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Abstract—RFID technology is increasingly being deployed in
ubiquitous computing environments for object tracking and
localization. Existing tracking architecture usually assumes the
use of a trusted server which is invulnerable to compromise by
internal and external adversaries. However, maintaining such
a trusted server is unlikely in the real world. In this paper,
we consider the problem of adding privacy protection to object
tracking systems built upon passive RFID tags, without relying
on a trusted server assumption. Our protocol continues to protect
user privacy in the event of partial compromise of a server.

I. INTRODUCTION

The low cost and rugged design of RFID tags make them

suitable to be attached to everyday objects such as key chains

and coffee mugs. With every object embedded with its own

RFID tag, ubiquitous computing concepts like object tracking

and localization or location based services can be realized [1],

[2], allowing many new applications to be developed upon this

infrastructure. At the same time, widespread RFID deployment

creates privacy risks for everyone, not just a few willing early

adopters, thus the need for privacy protection becomes critical.
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Fig. 1. Typical RFID tracking system

Fig. 1 shows an environment where RFID tags are attached

to people and objects. Each RFID tag has an associated unique

ID which represents that tag in the system. A network of

RFID readers are deployed in the building, with each reader

associated with a specific location, such as “Office 1” or

“Corridor 2”. The readers are connected to a database server

via a wired network. A reader will periodically broadcast a

query, and all the RFID tags within the vicinity will respond

to that reader. The reader will then forward these tag responses

to the database. A user wanting to know for instance who was

at a meeting in Office 1 at 1:00 pm can query the database

to determine the IDs of the tags, and thus the identity of the

meeting participants.

The potential for abuse of such a powerful tracking system

is apparent. The straightforward approach is to limit the access

to the database data using passwords. Each user is associated

with a list of RFID tags they are authorized to access, and

must supply the correct password when querying the database.

For example, a user with ID=101 running a query “Select

location From database Where ID=101 and Time=time” must

first supply the appropriate permissions for his tag before

the location information is released. More advance techniques

such as role-based access control [3], [4], and Hippocratic

databases [5], can also be used to protect the database.

This type of solutions have a common requirement. A

trusted database is needed to maintain and enforce the

privacy policy. Without a database that is invulnerable to

compromise by criminal hackers or disgruntled employees,

and always managed by competent system administrators,

we cannot protect user privacy. We believe that maintaining

such a trusted server is difficult in practice. Even three letter

government agencies with strong emphasis on security have

been vulnerable to database breaches or mistakes [6], [7], [8].

In this paper, we consider the problem of how to build

a tracking system that does not rely on a trusted database

to protect user privacy. Our solution divides up the database

operations into separate servers such that we can tolerate

the compromise of any one of the databases. Our protocols

are designed to take into account the computationally weak

capabilities of an RFID tag, and allow a user to efficiently

query the database for answers.

We make the following contributions in this paper. We

propose a technique to divide a database query, originally

intended to a single database, into multiple databases such

that if only one of the database is compromised, the user’s

privacy is protected. We also consider how to detect, but not

prevent, adversary disruption attacks such as the data deletion

and manipulation.

The rest of the paper is as follows. We formulate our prob-

lem and adversary model in Section II. Section III introduces



two strawman protocols to motivate our solutions. Sections IV

presents our protocol against different types of adversaries.

Section V considers additional security issues not directly

related to user privacy. Finally we review the related work

in Section VI and conclude in Section VII.

II. RELATED WORK

Privacy protection is an important component in ubiquitous

computing environments [9], [10]. The technique of using mix

zones was proposed by [11], [12] where by users could specify

certain areas where nobody could trace their movements. Other

researchers [13], [14], [15] proposed techniques to help users

define privacy policies. This approach is more flexible than

mix zones at the cost of additional complexity in specifying

the policies. The idea of allowing users to specify “virtual

walls” was suggested by [16] to simplify the creation of a

privacy policy. Physical access control [17], [18] addresses

the problem of specifying a privacy policy. Users can only

obtain the location information of people that are were present

together at the same time. The intuition is that users that

were at the same location at the same time already know

each other’s presence, and thus there is no privacy issues

when releasing that information later. Our work differs from

these proposed techniques in that we do not rely on trusted

servers to protect user privacy. Our idea of protecting privacy

by separating location, time, and identity is similar to that

proposed by [19], but our solutions are designed to work with

RFID tags.

RFID security is an active area of research with many

different protocols being proposed [20], [21], [22]. While our

paper also proposes a simple security protocol, our focus is

less on the security and privacy between RFID reader and tag,

but oriented more towards data already collected and archived.

Closely related to our paper is research on searching en-

crypted data. In this problem, a user encrypts his data and

stores it at an untrusted server. The user wants to be able to

search of part of his data in an efficient manner. Since the

server is untrustworthy, the user cannot send over his secret

key. The user also cannot request the server to transmit all the

encrypted data back since it is inefficient. An search system

using symmetric key to encrypt data was proposed by [23],

while [24] suggested a public key based scheme. Practical

encrypted database query retrieval systems were proposed

by [25], [26]. However, unlike our paper, prior research in this

area do not consider the privacy implications of ubiquitous

environments such as malicious tracking of users. This was

shown in the second strawman approach by using [26] as

an example. Furthermore, these prior techniques assume that

more advance hardware such as laptops are used, rather than

computational weak RFID tags.

III. PROBLEM FORMULATION

We consider a network of RFID readers, R1, · · · , Rn, are

deployed throughout a facility. Each reader is programmed

to periodically broadcast a query to read all the RFID tags

within its vicinity. The captured data is then forwarded to a

TABLE I
UNENCRYPTED TABLE IN DATABASE

ID Time Location

1. 101 10:00am Office 1

2. 102 10:00am Office 3

3. 101 10:15am Office 2

· · · · · · · · · · · ·

backend database for storage. In the unencrypted scenario, the

database stores this information as a ID : time : location

tuple, where ID is a number that identifies that RFID tag,

time is the time that tag was read, and location is the physical

location corresponding to that particular reader. We assume

that the database knows the locations of all the RFID readers,

and can associate the data from a reader to a location.

The database can represent the data from all the RFID

readers as a table with 3 attributes,ID, Time, and Location.

Table I illustrates this database. A user who own tag 101, can

query this database later by issuing a query,

Select * from DB where ID=101 and Time=10:00 am

and determine he was at Office 1 at 10 am.

Such a setup provides no privacy protections, since anyone

can query the database to determine anybody’s movements.

Under the trusted server assumption, we can protect privacy

by associating a password with each ID. The user running

the above query for instance, will have to supply the correct

password associated with ID=101, before the database will

release the information. While more complex schemes can

be designed to provide better access control, a fundamental

requirement is that the database cannot be compromised. An

adversary with access to Table I learns everything.

In this paper, we consider the problem of how to protect

privacy in the event of such a server is compromised by an

adversary.

A. Adversary model

We assume that the adversary seeks only to track the

movements of a user. The adversary succeeds if he is able

to extract the identity of the user from the database, or if he

is able to link two entries in the database to the same user.

We assume that the adversary can have free access to the

database data such as in Table I, as well as observe the

database interactions between a user and the database. The

adversary is however, unable to determine the identity of

someone querying the database. For instance, the adversary

cannot deduce a user identity through the MAC address of

the user’s device when the user is querying the database.

Techniques such as an anonymizing network [27] can be

deployed to achieve this. Also, the adversary cannot reprogram

the database to execute functions it otherwise will not perform.

In our paper, we assume that the RFID tags are able to per-

form simple operations such as generating random numbers,

perform a hash function, and XOR two bitstrings together.

These are common assumptions made in RFID security lit-

erature [28], [29], [30]. While our solution in the paper is



presented using hash functions, symmetric key encryption can

be substituted instead with minor modifications.

Finally, we assume that having a rational adversary pre-

cludes attacks such as deleting or shuffling entries in the

database since such actions do not help the adversary identify a

user. This is reasonable since such disruption attacks increases

the risk of detection. We will discuss more about defending

against such attacks in the Section IV.

IV. STRAWMAN SOLUTIONS

We motivate our solutions by considering the limitations of

seemingly possible solutions. For all these strawman solutions,

we assume a more powerful RFID tag that can do symmetric

key encryption is used. We always assume the user is the

owner of RFID tag 101.

A. Strawman 1

Database Reader Tag

Request

kn},101{ (a)

loc time,},101{ Store , kn

kn},101{
kn},101{

Fig. 2. Strawman protocol 1. The tag ID is 101.

In this simple protocol, we let the RFID tag return its

encrypted ID in the form of {ID, n}k where n is a random

number, and k is the tag’s secret key. For completeness, we

show this interaction in Fig.2. Now, in the database, we have

TABLE II
DATABASE TABLE FROM STRAWMAN 1

ID Time Location

1. {101, n1}k1
10:00am Office 1

2. {102, n2}k2
10:00am Office 3

3. {101, n3}k1
10:15am Office 2

· · · · · · · · · · · ·

where k1 and k2 are the secret keys of tags 101 and 102

respectively. We see that this approach protects privacy since

the adversary observing this table cannot learn the actual IDs,

101 and 102, of the tags. There is also no linkability, since

{101, n1}k1
and {101, n3}k1

use different random numbers

n1 and n3 while encrypting the same ID, thus resulting in

different ciphertexts.

The problem with this solution arrises when the user wants

to query the database. He can no longer simply do a “Select

* from DB where ID=101”, since all the ID attributes now

have a random number component. The user cannot recall the

n1 and n3 values used since the limited storage capacity of the

RFID tag means these random numbers have to be generated

on-the-fly and never archived. The only option is for the user

to retrieve the entire table, and attempt to decrypt each entry’s

ID field until he finds the all the entries with IDs equal to

his own. This is clearly inefficient given the large size of the

table.

B. Strawman 2
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Fig. 3. Strawman protocol 2. The tag ID is 101.

We can modify a technique from [26] to improve the query

performance. Now, each RFID tag maintains two keys that it

keeps secret, i.e. tag 101 will have k1101, k2102. We remove

the superscript and use k1 and k2 to denote keys to simplify

the presentation. The protocol is shown in Fig. 3, and after

the data is collected, the table resembles Table III.

TABLE III
DATABASE TABLE BY STRAWMAN 2

ID Time Location

1. {101, n1}k1, {α1}β1
10:00am Office 1

2. {102, n2}k1, {α2}β2
10:00am Office 3

3. {101, n3}k1, {α3}β1
10:15am Office 2

· · · · · · · · · · · ·

This approach also provides the same protections against

an adversary as the earlier strawman protocol, since knowing

{101, n1}k1, {α1}β1
does not lead to knowing 101. Fur-

thermore, the adversary cannot link {101, n1}k1, {α1}β1
and

{101, n3}k1, {α3}β1
together since a different random n is

used.

When a user queries the database, he will issue a “Select

* from DB where ID=β̂ and Time=10:00am”, where

β̂ = {101, ID}k2

The database will encrypt the first portion of each ID field

with β̂, and check whether it matches the second portion. If

it does, the database will return that entry to the user. For

example, encrypting {101, n1}k1 with β̂ will match {α1}β1
,

and hence this entry belongs to the user. Since {101, n1}k1 is

protected via k1 which is only know by the user, the database

does not have to verify the user. It is clear that strawman 2 is

more efficient than strawman 1.

However, once an adversary observes β̂, the adversary can

determine future time and locations that β̂ have visited. For

instance, using β̂, the adversary know that the same tag visited

Office 2 at time 10:15 am. The reason is that while at time

10:15 am we have {101, n3}k1 which uses a different n3, the

same β is used, since β = {101, ATTR}k2. The ATTR is

a fixed value in the database and cannot be changed by the



user. Thus, strawman 2 only prevents linkability so long as

the adversary never observes a user querying the database.

This vulnerability does not occur in [26] because in their

encrypted database, all fields are encrypted by the user and

stored into the table. In other words, “10:15 am” and “Office

2” are all encrypted separately. The “β” used to encrypted

“10:00 am” and “10:15 am” will be {10:00 am, T ime}k2 and

{10:15 am, T ime}k2, so knowing the β value of 10:00 am

does not reveal anything about 10:15 am. We cannot do the

same in an RFID based tracking system because the RFID tag

cannot determine the time and location independently.

C. Discussion

From the strawman protocols, we can make the following

observations. First, a direct encryption of data by the RFID

tag (strawman 1) protects user privacy even if the database

is compromised. However, this approach has slow query

performance since the database cannot return only the user’s

data to him. Second, the solution cannot merely focus on

building an encrypted database, but must also consider the

user query process. The protocol has to ensure that the user’s

query does not reveal useful information that an adversary

can use to violate user’s privacy (strawman 2). Finally, unlike

more powerful laptop devices [31], the RFID tag cannot

maintain an internal clock to determine time by itself, not

capture IP address or GPS coordinates to determine its location

independently. While [32] gives a solution for the RFID tag

to determine time, it is unclear that the same techniques can

be applied to location information since the tag movements is

unpredictable.

The intuition behind our approach is to utilize separate

database servers to perform different roles in the RFID track-

ing system, as well as store different types of data in each

server. There are two roles in the RFID tracking system, where

the tag was read (location), and at what time the tag was

read (time). Our approach uses two database servers, one to

control and store time data and the other to control and store

location data. In this paper, we assume that the adversary

can only compromise one of the following, (a) the database

storing time information, (b) the database storing location

information, (c) a small number of RFID readers.

We justify this assumption because the two servers can

be housed at different physical locations, running different

operating systems, and managed by a separate group of

system administrators. This raises the bar for an adversary

to compromise both servers. Also, given the large number of

RFID readers deployed, it is reasonable to assume that the

adversary cannot control a majority of them.

The following notations are used to describe our protocols.

The server controlling the timestamps is the timestamp server

TS, and the server controlling the location is the location

server LS. We use terms server and database interchangeably

in this paper. While both TS and LS can communicate with

the RFID readers, only the LS knows the location of these

RFID readers. We denote an RFID reader as R, and an RFID

tag as T . Each T maintain its own secret s, ID and a simple

incremental counter ct. The values of s, ID, and ct are kept

secret and only known to the tag owner. The tag also maintains

a simple incremental counter ct. We use subscripts i when

denoting more than one reader or tag.

We denote the RFID tag identifier as ω, and ω will be stored

under the “ID” attribute in the LS. For instance, when there is

no security at all, the ω value is just ID, in strawman protocol

1, the ω value will be {ID, n}k, and in strawman protocol 2,

ω = ({101, n}k1, {α}β). A summary of the notation used in

this paper is given in Table IV.

TABLE IV
SUMMARY OF NOTATIONS

R RFID reader

T Tag

TS Timestamp Server

LS Location Server

s Tag’s secret, known only to tag owner

ID Tag’s ID, known only to tag owner

ct Tag’s counter value, known only to tag owner

ω Tag identifier

t timestamp, stored in TS

loc location, stored in LS

n Nonce generated by tag

Nls Nonce generated by LS

V. RFID PROTOCOL

The intuition behind our protocol is for the RFID tag to

generate two pieces of data each time it responds to an RFID

reader. The reader will store one piece of data associated with

the time the tag was read in the TS, and the other piece of

data associated with the location of the tag in the LS. An

adversary compromising either LS or TS will be unable to

violate the privacy of the RFID tag. When a legitimate user

wishes to query the databases, he will query both TS and LS

separately and combine the result to satisfy his query. The

overview of an RFID reader collecting data and user querying

the servers is shown in Fig. 4.

TS LS

(1) Query TS to obtain time 

data, then query LS to get 

location data.

(2) Combine both to satisfy 
query.

User

TS LS

(1) Read data from tag.

(2) Return time data 

to TS, location data to DS

Reading RFID tag Querying database

Fig. 4. (L) Obtaining data from tags. (R) Querying databases for data.

A. Collecting data from tag

Fig. 5 shows the protocol for collecting data from an RFID

tag. When a reader queries the RFID tag in Step (1), the tag

will first generate a random number n by hashing its secret s



Timestamp

Server

Location

Server Reader Tag

Request

 n) h(id, (c)
1ct ct  (b)
ct) ,h(s n  (a)

=

+=

=

ω

n,ω

nt,

iR,ω

(1)

(2)(3)

(4)

Fig. 5. Reader-tag interaction. The dotted line in step (3) denotes that the
reader transmits directly to the timestamp server, bypassing the location server.

with the current counter value, ct. The tag will then increment

the ct by one (Step 1b), and create the identifier ω as h(ID, n).
Finally, in Step (2), the tag returns ω, n to the reader.

When the reader receives this tuple, the reader will append

the current timestamp t together with n, and send that to the

TS in Step (3). This messages bypasses the LS completely,

meaning the LS never learns n. Then, the reader will append

the reader’s ID, Ri, and ω, and send everything to the LS in

step (4). Using Ri, the LS can determine the reader’s.

TABLE V
TABLE MAINTAINED BY TS

Time Random value

1. 10:00 am ni

2. 10:00 am nj

3. 10:15 am nk

· · · · · · · · ·

At the end of the protocol, the TS maintains a table shown

in Table V. The TS table has 2 attributes, time, and a random

value. The random values associated with time 10:00 am for

instance, are all the n values transmitted by all the RFID

readers. Each n value represent a different RFID tag. Similarly,

TABLE VI
TABLE MAINTAINED BY LS

ID Location

1. ω1 Office 1

2. ω2 Office 3

3. ω3 Office 2

· · · · · · · · ·

the LS maintains a table shown in Table VI. The LS table has

2 attributes, the tag identifier ω and the location that tag was

read. Each entry in the LS table represent a different RFID

tag response. Note that the LS does not update the table in

real time, and thus the ordering of entries do not indicate the

time an RFID tag was read.

B. Querying the database

Let the user wanting to learn his location at 10:00 am. He

will need to query LS using the ω value h(101, n), where n

is the value he choose at 10:00 am. Notice that the LS table

is similar to strawman protocol 1’s table. In both instances,

the ID 101 is protected by a random number n. To query

LS, the user must first determine the value of n he used at

10:00 am. In our protocol, we let n = h(s, ct) and increment

ct immediately afterwards. While the tag cannot recall the

random n value used at 10:00 am, the owner of the tag can

determine the current value of ct in the tag. (We assume that

there is a command to recover this.) Knowing the secret s

as well as the initial and current value ct, the user can re-

generate all the random n values the RFID tag has used so

far. For instance, the user can generate a list The user then

TABLE VII
TABLE MAINTAINED BY USER

ct n time

· · · · · · · · ·
cti−1 h(s, cti−1) ?

cti h(s, cti) ?

cti+1 h(s, cti+1) ?

· · · · · · · · ·

queries the TS database using

Select Time from TS where Random Value = ni, (1)

where ni = h(s, cti).
After receiving the time corresponding to ni from Table V,

the user determine whether the returned time is larger than

or smaller than his target time of 10:00 am. If the returned

time is larger, the user will pick another an smaller ct value,

compute n, and query the TS again. If the returned time is

smaller, the user will pick a target ct value. Using a simple

binary search, the user only needs to execute O(log n) queries

to TS.

With the user now knowing his n corresponding to 10:00

am, he can now query the LS server using the following query.

Select * from LS where ID=ω, (2)

where ω = h(101, n).

C. Security analysis

We consider the security of our system after the adversary

compromises the TS, the LS and the reader Ri. Since we

allow anyone to query the databases, the adversary controlling

the TS for instance, can also query the LS like a regular user.

Compromise TS server: The adversary succeeds in attack-

ing TS if he can determine which ω in LS belongs to a user,

or if the adversary can determine that two ω values belong to

the same person. The reason for focusing on ωs is because

through ω, the adversary determine the whereabouts of a user.

The adversary controlling TS is able to access all the

records such as those in Table V, as well as observe multiple

queries (Query 1) made by a user and the corresponding

response. The adversary can also query the LS using infor-

mation from his observations.

We begin by examining what the adversary can learn from

controlling TS. For a single RFID tag Ti with secret si being

queried twice, the n results from h(s, ct) and h(s, (ct+1)) will



be different since the ct value is automatically incremented

each time the tag responds, as shown in Fig. 5 Step 1(b).

We see that the adversary simply knowing the entire Table V

cannot determine whether two n values belong to the same

user or not. The adversary can only determine which n values

belong to the same user after observing a user execute Query 1

multiple times. The reason is that the answer to Query 1 is the

n value associated with a particular time. Since only a user

knows his own s values, successive Query 1 link the n values

to the same user.

Let us assume the adversary after some observation can

determine that the times ti and tj , and the corresponding ni

and nj belong to the same user. Now the adversary tries to

query LS to try and determine where this user has been. The

table maintained by LS only contains a set of ωs and their

corresponding locations. There is no indication what time each

ω was obtained. The adversary cannot determine which ω

belongs to the user he is tracking because ω = h(ID, n),
and that the adversary cannot link ω = h(ID, ni) and

ω = h(ID, nj) together without knowing the secret ID.

The property of separating time and location information

into the TS and LS respectively defends against leaking

information in the more extreme instances where there are

few users in the entire tracking system. Consider the tracking

system of an office building at night, and we have TS table,

Time Random value

1. 2:00 am ni

2. 2:15 am nj

Assuming there is no one else in the building, the adversary

can infer that ni and nj belong to the same person. Now,

the adversary can attempt to query LS to determine where

that person has been. The adversary cannot determine any ωs

from ni and nj , and can only issue a query “Select * from

LS where ID=*” to retrieve everything from LS to try and

determine where this tag has been. Since LS does not store

time, the adversary cannot filter the LS data to narrow down

possible locations the tag has been.

Compromise LS server: Next we consider the adversary

controlling the LS server. The adversary will now be able

to access all the records such as those in Table VI, as well

as observe multiple queries (Query 2) made by a user and

the corresponding response. The adversary can also query the

TS using information from his observations. The goal of the

adversary remains the same.

From controlling LS, the adversary knows the time and

location associated with each ω. Given that ω = h(ID, n),
RFID tags with different IDs will have different ω values, and

the same tag will also have different ωs at different times since

the n values will change due to n = h(s, ct), and the tag’s ct

values increments each time it replies. Unlike controlling the

TS, the adversary observing multiple Query 2 cannot assume

they all belong to the same user and link the ωs together. This

is because a user does not have to issue Query 2 more than

once to obtain an answer.

Let us assume that the adversary knows that ωi is associated

with time ti. The adversary can query TS doing “Select *

from TS where Time=ti”. However, since there are many

tags that respond at each time, all the adversary obtains is a set

of n values. The adversary cannot determine which n value

corresponds to his ωi.

Compromise RFID reader: An adversary controlling an

RFID reader will be able to read ω, n from a tag (Step (2) in

Fig. 5), and is assumed to know the location of the reader it has

compromised. We allow the adversary to physically observe

a user transmitting a particular ωi, ni once, in other words,

being able to associate a user’s identity to a ωi, ni tuple. The

adversary succeeds if he is able to use this information to

determine additional information regarding that user.

One attack has the adversary trying to use ωi, ni in querying

TS and LS. The adversary learns from querying TS, since he

already knows the time and ni values. Since the tag will use a

different n each time, the adversary cannot determine whether

other n values belong to the same user. Similarly, since the

n value is constantly changing, the adversary observing LS

cannot use ωi to determine which ωs belong to the same user.

Thus, no additional information can be obtained from TS or

LS from ωi, ni.

Another attack has the adversary after manually determining

the identity associated with ωi, ni, trying to determine if a

future ωj , nj belongs to the same user. This is useful if the

adversary controls the reader deployed outside an sensitive

location like a clinic. Since the adversary cannot always be

physically present to determine a user’s identity, this attack

allows the user to determine if the same user has visited

that location again in the future. However, since knowing the

ni and nj cannot be linked together because the ct value is

incremented and hashed with a secret s known only the tag,

the resulting ωi and ωj cannot be linked together.

Finally, we consider the scenario where the adversary

controls multiple RFID readers. Controlling multiple readers

does not give the adversary any additional advantage, since

a tag does not have to authenticate the RFID reader before

transmission. The tag will always generate a different ω, n

tuple to any reader that queries it.

D. Protocol discussion

Our protocol uses the counter ct that automatically incre-

ments each time the tag is queried. This feature allows an

adversary, using his own reader, to query the tag simply to

increment the ct value. However, this behavior only degrades

the user’s performance, and does not help the adversary learn

anything about the user. A rational adversary will not launch

this type of attack.

Our choice of ω in the protocol is h(ID, n). Given an

adversary, a possible alternative is to set ω as h(ID, t). This

will have the same properties as h(ID, n) since the time value

t will only occur once and never repeat. Using h(ID, t) will

also give better query performance, since the user can directly

determine the appropriate ω and query the LS, instead of

doing a binary search on TS to determine n. The reason we do

not use h(ID, t) is that different readers may have a slightly



different clock skew. Thus, honest readers may issue the same t

value to the RFID tag, resulting in similar ω values at different

locations. This allows that tag to be linked to two locations,

thus violating privacy. Our choice of h(ID, n) does not have

this problem since the ct will automatically increment after

each query, resulting in different ω values each time.

VI. ADDITIONAL DISCUSSION

Here we consider disruption attacks that do not impact user

privacy but can disrupt regular user operations.

A. Detect deleted data

The adversary controlling either TS or LS can decide

to delete selected entries from the respective tables. The

adversary can do this simply to disrupt the database operations,

or to conceal other malicious activities. Consider for instance

an adversary planning to steal something from an office. The

adversary can attack the TS or LS to avoid storing any

tag data collected around that time or location to cover his

tracks. Possible witnesses that check the system to verify their

locations will determine that they were not actually present at

that time.

Recall that when a user wishes to query “Select * from

LS where ID=ω”, he will first build a Table VII to determine

his target time. To determine whether any data has been

deleted, the user can expand Table VII to include enumerate all

previous ct values until up to the current ct value in his RFID

tag. He then queries the TS until to determine the n value

corresponding to each ct. If the adversary has compromised

TS and deleted his entry at a particular time, the n value

corresponding to that time will be missing. In other words, if

the user has some counter value cti where there is no n value

in Table V matches h(s + cti), the user will suspect that his

data has been deleted.

If the user can obtain all the n values corresponding to his ct

values, he then queries the LS for each ω associated with each

n. If the adversary has deleted his entry from LS, the user will

not receive any location associated with one of his ωs. Note

that the adversary can only select entries to delete based on

either time, if controlling TS, or location if controlling LS.

The adversary cannot single out a particular tag’s information

to be deleted since he cannot distinguish between two tags.

The adversary can compromised the RFID reader instead of

TS or LS so that the reader does not broadcast any requests.

When this happens, no tag data exists in either TS or LS,

and the RFID tag will not be triggered increment it’s ct

value. While a user can infer from “gaps” in the time and

location information from TS and LS that a particular RFID

reader might be compromised, the user cannot be certain since

the gaps may also be caused by environmental conditions or

faculty readers. Nonetheless, the occurrence of such gaps will

trigger an investigation and detect any compromised readers.

B. Detect tampered data

Instead of deleting the data, the adversary can choose to

tamper with the time or location information and launch an

attack as follows. Consider an RFID tag at 10:00 am was read

outside “Office 1”. There will be an entry in the TS

Time Random value

1. 10:00 am n

where n = h(s + ct). The corresponding entry in LS will be

ID Location

1. ω Office 1

Now let the adversary compromises TS, and changes the

time variable from 10:00 am to 11:00 am. The user querying

TS with “Select * from TS where Random Value = n”,

will receive the answer 11:00 am. The same user now querying

LS with ω = h(ID, n) will believe that he was outside Office

1 at 11:00 am instead of 10:00 am. Since no data was deleted,

the user using the technique for detecting missing data above

will not find any problems. The adversary that compromises

LS can execute the same attack by changing “Office 1” to

“Office 2”.

The reason this attack is successful is because there is

nothing linking the value n to 10:00 am, nor the value ω

to “Office 1”. We can modify our protocols to let the RFID

reader transmit both the t and RID information when querying

a tag. The tag will then compute a new variable ǫ where

ǫ = h(ID, n, t, Rid).

and return this value to be stored in LS. Thus, the table in

LS will become

ID Location

1. ω, ǫ Office 1

After the user queries for his location from LS, he will

compute ǫ̂ by hashing his ID with the n value and time values

he received from TS, and the location provided in LS. If ǫ̂

matches ǫ, the user will accept the answer.

We can use a separate mechanism to detect whether an

adversary has compromised an RFID reader to an incorrect

t or RID values. When LS receives the data from an RFID

reader, it can check whether the contained RID matches the

RFID reader IP address that transmitted the data. A warning

will be flagged if there is a discrepancy. The same check can

be performed by TS to verify if the reader used an incorrect

t value.

The adversary controlling TS can use this ǫ to determine

the location of user if he is able to associate an n value with

ǫ since he will then be able to search LS for a matching ǫ

value. The adversary cannot obtain ǫ directly since this value

is never forwarded to TS. The adversary cannot deduce this

value from n and t because ǫ requires knowing RID and ID,

both which the adversary does not know.

For the adversary controlling LS, the addition of ǫ can be

used to track a user if the adversary can observe the LS table

and determine two identical ǫ values. This will imply that the

same user visited both locations. However, each ǫ contains a

time t from the RFID reader which will never repeat itself,

and the adversary controlling LS cannot manipulate the reader



to reuse an older t value. Thus, the adversary cannot link two

locations to the same user.

Finally, the adversary controlling the RFID reader may

attempt to reuse old t values to track a user. The adversary can

program the RFID reader to always use the same time t value,

The idea here is to try to get an RFID tag to return a response

that has been repeated before. This way, the adversary can

determine that that same tag has move pass the reader twice.

Here, we let ǫ to contain an always changing value n which

is dependent on an incrementing counter ct. Therefore, even

if the same same t, RID and ID values are used, the resulting

ǫ will not be the same.

VII. CONCLUSION

As ubiquitous systems move away from research prototypes

to real world deployments, privacy systems that do not rely on

trusted servers will become increasing important. We believe

that our work is an initial step away from the trusted server

model towards more robust alternatives. Our future work

considers two extensions. The first is to allow users to delegate

data access control to other users, and the second is to explore

techniques to improve range query performance.
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