
Poster Abstract: EdgeStore: Integrating Edge

Computing into Cloud-Based Storage Systems

Zijiang Hao, Qun Li

College of William and Mary, Williamsburg, VA, USA

{hebo, liqun}@cs.wm.edu

Abstract—We present EdgeStore, a cloud-based storage system
that integrates edge computing for better performance. Prelimi-
nary results on our prototype system demonstrate the efficiency
of EdgeStore when working in an edge computing environment.
We believe that EdgeStore provides a new perspective on how to
exploit the potential of edge computing in cloud-based systems.

I. INTRODUCTION

Edge computing has emerged over the last several years as

a new computing paradigm that extends cloud computing [1],

[2], [3], [4]. By executing computational tasks on the edge of

the network, edge computing establishes an environment that

enjoys better network conditions, including shorter network

latency, higher network bandwidth, and more stable network

connections. All of these are critical for QoS-sensitive appli-

cations, such as mobile-cloud applications, IoT applications,

big data applications with real-time constraints, and so on.

As edge computing is an extension of cloud computing, it

is a natural idea to integrate edge computing into cloud-based

storage systems for better performance. In light of this, we

propose EdgeStore, a cloud-based storage system enhanced by

edge computing. The design of EdgeStore can be summarized

into the following aspects.

(1) In EdgeStore, every data object consists of one or more

data fields, and every data field has a synchronization policy

attached. EdgeStore provides a default synchronization policy

for all data fields, but a developer could override this default

synchronization policy by attaching customized synchroniza-

tion policies to the data fields she has defined. The goal of the

default synchronization policy is to help the system achieve

reasonable performance in an edge computing environment in

most cases. When a data field needs to be specially handled to

fit the edge computing environment better or to achieve some

particular goals, we believe it is the developer who has defined

the data field has the knowledge of how to properly handle it.

In light of this, EdgeStore provides a programming interface,

through which developers could customize the synchronization

policies of data fields, helping the system make wiser decisions

when synchronizing the data fields for write operations.

(2) EdgeStore provides location-based data accessing services.

More specifically, it tracks the movement of any client device

that is reading (a large amount of) data from the system, and

predicts the next edge node that the client device will switch

to. By doing this, EdgeStore can prefetch the data to the next

edge node, such that the client device could enjoy seamless

edge node switches during the read operation, improving both

read performance and user experience.

II. DATA OBJECT EXAMPLES

As mentioned, an EdgeStore data object consists of one or

more data fields. Each data field has a synchronization policy

attached. The default synchronization policy is to eagerly

synchronize to the cloud as much data as possible from the

beginning of the data field, based on the currently available

network resources. The remaining part of the data field could

be lazily synchronized to the cloud when the system has extra

network resources.

videoData

(a) The Video object.

videoData

textData

(b) The SNSPost object.

Fig. 1: Data object examples.

Fig. 1(a) illustrates a simple EdgeStore data object, i.e.,

the Video object, which contains only one data field, i.e.,

videoData. The developer may override the synchronization

policy of videoData, specifying that at least the first 20 MB

data of the data field be eagerly synchronized to the cloud. By

doing this, the data field can be immediately read after it has

been written, and the system has a good change to provide

seamless data accessing services by eagerly synchronizing the

remaining part of the data field when it is being read.

Fig. 1(b) illustrates another EdgeStore data object, i.e., the

SNSPost object, which contains two data fields, i.e., textData

and videoData. The developer may override the synchroniza-

tion policies of the two data fields, specifying that all the data

of textData and at least the first 20 MB data of videoData be

eagerly synchronized to the cloud.

III. SYSTEM DESIGN

Fig. 2 illustrates the software stack of EdgeStore. As shown

in the figure, each data object instance exposes a Data Access

Interface to user applications, through which user applications

can read/write its data fields. Each data object instance also

contains a Synchronization Proxy, through which it can com-

municate with the Synchronization Manager. Developers could

System Monitor

Data Access Interface

Synchronization Manager

app

Synchronization Proxy

client

app app app app

client edge edge cloud

Fig. 2: EdgeStore software stack.

implement customized synchronization policies for data fields,

by programming their callback functions. More specifically,

they could give suggestions to the Synchronization Manager

through the Synchronization Proxy in the callback functions,

helping the Synchronization Manager make wiser decisions on

how to synchronize the data fields.

The System Monitor keeps monitoring the states of system

entities, including client devices, edge nodes, and the cloud. It

provides necessary information to the Synchronization Man-

ager, as well as to the data object instances to enable location-

based data accessing services.

IV. EVALUATION

We first build a testbed and deploy our preliminary imple-

mentation of EdgeStore on it. The testbed consists of four edge

nodes and one cloud server. Each edge node is connected to

the cloud server through a (10 ms, 40 Mbps) network link.

Then we conduct experiments to evaluate the performance of

using synchronization policies. Evaluation on location-based

data accessing services is left for future work.

Table I: Benefits of involving edge computing.

Throughput (tasks/min) Network Usage (Mbps)

w/ edge sync 24.56 16.37
wo/ edge sync 5.99 39.94

The first group of experiments are designed to evaluate the

benefits of involving edge computing in a cloud-based storage

system. More specifically, we evaluate to what extent edge

computing can help by applying synchronization policies to

data fields. We simulate the scenario in which instances of

the Video object shown in Fig. 1(a) are created and 200 MB

data is written to each of them by client devices, with a data

transmission rate of 8 Mbps. On each edge node, the arrival

intervals of the Video instances follow an N (10 sec, 4 sec2)

distribution. The synchronization policy that at least the first

20 MB data of the videoData field be eagerly synchronized to

the cloud is attached to each Video instance. Table I shows the

results. Clearly, when applying the synchronization policy via

edge computing, the system could achieve higher throughput

with lower network usage.

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14

S
y

n
c

S
iz

e
(M

B
)

Time (min)

w/ sync tuning
wo/ sync tuning

 0

 20

 40

 60

 80

 0 2 4 6 8 10 12 14
N

et
w

o
rk

 U
sa

g
e

(M
b

p
s)

Time (min)

w/ sync tuning
wo/ sync tuning

Fig. 3: Performance of EdgeStore.

The second group of experiments are designed to show how

well EdgeStore can work in an edge computing environment.

We only consider one edge node and the cloud server in these

experiments. We still simulate the scenario in which Video

instances are created and 200 MB data is written to each of

them, with a data transmission rate of 8 Mbps. The arrival

intervals of the Video instances follow an N (10 sec, 4 sec2)

distribution, and the same synchronization policy as the one

described above is attached to each Video instance. EdgeStore

provides a feature called “Synchronization Tuning”, i.e., the

System Monitor monitors the network usage, and informs the

Synchronization Manager if it finds that the network resources

are not fully used. The Synchronization Manager will then try

to synchronize more data for the active data fields. Fig. 3

compares the results of enabling Synchronization Tuning and

those of not enabling it. Clearly, when Synchronization Tuning

is enabled, the system could make better use of the network

resources, and the system performance can hence be enhanced.

REFERENCES

[1] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu,
and B. Amos, “Edge analytics in the internet of things,” IEEE Pervasive

Computing, vol. 14, no. 2, pp. 24–31, 2015.
[2] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,

applications and issues,” in Proceedings of MoBiData, 2015, pp. 37–42.
[3] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing:

A survey,” in Proceedings of WASA, 2015, pp. 685–695.
[4] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and

applications,” in Proceedings of HotWeb, 2015, pp. 73–78.

