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TABLE 1
Notations used in the analysis

G(V,E) social graph, V is the set of nodes, E is the set of edges
P transition matrix of the random walk process
n number of honest nodes in G
λ initial state vector of the random walk process
π stationary distribution of G
l random walk length
Ql accumulated probability distribution of the nodes being

traversed by a random walk with length l
t threshold frequency used in the sybil identification

algorithm
R number of random walks originating from a given node

D(d) number of nodes with degree d

APPENDIX A
ANALYSIS OF THE SYBIL IDENTIFICATION AL-
GORITHM

In this subsection we investigate the validity of our
sybil identification algorithm with theoretical analysis.
For the ease of analysis we list the used notations in
Table 1. A random walk with length l on an undirected
graph G can be modeled as a Markov Chain process.
The starting state of the random walk is described as λ,
the initial state vector of V . λv = 1 if v is the starting
node of the random walk, otherwise λv = 0. As defined
in Section 3, P is the transition matrix of the random
walk process. Therefore, the probability distribution of
the nodes being visited by the ith hop of the random
walk is λP i. Based on our fast-mixing assumption, λP i

converges to the stationary distribution π of G with
i ≥ Θ(log n). The accumulated probability distribution of
nodes being traversed by a random walk with length l is
Ql =

∑l
i=0 λP

i, and (Ql)j , the jth element in vector Ql,
is the expected number of times node j being traversed
by a random walk with length l. Therefore, R · (Ql)j is
the expected number of times node j being traversed by
R random walks with length l originating from the same
honest node, i.e., the expected frequency of j.

The pre-processing phase of our sybil identification
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Fig. 1. Pre-processing results and calculated expectation
values
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Fig. 2. Pre-processing results and theoretical approxi-
mate results

algorithm sets up the criterion to identify sybil nodes
by performing R random walks originating from each
judge node with every length value l ∈ {lmin, lmin +
100, ..., lmax}, respectively, and records the mean and the
standard deviation of the number of traversed nodes
with frequency no smaller than t. Define set Sl as
{j|R · (Ql)j ≥ t}, then |Sl| = |{j|∑l

i=0 R · (λP i)j ≥ t}|
is the expected number of nodes whose frequency is no
smaller than t with R l-hop random walks. With a ran-
domly chosen source node and R = 2000, based on our
Facebook dataset, we calculate |Sl| for different lengths
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and draw the calculated expectation curve in Figure 1.
To demonstrate the validity of our sybil identification
algorithm, we set the number of judge nodes to be 10 and
draw the pre-processing results curve based on the mean
value outputs of the pre-processing phase in the same
figure. It shows that even with a small number of judge
nodes, the two curves match well when the random walk
length is smaller than 10000 hops. As the random walk
length increases there shows some horizontal segments
in the calculated expectation curve. This is because in
a fast-mixing network, (λP i)j converges to dj

2|E| with
i ≥ Θ(log n), where dj is the degree of node j and E
is the set of edges. This means that with l ≥ Θ(log n)

the value of
∑l

i=0(λP
i)j for all the nodes with the same

degree increases by the same amount when l increases by
1, and thus their expected frequency,

∑l
i=0 R·(λP i)j , will

reach the threshold t at the same random walk length,
which leads to the jumps in the calculated expectation
curve. Note that although the calculated expectation
curve is divided into horizontal segments when the
random walk length is large, its inflection points still
match well with the pre-processing results curve. Figure
1 illustrates that with a small number of judge nodes and
limited R, the results derived from the pre-processing
phase of the sybil identification algorithm are already
accurate enough to match with the expectation values.

Moreover, we will show that the results derived from
the pre-processing phase starting from a random honest
node are generic enough to serve as the criterion to
identify sybil nodes. Since the network is fast mixing,
given a random starting node, i.e., a random initial state
vector λ, we have

Ql =

l∑
i=0

λP i

≈ λ+ λP + ...+ λPΘ(logn)−1 + π + ...+ π︸ ︷︷ ︸
l−Θ(logn)+1

≈ lπ.

Also, πj =
dj

2|E| , then we have (Ql)j ≈ l
dj

2|E| . Recall that
R · (Ql)j is the expected frequency of node j. To make
this value no smaller than t, we have

R · (Ql)j ≈ R · l dj
2|E| ≥ t ⇒ dj ≥ 2t|E|

lR
. (1)

Define S′l = {j|dj ≥ 2t|E|
lR }. Then |S′l | is the approximate

number of nodes whose frequency is no smaller than t
with R l-hop random walks. Let D(d) be the number of
nodes with degree d. Then

|S′l | =
max∑

d=� 2t|E|
lR �

D(d). (2)

Following Equation 2 we draw the theoretical approxima-
tion curve in Figure 2 based on our Facebook dataset,
and we compare it with the pre-processing results curve
identical to that in Figure 1. Note that Equation 2 is
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Fig. 3. Difference between the coverage of random walks
originating from honest nodes and from sybil nodes

irrelevant to the initial state vector λ, so the shape of
the theoretical approximation curve does not rely on the
starting node. Figure 2 shows that the pre-processing
results also match well with the theoretical approximate
results. Similar to the caculated expectation curve, there
are horizonal segments in the theoretical approximation
curve. This is because node degrees are integers and
l needs to increase by a certain amount such that the
value of 2t|E|

lR reaches the next integer. Nevertheless, the
middle point of each horizonal segment still matches
with the pre-processing results curve. Figure 2 illustrates
that the pre-processing results drawn from a random
honest node can be effectively used as the criterion to
identify sybil nodes.

To gain an understanding of the difference between
the footprint of random walks originating from an hon-
est node and from a sybil node, assume ϕ is the expected
number of hops for the random walks starting from
a sybil node to enter the honest region. If we draw
the curve for the number of nodes with frequency no
smaller than t based on the random walks starting from
that sybil node, it is approximately like moving the pre-
processing results curve in Figures 1 and 2 to the right
by ϕ and then raising it by the size of the sybil region. In
the evaluation we will show that this difference is large
enough to identify sybil nodes.

APPENDIX B
VERIFICATION OF THE INTUITION OF THE SYBIL
IDENTIFICATION ALGORITHM

The intuition of our sybil identification algorithm is that,
because of the existence of a small cut between the
honest region and the sybil region, there is a difference
between the coverage of random walks originating from
an honest node and from a sybil node. Figure 3 illustrates
this difference. Here, we use the PA model to construct
the sybil region. We set the size of the sybil region
to be 10000 nodes, and the number of attack edges to
be 1000. In the experiments we perform 1000 random
walks originating from each randomly selected source
node. The upper curve in Figure 3 is the number of
nodes traversed by random walks originating from an
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TABLE 2
False positive and negative rates of the sybil identification algorithm (10000 attack edges)

10 sybil nodes per attack edge (100000 sybils) 5 sybil nodes per attack edge (50000 sybils)
Orkut Facebook Orkut Facebook

PA Model ER Model PA Model ER Model PA Model ER Model PA Model ER Model
F+ F− F+ F− F+ F− F+ F− F+ F− F+ F− F+ F− F+ F−

1000RWs 0 0.06% 0 0.13% 0.4% 0.76% 0.4% 0.78% 0 0.14% 0 0.23% 0.3% 1.40% 0.2% 1.31%
1500RWs 0 0.03% 0 0.12% 0.6% 0.67% 0.4% 0.68% 0 0.11% 0 0.22% 0.4% 1.31% 0.5% 1.07%
2000RWs 0 0.03% 0 0.12% 0.7% 0.62% 0.7% 0.66% 0 0.04% 0 0.21% 0.5% 1.09% 0.5% 0.97%

honest node no smaller than 5 times, while the lower
curve is the number of nodes traversed by random walks
originating from a sybil node no smaller than 5 times.
Each point in the curves represents the mean value of
20 experiments. It is easy to see that the difference is
larger than 200,000 nodes when the random walk length
reaches 10000 hops. As described in Algorithm 2, we
use τ = mean − α ∗ stdDeviation as the threshold to
identify sybil nodes. In our experiments we observe that
stdDeviation < 1500, so the sybil nodes can be identified
even with a relatively large α, to limit the number of
falsely identified honest nodes.

APPENDIX C
MORE EVALUATION RESULTS OF THE SYBIL I-
DENTIFICATION ALGORITHM

To investigate the performance of our sybil identification
algorithm when more sybil nodes are controlled by the
adversary, we raise the number of attack edges to 10000
and repeat the experiments. Following the approach
mentioned in Section 5.1, creating 10000 attack edges
means that on average the adversary needs to com-
promise 131 honest nodes in the Orkut dataset, or 546
honest nodes in the Facebook dataset. Table 2 lists the
experimental results when each attack edge introduces
10 sybil nodes, which leads to a sybil region consisting
of 100000 sybil nodes, and the results when each attack
edge introduces 5 sybil nodes. It is easy to see that our
algorithm still achieves low false positive and negative
rates in these scenarios.

Online social networks do have communities, which
have denser relationships internally. However, real-
world evidence shows that these communities are not
separated by small cuts. Instead, they tend to be well
connected with each other. One proof is the remarkably
small average path lengths and diameters of online social
graphs, as shown in Section 5.4 of [1] and Section 4.1 of
[2]. Previous sybil defense schemes and our scheme are
all built on the assumption that the honest region is fast
mixing, i.e., there is no small cut in the honest region. Yu
et al. validate this assumption by showing that despite
the existence of social communities, even social networks
of very large scales tend to mix well within a rather small
number of hops (10 to 20 hops) [3]. Our experimental
results also validate this assumption: the false positive
rate of our sybil identification algorithm is very low,
which is slightly larger than or equal to 0. Considering

TABLE 3
False rates of SybilLimit on the Facebook dataset

PA Model ER Model
F+ F− F+ F−

10000 sybils 1.5% 8.55% 0.6% 15.35%
5000 sybils 1.2% 15.16% 1.4% 32.62%
1000 sybils 1.4% 61.3% 0.8% 85.3%
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Fig. 4. Comparison between the false positive and nega-
tive rates of SybilDefender and those of SybilLimit
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Fig. 5. Comparison between the average running time to
test one node by SybilDefender and that by SybilLimit

that our experiments are performed over unmodified
online social network samples, the low false positive
rate indicates that the number of small cuts in real
online social networks is very small (if any). Obviously,
the existence of small cuts in the honest region will
increase the false positive rate of our sybil identification
algorithm. This can be addressed by first locating the
community behind the small cut with our algorithms,
and then identifying the identity (sybil or honest) of a
node in the community through out-of-band methods.
If this node is honest then with high probability the
detected community is honest.

APPENDIX D
COMPARISON BETWEEN THE SYBIL IDENTIFICA-
TION ALGORITHM AND EXISTING SCHEMES

We fully implemented SybilLimit and evaluated it using
our Facebook dataset. We didn’t evaluate SybilLimit on
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the Orkut dataset as the running time is approximately
4 times longer, since the average degree of the Orkut
dataset is about 4 times of the average degree of the
Facebook dataset. Following the method in [3], we found
the optimal parameters for SybilLimit on the Facebook
dataset. We set w, the length of random routes, to be
20 hops, and r, the number of instances of the random
route generation protocol, to be 10000. Table 3 lists
SybilLimit’s false positive and negative rates when each
attack edge introduces 10 sybil nodes, 5 sybil nodes, and
1 sybil node, respectively. The results show that with
each attack edge introducing 10 sybil nodes, SybilLimit
accepts 8.55% of the sybil nodes when the sybil region
is constructed by the PA model, and 15.35% of the sybil
nodes when the sybil region is constructed by the ER
model. In comparison, SybilDefender only accepts 0.1%
of the sybil nodes in both cases when R = 2000. With
the decrease of the number of sybil nodes introduced
by each attack edge, the false positive and negative
rates of SybilLimit raise significantly. When each attack
edge introduces one sybil node, SybilLimit accepts the
majority of the sybil nodes.

Figure 4 compares the false positive and negative rates
of SybilDefender with those of SybilLimit, when the
sybil region is built with the PA model. It is easy to
see that in all the three cases the false positive rate of
SybilDefender is lower than that of SybilLimit, and the
false negative rate of SybilDefender is lower than that
of SybilLimit by one to two orders of magnitude. The
reason is SybilLimit assumes that almost all the short
random routes originating from an honest node will stay
within the honest region, and it bounds the number of
admitted sybil nodes by the number of attack edges and
random route length. When each attack edge introduces
few sybil nodes, SybilLimit cannot effectively identify
sybil nodes. On the other hand, SybilDefender interprets
the small cut between the honest region and the sybil
region as a bias in the coverage of the random walks
originating from an honest node and from a sybil node.
It can effectively identify the sybil nodes even when the
number of sybil nodes introduced by each attack edge
approaches the theoretical lower bound.

Figure 5 compares the average running time to test one
node on one core of an Intel Xeon 2.93GHz processor by
SybilDefender with that by SybilLimit. The results show
that SybilDefender is faster than SybilLimit by more than
10 times. The reason is that SybilLimit invokes a large
number (r = 10000 for our Facebook dataset) of instances
of the random route generation protocol [3]. Within each
instance a random routing table is generated for every
node in the social graph. After all the instances are fin-
ished, SybilLimit verifies if the intersection condition and
the balance condition are satisfied to determine whether
to accept each suspect node. By contrast, SybilDefender
only relies on performing a limited number of random
walks, which can be done in a short time even on large-
scale network graphs.

Viswanath et al. proposed using a community detec-

TABLE 4
Accuracy of the sybil community detection algorithm

(10000 attack edges)

10 sybil nodes per attack edge (100000 sybils)
Percentage of Number of falsely

found sybil nodes detected honest nodes
Orkut Facebook Orkut Facebook

PA model 99.77% 99.85% 0.2 3.7
ER model 99.90% 99.89% 0.1 3.0

5 sybil nodes per attack edge (50000 sybils)
Percentage of Number of falsely

found sybil nodes detected honest nodes
Orkut Facebook Orkut Facebook

PA model 99.67% 99.69% 0.4 3.6
ER model 99.79% 99.66% 0.2 3.5

1 sybil node per attack edge (10000 sybils)
Percentage of Number of falsely

found sybil nodes detected honest nodes
Orkut Facebook Orkut Facebook

PA model 99.28% 98.68% 0.4 4.3
ER model 98.88% 98.38% 0.1 3.7

tion algorithm [4] as the ranking algorithm to investigate
the similarity between different sybil defense schemes.
We evaluated their algorithm using our two datasets,
and found that the algorithm alone cannot be used to
identify sybil nodes. The reason is that the algorithm
starts from an honest node and iteratively adds nodes
that improves the normalized conductance at each step.
In our evaluation the normalized conductance always
reaches the first inflection point after adding only several
honest nodes. As a result, their algorithm cannot distin-
guish the sybil nodes from the honest nodes without
providing a cutoff point.

We also evaluated Gatekeeper [5] using our datasets,
which heavily relies on the assumption that the so-
cial networks are random expander. This assumption
is stronger than our fast-mixing assumption and has
not been validated in previous research, which makes
Gatekeeper suffer from high false positive and negative
rates on the real-world social topologies that exhibit
asymmetries. For example, on our Facebook dataset with
a 10000-node sybil region built through the PA model,
the average false positive rate of Gatekeeper is 11.7%,
and the average false negative rate is 17.2%. When the
sybil region is built with the ER model, the average false
positive rate is 11.7%, and the average false negative
rate is 14.7%. In the evaluation we used the parame-
ters (m = 100, fadmit = 0.2) recommended by [5] and
repeated each experiment 20 times.

APPENDIX E
MORE EVALUATION RESULTS OF THE SYBIL
COMMUNITY DETECTION ALGORITHM

To investigate the scalability of our sybil community
detection algorithm, we raise the number of attack edges
to 10000 and repeat the experiments. All the parameters
used in the algorithm stay the same. The results are
shown in Table 4, which illustrates that with the size



5

TABLE 5
Accuracy of the sybil community detection algorithm on a

weighted social network

Percentage of Number of falsely
found sybil nodes detected honest nodes

# of sybils 10000 5000 1000 10000 5000 1000
PA Model 99.79% 99.66% 98.6% 0.4 0.5 0.6
ER Model 99.83% 99.68% 98.4% 0.5 0.8 0.7

of the sybil region increasing by 10 times, our algorithm
still achieves similar performance.

We also evaluated the performance of the sybil com-
munity detection algorithm on the weighted social net-
work sample used in Section 5.2.1. The modified algo-
rithm runs by performing weighted partial random walks.
Each weighted partial random walk behaves the same
as the partial random walks, i.e., it does not traverse the
same node more than once. However, at each interme-
diate node, the next hop is chosen by considering edge
weights, as described in Section 5.2.1. When building the
sybil regions, we randomly assign weights to the edges
connecting sybil nodes, such that the average weight is
equal to the average weight of our dataset. The results in
Table 5 show that the number of both undetected sybil
nodes and falsely detected honest nodes is very small.

APPENDIX F
SURVEY RESULTS OF OUR FACEBOOK APPLI-
CATION

Figure 6 is the user interface of our Facebook applica-
tion, “Rate Your Relationships”. Users of the application
can rate each of their relations on Facebook either as
“Friend” or “Stranger”, where “Stranger” means the
user hardly has any impression about this relation.

To investigate the user experience of our applica-
tion, we carried out a survey through the Amazon
Mechanical Turk platform [6]. In the survey we asked
the respondents to use our application to rate all the
relations in their Facebook friend lists, either as “Friend”
or “Stranger”, where “Stranger” means the respondent
hardly has any impression about this relation. Then the
respondents are asked 4 questions based on the outputs
of our application, including “What’s the completion
code?”, “What’s the number of relations in your friend
list?”, “What’s the percentage of strangers in your friend
list?”, and “Will you use this kind of relationship rating
applications in online social networks if you know it can
help to defend against malicious users?”. Note that the
completion code, the number of relations, and the per-
centage of strangers will show only after the respondent
has rated all the relations in her Facebook friend list.

We get the results from 214 respondents, whose av-
erage number of relations is 118. The average time for
the respondents to finish the survey is 249 seconds. This
indicates that it does not take long for online social
network users to rate their relationships. Figure 7 is

Fig. 6. Our Facebook application: Rate Your Relationship-
s

[0,10%) strangers

[10%,20%) strangers

[20%,30%) strangers

[30%,40%) strangers

[40%,100%] strangers

14.0%

9.3%

17.8%

52.4%
6.5%
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s to defend against malicious users
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the pie chart of the proportion of respondents based
on the percentage of strangers in their relations. In the
survey 47.6% of the respondents indicate that more than
10% of their Facebook relations are strangers, and the
average percentage of strangers among all the relations
is 19.8%, which shows that the assumption made by
previous work that all the links in social networks are
trusted does not apply to online social networks. As
mentioned in Section 4.4, one way to limit the number
of attack edges is to let users rate their relationships,
and all the edges rated as stranger are removed from
the social network graph when applying sybil defense
mechanisms. As shown in Figure 8, in the survey 76.6%
of the respondents would like to rate their relationships
when they know this can help to defend against ma-
licious users. This shows that relationship rating is a
promising way to limit the capacity of the adversary to
create attack edges.
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