.

Accuracy of GPS modeling. Figure 8 also shows the
results of the GPS benchmark. Compared to the ground
truth, the error of the V-edge approach is 10.6% and the
power-meter-based approach is 4.1%. The difference
between our approach and power meter approach is 6.5%.

Accuracy of real applications. Figure 9 shows the

results of the six real applications. Compared to the
ground truth, the errors of the V-edge approach are 19.5%,
8.6%, 0.2%, 1.6%, 14.7% and 15.5% (10% on average).
The corresponding numbers of the power-meter-based
approach are 15.6%, 12.5%, 4.2%, 2%, 18.3% and 12.2%
(10.8% on average). The average difference between our
approach and the power-meter-based approach is only
3.8%.

The accuracy of each component model has an im-
pact on application experiments. For example, the
Wi-Fi estimation errors are accumulated quickly in the
communication-intensive applications like Skype, leading
to the relatively large difference between modeled and
real results. So is the case of GPS Status that has a lot
of interactions with the GPS module. As to estimation
errors of Galley, displayed photos are randomly picked,
so it is possible that many of them have average colors not
similar to any of 125 references. Another reason is that
the average RGB color over all pixels may not be a good
predictor. We will investigate this in future. In addition to
the individual model accuracy, errors are also introduced
by the assumption that the linear combination of all com-
ponent energy consumption is equal to the whole system
consumption. Besides, we do not include power models
for other minor energy consumers such as disk I/O.

Summary. All experimental results show that the ac-
curacy of our approach is very close to the power-meter-
based approach. The total average difference is only 3.7%
for all component-level and application-level power esti-
mations. This demonstrates V-edge’s strength in facilitat-
ing the self-constructive power modeling.

8.4 System Overhead

Our implementation introduces a very small system over-
head in terms of the usage of the CPU and memory. To
evaluate, we measured the system CPU and memory us-
age when V-edge is enabled and disabled for monitoring
system energy consumption. With V-edge enabled, the
smartphone used only 2 MB more memory to run back-
ground V-edge code and store the collect data in memory.
Such a small memory footprint is negligible compared
with the large memory size of 512MB or 1GB on to-
day’s smartphones. We did not observe any noticeable
difference on CPU usage because of its event-driven im-
plementation like the work [4]. Thus, our implementation
is lightweight and introduces low system overhead.

9 Discussions and Future Work

V-edge provides prior power modeling techniques an op-
portunity to work on most smartphones on the market.
Our power modeling system is one simple example that



Figure 7: Energy consumption of screen benchmarks. Results are normalized relative to ground-truth values.

GALLERY BROWSER ANGRY BIRDS VIDEO SKYPE GPS STATUS
0

0.5

1

1.5

no
rm

al
iz

ed
 e

ne
rg

y 
co

st

 

 

V−edge model meter model ground truth

Figure 9: Energy consumption of applications. Results are normalized relative to ground-truth values.

is built upon V-edge. It is intended to demonstrate the im-
plementation feasibility and exhibit benefits that V-edge
offers. Therefore, we only cover major energy consumers,
such as the CPU and screen. In the future, we plan to
complete our models by adding more components, like a
3G module, in order to create a useful system tool.

Another issue worthy of investigation is the model opti-
mization for self-metering approaches. Usually, the more
accurate estimations are expected, the more predictors a
model need to consider, and thus the more overhead the
building procedure has. For example, if we only use the
backlight level to model the screen like previous work,
83% building time is saved for our whole system. How-
ever, the accuracy is not acceptable. We therefore plan to
study how to select more efficient predictors to balance
this accuracy and overhead trade-off.

In addition, although our implementation is based on
Android platform, the V-edge approach is general enough
and not limited to only the Android platform. We plan to
implement the V-edge-based system on other mainstream
smartphone platforms such as Windows Phone.

10 Conclusions

In this paper, we propose a new approach called V-edge
for fast and self-constructive power modeling on smart-
phones. The V-edge approach is novel because it builds
power models by leveraging the regular patterns of the
voltage dynamics on battery-powered devices. Different
from most existing self-modeling approaches, the V-edge-
based approach does not require current-sensing of battery
interface so that it works for most smartphones on the mar-
ket. We have designed and implemented a V-edge-based
modeling prototype. It performance demonstrates that
V-edge can facilitate fast and accurate power modeling
with low overhead.

Acknowledgment. We thank Thomas Moscibroda,
Ranveer Chandra, our shepherd Dave Levin, and anony-
mous reviewers for their valuable comments and insight-
ful feedback. This work was supported in part by US
National Science Foundation grants CNS-1117412 and
CAREER Award CNS-0747108.



References

[1] Antutu battery saver. https://play.google.com/store/
apps/details?id=com.antutu.powersaver&feature=
search result#?t=W251bGwsMSwxLDEsImNvbS
5hbnR1dHUucG93ZXJzYXZlciJd.

[2] R. Mittal, A. Kansal, and R. Chandra. Empowering devel-
opers to estimate app energy consumption. In MobiCom,
2012.

[3] M. Dong and L. Zhong. Self-constructive high-rate system
energy modeling for battery-powered mobile systems. In
MobiSys, 2011.

[4] A. Pathak, Y. Hu, M. Zhang, P. Bahl, and Y. Wang. Fine-
grained power modeling for smpartphones us-ing system
call tracing. In EuroSys, 2011.

[5] A. Carrol and G. Heiser. An analysis of power consump-
tion in a smartphone. In USENIX ATC, 2010.

[6] A. Shye, B. Scholbrock, and G. Memik. Into the wild:
Studying real user activity patterns to guide power opti-
mizations for mobile architectures. In MICRO, 2009.

[7] T. Cignetti, K. Komarov, and C. Ellis. Energy estimation
tools for the Palm. In MSWIM, 2000.

[8] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for profiling the energy usage of mobile applications. In
WMCSA, 1999.

[9] A. Schulman, T. Schmid, P. Dutta, and N. Spring. Demo:
Phone power monitoring with BattOr. In MobiCom, 2011.

[10] Battery performance characteristics. http://www.
mpoweruk.com/performance.htm.

[11] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha. De-
vscope: A nonintrusive and online power analysis tool
for smartphone hardware components. In CODES+ISSS,
2012.

[12] S. Gurun and C. Krinz. A run-time, feedback-based en-
ergy estimation model for embedded devices. In WMCSA,
2006.

[13] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,
and L. Yang. Accurate online power estimation and auto-
matic battery behavior based power model generation for
smartphones. In CODES+ISSS, 2010.

[14] Monsoon power monitor. http://www.msoon.com/
LabEquipment/PowerMonitor/.

[15] S. Lee, J. Kim, J. Lee, and B. H. Cho. State-of-charge
and capacity estimation of lithium-ion battery using a new
open-circuit voltage versus state-of-charge. Journal of
Power Sources, 2008.

[16] R. Myers. Classical and modern regression with applica-
tions, volume 2. Duxbury Press Belmont, CA, 1990.

[17] M. Dong and L. Zhong. Chameleon: A color-adaptive
web browser for mobile oled displays. In MobiSys, 2011.

[18] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. App-
scope: Application energy metering framework for an-
droid smartphone using kernel activity monitoring. In
USENIX ATC, 2012.

[19] GPS status. https://play.google.com/store/apps/details?
id=com.eclipsim.gpsstatus2&hl=en.


