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Abstract

Even though symmetric-key scheme, which has been investigated extensively for sensor networks,
can fulfill many security requirements, public-key cryptography is more flexible and simple rendering
a clean interface for the security component. Against the popular belief that public key scheme is not
practical for sensor networks, this paper describes a public-key implementation in a sensor network.
We detail the implementation of Elliptic Curve Cryptography (ECC) over primary field, a public-key
cryptography scheme, on TelosB, which is the latest research platform in Berkeley Motes family.
We evaluate the performance of our implementation and compare with other implementations we
have ported to TelosB. We have achieved 3.3 seconds for public key signature and 6.7 seconds for
verification in our implementation even though the hardware multiplier is disabled.

1 Introduction

Public-key cryptography has been used extensively in data encryption, digital signature, user authen-
tication, etc. Compared with the popular symmetric key cryptography widely used in sensor network,
public-key cryptography provides a more flexible and simple interface requiring no key predistribution,
no pair-wise key sharing, no complicated one-way key chain scheme. It is a popular belief, however, in
sensor network research community that public-key cryptography is not practical because the required
computational intensity is not suitable for sensors with limited computation capability and energy budget.
The nascent exploration seems to disabuse of the misconception. The recent progress in 160-bit Elliptic
Curve Cryptography (ECC) implementation on Atmel ATmegal28, a CPU of 8Hz and 8 bits[8], shows
that an ECC point multiplication takes less than one second, which proves public-key cryptography is
feasible for sensor network security related applications.

This paper describes our implementation of ECC over primary field on TelosB, a sensor network
research platform. To compare with similar implementations, we also port the other two implementations
(NCSU[13] and Harvard[14]) to TelosB and measure the performance of each scheme respectively. Our
experiments demonstrate that our implementation outperforms the other two implementations. This work
is especially important since TelosB mote platform is becoming a popular testbed for sensor network
research: a public-key cryptography implementation and performance evaluation and comparison are
conducive to the research progress of the community.

Our implementations are conducted on TelosB mote (TPR2400), which is the latest product in the
Mote family designed by University of California at Berkeley for experimentation in sensor network



research. It is of the size of two AA batteries integrating USB programming capability, an IEEE 802.15.4
radio with integrated antenna, a low-power MCU with extended memory, and an optional sensor suite
(TPR2420). Its detailed features include: IEEE 802.15.4/ZigBee compliant RF transceiver, 2.4 to 2.4835
GHz (a globally compatible ISM band), 250 kbps data rate, integrated onboard antenna, 16 bit, 8MHz TI
MSP430 microcontroller with 10kB RAM, low current consumption, 1MB external flash for data logging,
programming and data collection via USB, optional sensor suite including integrated light, temperature
and humidity sensor (TPR2420), supported by Berkeley’s TinyOS operating system[1] and the NesC
programming language[7].

Our experiments show that it takes 3.3s and 6.7s to conduct a public key signature and verification
respectively even though the hardware multiplier is disabled. It is possible to further reduce the running
time by using the hardware multiplier, profiling the running time of each component, and analyzing the
critical path of ECC computation. Our experiment results demonstrate that public-key cryptography is
feasible for sensor network security applications.

The rest of the paper is organized as follows. Section 3 gives an introduction to ECC. Section 4
shows implementation details of ECC on TelosB mote. Section 5 evaluates the performance of our
implementation and compares with other implementations. Section 6 concludes the paper.

2 Related Work

NIST and SECG have specified example elliptic curves domain parameters at required security levels
[19, 18]. As other implementations, we follow the recommended parameters in our implementation.

In [9], Gura et al. implemented ECC and RSA on 8-bit microcontroller and compared their perfor-
mance. In their ECC implementation, the elliptic curves are defined over standardized prime integer field
GF(p). Some optimization techniques are applied for point multiplication, such as projective coordinates,
non-adjacent forms, and curve-specific optimization. Additionally, the paper focuses on the optimization
of modular multiplication of large integers, which is a critical operation for ECC. The authors compared
row-wise and column-wise multiplications, and further proposed a new hybrid strategy to improve the
performance. The experiments showed that 160-bit ECC execution time was reduced to less than one
second and much faster than RSA-1024 operations.

Shantz[20] presented an efficient technique to calculate modular division, which is an important arith-
metic operation in ECC and other cryptography system. The idea is to compute £ in one operation,
instead of the previous method which first compute % and then multiply it with y. Thus, this scheme
reduces one multiplication in the modular division operation. The new algorithm can be applied in both
GF(p) and GF(2™) fields.

Woodbury et al. [6] introduced another ECC system over Optimal Extension Fields(OEFs) [2]
GF(p™), where p is chosen as the form of 2™ + ¢. The authors present the implementation of a spe-
cific 134-bit ECC in details. The experiments indicate that point multiplication can be performed within
2 seconds.

Cohen et al. analyzed the impact of coordinates system in ECC implementation in [4]. The authors
measured the performance of point addition and doubling of different coordinates systems, and proposed
a new modified Jacobian coordinates which achieves the fastest doubling operation. Moreover, they
introduced a mixed coordinates system, which divides exponentiation into sub-operations and chose the
best coordinates representation for each sub-operation. Thus, this scheme combines the advantages of
different coordinates system and improves the computation time significantly.

In [10], an implementation of 160-bit ECC cryptographic library for ECDSA over prime field GF'(p) on
a CISC microcontroller(MC16) was given. Experiments obtain a speed of 150ms for signature generation
and 630ms for verification.

EccM[15] is an ECC system implemented over binary field GF(2?). The average time for public key
generation is claimed as 34 seconds. Sizzle[8] is another application of ECC system developed recently.
The standard Internet security protocol(SSL) is efficiently implemented in sensor motes by using ECC.



3 ECC Introduction

In this section, we briefly give a background introduction about elliptic curve cryptography, and corre-
sponding elliptic curve Diffie-Hellman and Digital Signature Algorithm.

3.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as the security solutions for wireless networks due
to the small key size and low computational overhead. For example, 160-bit ECC offers the comparable
security to 1024-bit RSA. An elliptic curve over a finite field GF (a Galois Field of order p) is composed
of a finite group of points (x;,y;), where integer coordinates x;,y; satisfy the long Weierstrass form:

Y2 + a1zy + azy = ¥° + asx® + asx + ag, (1)

and the coefficients a; are elements in GF(p). Since the field GF(p) (p is a prime) is generally used in
cryptographic applications, (1) can be simplified to:

y? =23 +ax® + b, (2)

where a,b € GF(p).

The elliptic curve group operation is closed so that the addition of any two points is a point in the
group. Given two points P and @, with the coordinates (x1,y1), (22, y2), respectively, the addition results
in a point R on the curve with coordinate (x3,ys), where xz3 and y3 satisfy

(1,91) + (2, 92) = (v3,¥3), (3)
such that
23 =L%>+L+x +x2 +a, (4)
Y3 :L(l‘1 +x3)+x3+y1, (5)
where
L=(yl+y2)/(zl+22) (6)

If 1 = x5 (note o1 + x5 is 0), then R is defined as a point at infinity, O. O is an identity element of the
group. Each element in the group has an inverse that satisfies P+ (—P) = O, and (—P) + P = O. Also,
P+O=0+P=P.If P=Q, then R= P+ P =2P, and coordinate (z3,ys) is derived by

23 =L*+ L +a, (7)
Yz = $12 + (L + 1)I3, (8)

where
L=ux —|—y1/x1. (9)

The ECC relies on the difficulty of the Elliptic Curve Discrete Logarithm Problem, that is, given
points P and @ in the group, it is computationally intractable to find a number k such that @ = kP.

3.2 Elliptic Curve Diffie-Hellman (ECDH) and Digital Signature Algorithm
(ECDSA)

The original Diffie-Hellman secret sharing protocol [5] requires a key of at least 1024 bits to achieve
sufficient security. Unfortunately, low-power architecture, such as MSP430 and ATMegal28, cannot
afford the large memory overhead. Diffie-Hellman scheme based on ECC, however, can achieve the same
security level with only 160 bit key size. A typical ECDH scheme is shown in Fig. 1. Initially, Alice and
Bob agree on system base point P, and generate their own public keys @4 and Qp. To share a secret,
Alice and Bob exchange their public keys, and then use their own private key to multiply the other’s



Diffie—Hellman (ECDH)

Alice Qn= knt P _ Bob
private keyk 4 private keyk g
Compute Secret Q= ks *P Compute Secre!

R= ka*Qg R = kg * Qa

Figure 1: An example of ECC version of Diffie-Hellman Protocol.

public key. The result point R will be the secret. Eve, an eavesdropper, may overhear the communication
and learn the public keys from Alice and Bob. However, with the knowledge of P,Q 4, and Qp, it is
computationally intractable for Eve to get Alice and Bob’s private keys. As the result, she can not figure
out secret R.

ECC can also be used for Digital Signature Algorithm. Similarly, Alice and Bob have to agree on a
particular curve with base point P. We assume the field is GF(p), and the order of P is g. When Alice
sends a message to Bob, she attaches a digital signature (r, s) generated by following steps (suppose Alice
has a private key « and a public key Q = kP).

1. Choose a random key k in [1,q — 1];

2. Compute kP, results a point with coordinate (z1,y1). Check z (mod ¢), go back to the first step
if the result is zero;

3. Compute k=1 (mod q);

4. Compute s = Hash(m) + xr, where Hash is an one-way hash function. Again, check s, go back to
the first step if s = 0;

5. (r,s) is the digital signature.

To verify the message m and the signature, Bob needs to do following steps.
1. Compute w = s~ mod ¢ and H(m);

2. Compute u; = H(m) -w mod ¢ and ug = r - w mod g;

3. Compute u1 P + u2Q, get the result point (z2,y2);
4

. The signature is verified if x5 = 7.

4 ECC Implementation

We implement ECC cryptosystem on Telos-B mote powered by MSP430 microcontroller. The MSP430
incorporates an 8MHz, 16-bit RISC CPU, 48K bytes flash memory (ROM) and 10K bytes RAM. This
architecture provides 27 instructions and 7 addressing modes. The CPU also provides sixteen 16-bit
registers. The first four are dedicated for special-purpose, such as program counter, stack pointer and
status register. The rest of twelve are available for general use. Besides, the MSP430 also provides a
peripheral hardware multiplier, which is capable of conducting 16 x 16 bits multiplication.

Given the limited processor resources, we concentrate most of our efforts on computation optimization.
The fundamental ECC operation is large integer arithmetics over either prime number finite field GF(p)
or binary polynomial field GF(2™) (where m is a prime). Because the two heavily used operations:
multiplication and modular reduction, can be more effectively optimized if pseudo-Mersenne primes are
picked for elliptic curves compared with those of binary field [9], we limit our discussion in prime number
finite field GF(p) in this paper. Without further clarification, our following discussion is based on SECG
recommended 160-bit elliptic curve: secpl160rl.



4.1 Large Integer Operations

We implement a suite of large integer arithmetic operations, including addition, subtraction, shift, multi-
plication, division and modular reduction. Due to the space limit, we only present three of most important
functions: multiplication, division and modular reduction.

4.1.1 Multiplication

The efficiency of large integer multiplication dominates the overall performance of ECC operation. Gura
et al. show that as much as 85% of execution time is spent on multiplication for a typical point mul-
tiplication in ECC. That means the optimization on multiplication is critical for overall performance of
our implementation. We have compared three different multiplication implementations [9, 16, 13], and
finally decided to use Hybrid Multiplication proposed in [9]. To ease our explanation, we use three large
integers as the examples for our following discussion: A(an—1,an—2, - ,a1,a0), B(bn-1,bn—2,--+ ,b1,bo),
and C(n2n-1,C2n—2, "+ ,¢1,¢0), where C' = Ax B. A and B both have length of n words, each word has
k-bit size. The product C' has 2n words.

The Hybrid multiplication is the combination of Row-wise multiplication and Column-wise multipli-
cation. The Row-wise method fixes the multiplier b; (0 < ¢ < n), and multiplies it with every word of
multiplicand A. Partial results are stored in n + 1 accumulator registers. Every time one row is finished,
the last accumulator register can be stored to memory as part of final results. On average, one memory
load is required for each k x k multiplication. When integer size n is increased (integer size is 10 for curve
secpl60rl), the required number registers increase linearly in Row-wise method.

The Column-wise method, on the other side, computes the partial results of a; b, (where i+j = 1) for
column [. After one column finishes, the last word of accumulator registers is stored as the part of final
result. The Column-wise method only requires three accumulator registers and two more for operands.
However, two memory load operations are required for each k& x k multiplication. Considering a large
number of data in ECC operations, unnecessary memory operations would lower the performance.

The Hybrid method takes advantages of Row-wise and Column-wise strategies. To optimize the
memory operation, the Hybrid method merges a number (d) of columns together, and then conducts
Row-wise multiplication in each merged column. When d equals to 1, the Hybrid method becomes the
Column-wise multiplication. When d equals to n, then it equals to Row-wise method. Therefore, a
single memory load operation can be used for several multiplications. A larger d leads to fewer memory
operations, but requires more registers. Since the MSP430 microcontroller only has 12 general registers,
we can only implement the Hybrid method with column size d = 2, which requires 5 accumulator registers,
3 operand register and other 4 registers for pointer, temporary storage and loop control.

To achieve better performance and enable flexible control over registers, we implement the Hybrid
multiplication in assembly language. Our experiments show that the performance of point multiplication
improves about 5% with the Hybrid multiplication compared with the Column-wise method, and improves
another 5% with assembly language compared with original implementation with C.

4.1.2 Division

Modular division is another expensive operation in ECC. In Affine coordinate, each ECC operation of
point addition and doubling requires a modular inversion. The integer inversion is also required for ECC
digital signature generation and verification. In our implementation, we adopt the Great Divide scheme
proposed in [20]. We briefly explain the algorithm in the followings.

Given an denominator 2 and numerator y, we want to compute the modular division £ over GF(p).
This is equivalent to find 7, so that y
=(

r=- mod p). (10)

To find 7 efficiently, we maintain following two invariant relationship:

Axy=U=xz, and Bxy =V *x, (11)



where A, B, U,and V are four auxiliary registers and assigned with initial values x, ¢, y, and 0, respectively.
Note the second invariant relationship is true even for v = 0 because algebraically the value of modulus
is equivalent to zero in finite field. The division procedure repeatedly reduces the values of A and B
by following way. In each iteration, if either A or B is even, we divide by 2 both sides of the equation.
If U or V is not even at that time, we can make it even by adding modulus p. If both A and B are
odd, we add two equations together and then divide by 2 at the both sides. By repeating this process,
it is guaranteed that either value of A or B reduces one bit in one iteration. The procedure stops when
A = B =1, the first equation becomes

y=Uxuz. (12)

The value of U is our final result. If we initialize U with 1, this routine can be used to calculate an
inversion of x. This algorithm works when = and ¢ are relatively prime. Otherwise, the routine would
return the greatest common divisor of A and B. The Great Divide finishes division or inversion operation
in 2(log(x) — 1) steps.

4.1.3 Reduction

The modular reduction operation is as important as modular multiplication. Each multiplication must be
followed by a reduction operation. Note the Great Divide algorithm does not work for modular reduction.
Since we choose to use pseudo-Mersenne primes as specified in NIST/SECG curves, the modular reduction
can be optimized by conducting a fixed number of integer additions. Because the optimization is curve
specific, we will explain in more details in the section of ECC operation. Now, we discuss the modular
reductions in digital signature generation and verification. In most cases, the order of an elliptic curve
is not a pseudo-Mersenne prime, the optimization cannot be applied for those reduction calculation. We
choose the classic long division method to implement this operation. It may not be the most efficient
algorithm, but it does not affect the overall performance much because only very limited number of
modular reductions are required in digital signature algorithm. We briefly describe the long division
method as follows.
Given an integer z, we want to calculate

r =z mod p, (13)

where p is a prime.

1. Align the most significant byte (MSB) of modulus p to the MSB of z, the lower bytes of p can be
filled with zeros;

2. Starting with the MSB of z, divide the first two MSBs of x by the MSB of modulus p, and get the
quotient;

3. Multiply the quotient with the modulus and get a subproduct;

4. If the subproduct is greater than the remainder of x (over estimation), subtract the modulus from
the subproduct;

5. Then subtract the subproduct from the remainder of z;
6. The procedure continues and goes back to step 2 if the MSB of the remainder becomes zero;

7. If the MSB of the remainder is not zero (under estimation), subtract the modulus from the remain-
der, and then go back to step 2;

8. The procedure stops when the remainder is less than modulus p.

The long division producer reduces the remainder of = by one byte in each iteration.



4.2 ECC Operations

In this section, we present our optimization for ECC operation. We first discuss ECC point addition and
doubling. We then introduce an optimized modular reduction for curve secpl60rl. Finally, we explain
several different optimizations for point multiplication.

4.2.1 ECC addition and doubling

The fundamental ECC operation is point addition and point doubling. The point multiplication can
be decomposed to a series of addition and doubling operations. As discussed in previous section, point
addition and doubling in Affine coordinate require integer inversion, which is considered much slower
than integer multiplication. Cohen et al. showed that these operations in Projective coordinate and
Jacobian coordinate yield better performance [3]. They further found addition and doubling in mixed
coordinate, with the combination of Modified Jacobian coordinate and Affine coordinate, lead to the best
performance [4]. Consider an ECC point in Modified Jacobian coordinate, P;(X1,Y1,Z1,aZt), and a
point in Affine coordinate, Py (z2,¥2), their addition results in the third point P3 = (X3,Y3, Z3,aZ3) in
Modified Jacobian coordinate. The result is given by following equations.

Xy =—H>—2X,H?+ 12,
Vs = Vi H? +r(X1H? — X3),
Zs = Z1H,

4_
aZs = aZs,

(14)

where H = 257%? — X1, and r = y2Z{ —Y;. The result of point doubling for P3 = 2P is given by following
formula.

X5 =T,
Ys=M(S—-T)-U, 15)
Zy =217,

aZy = 2U(aZy)

To estimate the computational complexity, we only consider large integer multiplication and squaring
operations, and ignore those addition and subtraction since they are much faster. According to Eq.14
and Eq.15, point addition requires 9 large integer multiplications and 5 squarings, and point doubling
requires 4 multiplications and 5 squarings.

The basic point operations can be further optimized for specific elliptic curves. In our case, the curve
parameter a of secp160rl equals to -3. For point doubling, M can be further reduced to

M =3X} 32 =3(X1 + Z})(X1 - Z3). (16)

As the result, point doubling operation reduces to 4 multiplications and 4 squarings. Actually, aZ3 does
not have to be calculated in point addition, so the computational complexity reduces to 8 multiplications
and 3 squarings. Our observation supports the choice of mixed coordinate, the performance of point
multiplication improves around 6% compared with our previous implementation in Jacobian coordinate.

4.2.2 Modular Reduction on ECC Curve

Recall that modular reduction has to be applied after every large integer multiplication, it is also a
performance critical operation. By taking advantage of pseudo-Mersenne primes specified in SECG
curves, the complexity of the modular reduction operation can be reduced to a negligible amount. In
this section, we present two implementations to do the reduction. Although the theory behind these two
methods are exactly the same, the second methods performs 10 times better than the first one. Again,
our discussion is based on curve secpl60rl.



Suppose we use the 16-bit architecture, the multiplication result can be represented by

C'(0197 c0r,C10,C9, " 0t 761760)7

where ¢; (0 <i < 19) is a word with 16 bits, and c¢19 is the most significant word. The 20-word integer
can also be written as:
C= (019; T 5010) * 2160 + (CIO; Cg,-+,C1, CO) (17)

Given the field of curve secpl60rl g = 2160 — 231 — 1. we can have 2190 = 231 + 1. Therefore,

C = (c19, - ,c10) * (221 + 1) + (c10,co, - -+, €1,¢0)

, (18)
= (0197 e 7610) * 231 + (019; T 5010) + (0107 Cg, -+ ,C1, CO)
Since each word has 16 bits, the first term in the result of Eq. 18 can be further reduced to
(c19,- -+ ,c10) * 231 = 19 % 217 4 18 % 2159 4 (cy7, -+, c10) * 231
= C19 * 215 * (231+1 + (d15, s ,dl, do) * 2159
+ (0177 e 7610) * 231
= C19 * 215 + C19 * 246 + do * 2159

(do) 19)

+ (dis, -+ ,dy) % (2% +1)
+ (0177 e 7610) * 231
= c19 % 2" + 19 % 2% + (do) % 2" + (dyp, - -+, dp) % 23
+ (d157 e ;dl) + (017; e 7610) * 2317
where (dy5,- - ,d1,dp) are 16 bits of ¢15. Now, all terms in Eq.18 and 19 have at most 159 bit length,
the reduction result is simply the addition of these terms.
In our experiments, we found the above modular reduction method is not efficient as we thought. In

fact, it costs 2.5 times of execution time of a large integer multiplication! The poor performance of the
above implementation is caused by too many memory copying and shifting. To avoid expensive memory

operations, we use a while loop to reduce (cyg,- -+, c10):
while ((c19,- -+ ,c10) # 0)
(019; ©0+,C10,C9, "0, C1, CO) = (019; T 7610) * W+ (20)
(o, - ,c1,¢0)
C = (097" : aChCO) mOd D,

where w = 23! + 1. Tt is easily noticed that there are at least two iterations in the loop, so it will cost at
least two large integer multiplications. However, since multiplier w only has two words (or 32 bits), the
multiplication is much faster than the multiplication of two 160-bit integers. In reality, we implement
a separate multiplication routine dedicated for this special operation. As the result, the performance
second modular reduction method improves 10 times.

4.2.3 Further Optimization

Examining the computational complexity, we notice that point addition is more expensive than point
doubling. As we have discussed, point multiplication can be decomposed to a series of point addition
and doubling, we would rather use more point doubling than point addition to compute the point mul-
tiplication. Morain et al. found Non-adjacent forms (NAFs) is an effective way to achieve the lightest
Hamming weight for scalar k in point multiplication k * P, which results to use the least number of point
additions to calculate k x P [17]. For example, 255 % P, or (11111111) % P, requires 7 point additions.
But if we transform it to (10000000 — 1) * P, which is 256 « P — P, only one addition is required. Note



the point subtraction can be replaced by point addition because the inverse of an Affine point P = (z,y)
is =P = (z,—y). We implement NAFs technique in random point multiplication. According to our
experiments, point multiplication with NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, component r is generated by a point multiplication
with the fixed base point of a selected elliptic curve. To further reduce the execution time, we precompute
some partial results and apply sliding window method [11] to speed up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalar k into a number of s — bit bit-clusters, where s is also
called window size. So, k can be represented by k,, * 2°™ + k,, 1 * gs(m=1) 4 ... 4 ko, where k; is a
bit-cluster. If we precompute the point multiplication with every possible value of k;, the number of
point addition is bounded by [1_(;’0] — 1. Note the sliding window method does not reduce the number
of point doubling operations. Obviously, this scheme requires extra memory space for storing partial
results. In practice, we select window size s = 4. Correspondingly, there are 16 entries in the partial
result table. Our experiments show sliding window method is more effective than NAF's for fixed point
multiplication, the performance of sliding window method is more than 10% better than that of NAFs.

5 Experiments and Performance Analysis

In this section, we first compare the performance of our implementation with other two implementations.
Then, we give an overall analysis to quantify the computation complexity.

In experiments, we measure execution time, power consumption and code size of our implementation
and compare the performance with other two released codes, TinyEcc[13] and EccM[14]. We make
appropriate modifications on their program to make them executable on TelosB platform. And we
choose secpl160rl as the elliptic curves parameters in all experiments. Since EccM[14] is implemented for
ECC curve on binary field, we choose curve secp163r2 for EccM for comparison.

5.1 Execution Time

We first test the performance of point multiplication operation. We consider two cases in point mul-
tiplication: one is multiplying a large integer with a fixed point(base point) and the other is with a
random point. Fixed point multiplications allow for optimizations by precomputing. We apply sliding
window technique[12] and set windows size to 4, i.e., precomputing 24 — 1 = 15 points. In experiments,
we randomly generate large integers to multiply with points and take the average execution time as the
result.

Since ECC point multiplication consists of point addition and doubling operations, we further evaluate
these two operations individually. We generate random points and large integers for tests. Since a single
operation takes very little time, to reduce the impact of clock inaccuracy, we measure 100 operations
every round and take the average value of multiple rounds.

Table 1 shows the experimental results of execution time. Point addition and doubling of our imple-
mentation is superior to the other codes, which results in a faster point multiplication. Since EccM has
no precomputation, there is no difference between the multiplications with base point and random point.
Comparing with TinyEcc, we achieve more than 60% improvement in fixed point multiplication. And for
random point multiplication, which does not involve precomputing optimization, our implementation is
more than 64% faster.

Fixed Point Mult | Random Point Mult | Point Add | Point Doubling
Our Codes 3.13s 3.51s 0.133s 0.137s
TinyEcc 7.98s 9.86s 0.315s 0.300s
EccM 88.43s 88.43s 0.262s 0.255s

Table 1: Execution Time of Point Operations



Moreover, we implement ECDSA signature scheme and compare the performance with TinyEcc.
The following Table 2 is the experimental results. In fact, when signing a message, one fixed point
multiplication is the dominant operation. As we can see, the performance improvement of signature time
is very close to that of fixed point multiplication. On the other hand, verification of ECDSA mainly
consists of one fixed point multiplication and one random point multiplication. According to Table 1, we
expect to achieve at least 11 seconds improvement. However, TinyEcc implemented ECDSA in a different
way with the assumption that the verifier is aware of the sender’s public key. Thus, precomputation is
conducted to optimize the performance for the random point multiplication. We think this assumption
is impractical for a scalable sensor network and we implement pure random point multiplication in the
verification process. That explains why we only gain about 9.5 seconds.

Signature | Verification
Our Codes 3.35s 6.78s
TinyEcc 8.24s 16.26s

Table 2: Execution Time of ECDSA

5.2 Power Consumption

The power consumption is estimated by the formula £ = U - I -t. Thus, it is linear to the execution time.
TelosB uses an ultra-low-power microcontroller MSP430. According to the specifications of TelosB, the
current is 1.8mA in active model. And the typical voltage is 3V for two AA batteries. Therefore, for our
ECDSA implementation, generating a signature consumes roughly 18.09mJ energy and verification costs
36.61mJ.

5.3 Code Size

The following Table 3 compares the code size of three implementations. Our program uses 42.3k ROM
and 1.6k RAM for ECDSA protocol, where SHA-1, occupying approximately 30K memory space, takes a
large portion of codes. Our implementation code size is slightly larger than TinyEcc because we apply the
hybrid multiplication for large integer multiplication and squaring modules, which is equivalent to loop
unrolling. Meanwhile, some dedicated utility functions, which are aimed to speed up a specific operation
(e.g., modular reduction), also contribute to the slight inflation of the code size. However, our ECDSA
RAM size is 25% smaller than TinyEcc, which means our data usage is more efficient.

ECC library ECDSA
ROM | RAM | ROM | RAM
Our Codes | 13.8k | 1.3k | 42.3k | 1.6k

TinyEcc 12.5k | 1.3k | 39.2k | 2.1k

EccM 17.6k | 1.1k — -

Table 3: Code Size

5.4 Performance Analysis

Since ECC point multiplication dominates over 95% of execution time in either ECDH or ECDSA, our
performance analysis focuses on this operation only. The performance analysis is based on 160-bit ECC
Curve, such as secpl60rl. We also assume 4-bit sliding window method is used, and partial results are
precomputed. The analysis can be also applied to different ECC curve and different sliding window size.
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The computational cost in each 4-bit window unit is 4 point doubling and 1 point addition. Given
a 161 bit private key, there are 41 window units. Correspondingly, the point multiplication costs 164
point doublings and 41 point additions. To simplify the presentation, we denote “MUL” as large integer
multiplication, and let “SQR” be large integer squarings, and let “MOD” be large integer modular
reduction.

For point addition in mixed coordinates, each operation costs 8 MULs and 3 SQRs. And each point
doubling (optimized for secp160rl) in Jacobian coordinate costs 4 MULs and 4 SQRs. In total, point
multiplication costs 984 multiplications and 780 squarings. In addition, each multiplication or squaring
operation has to be followed by a MOD. Combined with some other MODs after shifting operations, there
are 12 MODs in each point addition and 11 MODs in each point doubling. After being optimized, a MOD
only costs 20%-25% (by experiments) of the execution time of a MUL. So we will add another 3 MULs
for each point doubling and addition. Therefore, MODs introduce 615 more MULs. Also, considering
the cost of SQR is 90%-95% of MUL (by experiments), the total cost for one ECC point multiplication
is 2,248 MULs. Our experiments show that 1000 MULs costs 0.95 second. Therefore, the three major
operations: MUL, SQR and MOD, cost about 2 seconds in the execution of ECC point multiplication,
which is consistent with our final experimental result: 3.1s (if consider the rest 1 second is spent in all
other overheads combined).

The above performance is achieved without the hardware multiplier. Due to some unknown bugs in
TelosB supporting software, the hardware multiplier has to be disabled in TinyOS to avoid system crash.
We profiled the running time of 16 x 16 multiplication, and found it more than 10 times slower than
the speed of hardware multiplier. It can be expected that our implementation will have a significant
performance boost after the bugs in mspgcc are fixed, and be comparable or better than the performance
achieved in [9].

6 Conclusion

In this paper, we show our implementation of ECC over primary field on TelosB platform and compare the
performance with other implementations that are ported to TelosB. Our experiments show that it takes
3.3s and 6.7s to conduct a public key signature and verification respectively even though the hardware
multiplier is disabled. It is possible to further reduce the running time by using the hardware multiplier,
profiling the running time of each component, and analyzing the critical path of ECC computation.
Our experiment results demonstrate that public-key cryptography is feasible for sensor network security
applications.
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