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Abstract

Even though symmetric-key scheme, which has been invéstigextensively for sensor networks,
can fulfill many security requirements, public-key cryptaghy is more flexible and simple rendering
a clean interface for the security component. Against thaufar belief that public key scheme is not
practical for sensor networks, this technical report dbssrthe ECC (Elliptic Curve Cryptography)
public-key cryptosystem implementation in the real woBdsor devices. We detail the implementation
of 160-bit ECC cryptosystems over prime field on MICAz, T8and Tmote Sky sensor motes. We
evaluate the performance of our implementation by runnigtjad signature generation and verification.
We have achieved the performance of 0.77s for signaturergéme and 1.12s for signature verification
on Tmote Sky sensor motes. Comparatively, we show the peéioce on MICAz and TelosB motes are
1.35s and 1.45s for signature generation, 1.96 and 2.25goatsire verification. This technical report
summarize our previous implementation effort presentd¢diin12, 13, 10].

1 Introduction

Public-key cryptography has been used extensively in dateyption, digital signature, user authentication,
etc. Compared with the popular symmetric key based schenopeged for sensor networks, public-key
cryptography provides a more flexible and simple interfampiring no complicated key pre-distribution,
no pair-wise key sharing negotiation. It is a popular belefvever, in sensor network research community
that public-key cryptography is not practical because ¢uglired computational intensity is not suitable for
sensors with limited computation capability and extrenmoadgstrained memory space. The recent progress
in ECC implementation on Atmel ATmegal28, a CPU of 8MHz andt§®], however, shows that a pub-
lic key operation takes less than one second, which provieicgkey cryptography is feasible for sensor
network security related applications.

This technical report details our implementation of 16088 C cryptosystem on MICAz, a latest sensor
platform of MICA family from Crossbow. It is of the size of twbA batteries integrating USB program-
ming capability, an IEEE 802.15.4 radio with integrateceanta, a low-power 8-bit MCU. Its detail features
include: IEEE 802.15.4/ZigBee compliant RF transceivet, td 2.4835 GHz (a globally compatible ISM
band), 250 kbps data rate, 8 bit, 8MHz Atmel ATmega microealer with 4KB RAM, low current con-
sumption, 128KB programmable ROM, and optional externahory for data collection.

The fundamental operations ECC cryptosystems are larggédntarithmetics over the finite field. To
efficiently perform ECC exponentiations on the low-poweld3# sensor motes, it is essential to optimize
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the expensive large integer operations. In particularfiplidation and reduction are most dominant opera-
tions in ECC. Since most CPU cycles are consumed in thesentegdr operations, the efficiency of these
two integer operation modules directly determines thegoerdnce of the encryption and decryption. The
low-power sensor microcontroller has very limited numbiaregisters (only 32 8-bit registers in ATmega).
The large integer operands cannot be loaded into the regstene time, so that the latency of memory
accesses have to be paid for operand loading and storingebetregisters and memory. The implemen-
tation challenge is to reduce the number of such memory sesedn this technical report, we adopt the
hybrid multiplication method [3], which is a very effectiveay to reduce the number of memory accesses.
To precisely control the register and memory operationsimpgement this module in assembly language.
Our experiments demonstrate that the hybrid multiplicatoat least 7 times faster than the conventional
multi-precision multiplication programmed in C languagehe modular reduction can also be optimized
under certain conditions. For example, when the modulugpseado-Mersenne number, the reduction can
be greatly optimized and be finished more than 10 times féisé@rthe classic long division method.

In addition to the optimizations of the big integer opemati@CC can be further optimized. We apply
a mixed coordinate, the combination of Affine coordinate dacbbian coordinate, to do ECC exponentia-
tion, so that some expensive operations can be avoided i(e.grsion) or reduced (e.g., multiplication and
squaring).

Our experiments show that ECC can efficiently run on MICAz esot It takes 1.35s to generate a
signature, and 1.96s to perform a signature verificationm.ddmparison tests further show that ECC is even
more efficient on Tmote Sky by taking the advantage of 8MHzX6it CPU. The signature generation and
verification on Tmote are 0.77s and 1.12s, respectivelyceSTelosB mote, sharing the same hardware with
Tmote, can only run at 4MHz, the performance on TelosB is< {64 signature and 2.25 for verification.
Overall, our experiment results demonstrate that ECC silfafor sensor network security applications.

The rest of the technical report is organized as follows.ti8e@ briefly introduces ECC public key
schemes. Section 3 gives detail description of several mgsbrtant optimizations in large integer op-
eration, as well as some specific optimizations designe@ &€ implementations exclusively. Section 4
evaluates the performance of our implementations. Sebtmoncludes the technical report.

2 ECC Introduction

In this section, we briefly give a background introductionattelliptic curve cryptography, and correspond-
ing elliptic curve Digital Signature Algorithm.
2.0.1 Elliptic Curve Cryptography

In recent years, ECC has attracted much attention as thatgesmnlutions for wireless networks due to the
small key size and low computational overhead. For exanijile;bit ECC offers the comparable security
to 1024-bit RSA. An elliptic curve over a finite fieldF (a Galois Field of ordeq) is composed of a finite
group of points X;, Vi), where integer coordinateg y; satisfy the long Weierstrass form:

Y2+ agxy + agy = X° + apxX® + aux + as, 1)

and the coefficients; are elements itGF(qg). Since the fieldSF(q) (g is a prime) is generally used in
cryptographic applications, (1) can be simplified to:

Y =x+ax’+b, )
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wherea,b € GF(q).

The elliptic curve points form an additive abelian groupttsat the addition of any two points is a point
in the group. Given two point® and Q, with the coordinates$xs,yi), (X2,Y2), respectively, the addition
results in a poinR on the curve with coordinates, y3), wherexs andys satisfy

(X1, y1) + (%2,¥2) = (X3,¥3), (3)
such that
Xg=L2+L+X +X+a, 4)
y3 = L(X1+X3) + X3+ Y1, (5)
where
L= (yl+y2)/(x1+x2) (6)

If x1 =Xz (notexy + %o is 0), thenR is defined as a point at infinity). O is an identity element of the
group. Each element in the group has an inverse that satidfies-P) = O, and(—P) + P = O. Also,
P+O=0+P=P.If P=Q, thenR=P+P = 2P, and coordinatéxs, ys) is derived by

x3=L2+L+a, 7
y3 = X%+ (L+ 1)xs, (8)

where
L=x+Yy1/X. 9)

The ECC relies on the difficulty of the Elliptic Curve Disaedtogarithm Problem, that is, given points
P andQ in the group, it is hard to find a numbkisuch thaQ = kP.
2.0.2 Elliptic Curve Digital Signature Algorithm (ECDSA)

ECC signature is based on Digital Signature Algorithm. Wsuaee Alice sends a message to Bob. To
convince Bob that the message does come from Alice, Alicels\é@ apply a digital signature for the
message so that Bob can verify it by using Alice’s public kieytially, Alice and Bob have to agree on a
particular curve with base poiftover the fieldGF (p), and the order oP is . When Alice sends a message
to Bob, she attaches a digital signat(res) generated by following steps (suppose Alice has a privatecke
and a public keyQ = xP).

1. Choose a random keyin [1,q— 1];

2. ComputekP, yield a point with coordinatéx;,y;). Letr = x; (modq). Checkr, go back to the first
step if the result is zero;

3. Computek—! (modaq);

4. Computes = k~Y(Hash(m) +xr), whereHash is a one-way hash function. Again, chegkgo back
to the first step i = 0;

5. (r,s) is the digital signature.

To verify the messagm and the signature, Bob needs to do following steps.
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1. Computew = s~! modq andH (m);

2. Computay; = H(m)-wmodqgandu; =r-w modg;
3. Computau; P+ upQ, get the result pointx, y2);

4. The signature is verified i =r.

Finally, Bob compares the value xf andr, and accepts the message onlyitquals ta.

3 Implementation

We implement ECC cryptosystems on MICAz motes, powered bjnédal28 microcontroller. The AT-
megal28 incorporates an 8MHz, 8-bit RISC CPU, 128K bytegmrmamable flash memory (ROM) and
4K bytes SRAM. This architecture provides 133 powerfulinstions and 3% 8 general purpose registers.
Besides, ATmegal28 also features an on-chip multipliee flindamental ECC operation is large integer
arithmetics over either prime number finite figBF (p) or binary polynomial fieldGF (2™) (wheremis
a prime). Because the two heavily used operations: muéptin and modular reduction, can be more
effectively optimized if pseudo-Mersenne primes are picta elliptic curves compared with those of bi-
nary field [3], we limit our discussion in prime number finiteldl GF (p) in this paper. Without further
clarification, our discussion of ECC implementation is lsbse SECG recommended 160-bit elliptic curve:
secpl60rl.

In this section, we first describe the optimized large intexggeration modules. Then we focus on the
protocol related optimizations specifically for ECC opemat

3.1 Largelnteger Operations

We implement a suite of large integer arithmetic operatiomsluding addition, subtraction, shift, multi-
plication, division and modular reduction. Due to the spliroé, we only present three of most important
functions: multiplication/squaring, modular reductiamdanversion.

3.1.1 Multiplication and Squaring

The multiplication (or squaring) is the key component in E@®lementation because the exponentiation
is basically computed by multiplications and squaring. Vigehcompared three different multiplication
implementations [3, 7, 6], and finally decided to use Hybridlfilication proposed in [3]. To ease our ex-
planation, we use three large integers as the examplesiféoltawing discussionA(an_1,an_2, - ,a1,80),
B(bn-1,bn—2,--- ,b1,bp), andC(nzn_1,Con-2, - ,C1,Co), whereC = AxB. A andB both have length of
words, each word hdsbit size. The produdf has 2 words.

The Hybrid multiplication is the combination of Row-wise Hiplication and Column-wise multipli-
cation. The Row-wise method fixes the multipligr (0 < i < n), and multiplies it with every word of
multiplicand A. Partial results are storednin- 1 accumulator registers. Every time one row is finished, the
last accumulator register can be stored to memory as thepfmal results. On average, one memory load
is required for eack x k multiplication. When integer sizr is increased, the required number registers
increase linearly in Row-wise method. For 160-bit ECC, adgimultiplication is between two 20-byte
large integers. Given only 32 registers in ATmegal28, Rasevnultiplication can not be directly applied.
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The Column-wise method, on the other side, computes théapegsults ofa; x b; (wherei + j =1)
for columnl. After one column finishes, the last word of accumulator stgs is stored as the part of
final result. The Column-wise method only requires threeiamdator registers and two more for operands.
However, two memory load operations are required for éack multiplication.

The Hybrid method takes advantages of Row-wise and Coluisa-girategies. To optimize the mem-
ory operation, the Hybrid method merges a numiogrof columns together, and then conducts Row-wise
multiplication in each merged column. Whdrequals to 1, the Hybrid method becomes the Column-wise
multiplication. Whend equals tan, then it becomes Row-wise method. A largkleads to fewer memory
operations, but requires more registers. A smafiowever, requires more memory operations and consumes
more CPU cycles. Balancing the advantages and disadvantageimplement the Hybrid multiplication
with column widthd = 4, which requires 9 accumulator registers, 5 operand e¥gisé pointer registers
(point to A, B and C), and others for temporary storage ang mtrol.

We implement the Hybrid multiplication in assembly langeadror the comparison purpose, we also
implement a standard multi-precision multiplication prag in C language. Our experiments show the
standard C program needs 128s to finish the multiplication between two 128-byte integevkijle it only
takes 176ms for our Hybrid multiplication to do the same computation,igvhis more than 7 times faster.

The squaring is a special case of the multiplication, whiak the same the multiplicand and the mul-
tiplier. Given an m-bit large integek = (Aq,Ag), whereAg, Ag are two halvesA? = AjA; x 2™+ 2A1Ag X
2W2 4 AgAg. Therefore, we can take advantage of the fact ha# only needs to be calculated once.
Compared with the multiplication, the optimized squarireg ceduce the computational complexity up to
25%.

3.1.2 Modular Division

Modular division is another expensive operation in ECC. ffing coordinate, each ECC operation of point
addition and doubling requires a modular inversion. Thegat inversion is also required for ECC digital
signature generation and verification. In our implemeaigtive adopt the Great Divide scheme proposed
in [9]. We briefly explain the algorithm in the followings. &n an denominatax and numeratoy, we
want to compute the modular divisi(%overGF(p). This is equivalent to find, so that

r= z(mod q) (10)
To find r efficiently, the algorithm maintains following two invanirelationship:
Axy=Uxx, andBxy=V xX, (12)

whereA, B,U,andV are four auxiliary variables and initialized with values,y, and 0, respectively. Note
the two relationship is true with the initial values. Theaithm intuition is to reduce the value #fto
1, so that the first relationship in (11) will becorgie= U x x, andU will be the result. The procedure is
conducted in following way. WheA is even, we can divid& by 2. Correspondingly) has to be divided
by 2 to keep the relation true. U is not even at that time, we can make it become even by addingh
the modulus. WheA is odd, we use the 2nd relationship to help to reddic B is even, we keep dividing
B by 2 similarly to makeB odd. Then we add the two relation together and the dividedhaltr value by
2 at the both sides. By repeating this process, it is guagdnteat either value oA or B reduces one bit
in one iteration. The procedure stops whies: B = 1, the first equation becomgs= U xx. The value of
U is our final result. If we initializeJ with 1, this routine can be used to calculate an inversior dfhis
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algorithm works whemx andq are relatively prime. The Great Divide finishes divisionrdrsion operation
in 2(log(x) — 1) steps. Great Divide is much faster than the long divisiorhogbecause Great Divide only
needs addition operations in each iteration, while longstim method requires multiplications.

3.1.3 Modular Reduction

The modular reduction operation is another important metelcause each multiplication or squaring must
be followed by a reduction operation. The classic reductisthod is using long division. Although the
long division method is a general method for calculatingtfeelular reduction, it is also the slowest method.
In ECC cryptosystem, the modular reduction operation ismgsitant as modular multiplication. Each
multiplication must be followed by a reduction operatioincg we choose to use pseudo-Mersenne primes
as specified in NIST/SECG curves, the modular reduction eaoptimized by conducting a fixed number
of integer additions. Because the optimization is curveiige we will explain in more details in the next
subsection of ECC operation.

Now, we discuss the modular reductions in ECC digital sigreapeneration and verification. In most
cases, the modulus is not a pseudo-Mersenne prime, theipgiiom cannot be applied for those reduction
calculations. We choose the classic long division methooinglement this operation. Fortunately, the
number of this type of modular reduction is very limited, @es not affect the overall performance much.
We briefly describe the long division method as in AlgorithmThe long division producer reduces the

Algorithm 1 Reduction by using long division.
1. Input: x,n;
2: Qutput:r = xmodn;
3: whilex>ndo
4:  Align the most significant byte (MSB) of modulusto the MSB ofx, the lower bytes oh can be
filled with zeros;
5. Starting with the MSB o¥, divide the first two MSBs ok by the MSB of modulus, and get the
quotient;
: Multiply the quotient with the modulus and get a subproduct;
7. If the subproduct is greater than the remaindex (dver estimation), subtract the modulus from the
subproduct;
8:  Then subtract the subproduct from the remaindes; of
9:  The procedure continues and goes back to step 2 if the MSB:akthainder becomes zero;
10:  If the MSB of the remainder is not zero (under estimationptact the modulus from the remainder,
and then go back to step 2;
11:  The procedure stops when the remainder is less than modiulus
12: end while
13: returnx;

remainder ok by one byte in each iteration.

3.2 Optimization for ECC Operation

We first discuss ECC point addition and doubling. We theroohice an optimized modular reduction for
curve secpl60rl. Finally, we explain several differentroations for point multiplication.
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3.2.1 ECC addition and doubling

The fundamental ECC operation is point addition and pointbdiag. The point multiplication can be de-
composed to a series of addition and doubling operationgdigesissed in previous section, point addition
and doubling in Affine coordinate require integer inversiaich is considered much slower than integer
multiplication. Coheret al. showed that these operations in Projective coordinate arwbian coordinate
yield better performance [1]. They further found additiod @oubling in mixed coordinate, with the combi-
nation of Modified Jacobian coordinate and Affine coordinkad to the best performance [2]. Consider an
ECC point in Modified Jacobian coordinat%_,(xl,Yl,Zl,aZf), and a point in Affine coordinat@,(x,Y2),
their addition results in the third poif = (X3, Ys,Z3,aZ3) in Modified Jacobian coordinate. The result is
given by following equations.

Xg = —H3—2X;H? +r?,

Yz = —YiH3 +r(XsH? — Xa),
23 - ZlH7
azZ3 = aZ3,

(12)

whereH = xpZ2 — X1, andr = y»,Z3 —Y1. The result of point doubling foP; = 2Py is given by following
formula.

X3=T,

Y3=M(S—-T)-U, (13)
Z3=2Y1Z,

aZz = 2U(az?)

To estimate the computational complexity, we only consldege integer multiplication and squaring op-
erations, and ignore those addition and subtraction simeg are much faster. According to Eq.12 and
Eq.13, point addition requires 9 large integer multipiieas and 5 squaring, and point doubling requires 4
multiplications and 5 squaring.

The basic point operations can be further optimized for i§ipedliptic curves. In our case, the curve
parameten of secp160rl equals to -3. For point doubliican be further reduced to

M = 3X3 — 32} = 3(Xy + Z0) (%1 — Z3). (14)

As the result, point doubling operation reduces to 4 mudtigtions and 4 squaring. ActuallaZﬁ does not
have to be calculated in point addition, so the computaticomplexity reduces to 8 multiplications and 3
squaring. Our observation supports the choice of mixeddioate, the performance of point multiplication
improves around 6% compared with our previous implememtdti Jacobian coordinate.

3.2.2 Modular Reduction on ECC Curve

Recall that modular reduction has to be applied after exagel integer multiplication, it is also a perfor-
mance critical operation. By taking advantage of pseudosktene primes specified in SECG curves, the
complexity of the modular reduction operation can be reduocea negligible amount. In this section, we
use curve secpl60rl as the example to show how to do effi@duattion.
Suppose we use the 8-bit architecture, the multiplica@sult of two 160-bit integers can be represented
by
C(cag, - - ,C20,C19, - ,C1,Co),
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wherec; (0 <i < 39) is a word with 8 bits, andsg is the most significant word. The 40-word integer can
also be written as:
C = (Cag, "+ ,Cz0) * 2%+ (19, ,C1,Co) (15)

Given the field of curve secp160rl= 2160 — 231 _ 1 we can have®%= 231+ 1. Therefore,

C = (cag,- - ,czo)*(23l+1)+(019,-“ ,C1,Co)

(16)
= (C397 e 7C20) * 231+ (C397 e 7020) + (0197 e 7C1700)
Since each word has 8 bits, the first term in the result of Eqabébe further reduced to
(Cao, -+ ,C20) * 231 = (C3o, Cas, Ca7) * 2107+ Ca6* 219+ (Cz5, - , Co0) % 231 (17)

= (Cag, Ca8, Ca7) * 238+ (Cag, Cag, Ca7) * 2" + (dzs - - - do) * 231 + (d7dg - - - dlp) + (dp) * 21°°

where(dy,---,d1,dy) are 8 bits ofczs. Now, all terms in Eq.16 and 17 have at most 159 bit length, the
reduction result is simply the addition of these terms.

3.2.3 Further Optimization

Examining the computational complexity, we notice thatnp@iddition is more expensive than point dou-
bling. As we have discussed, point multiplication can beodgmosed to a series of point addition and
doubling, we would rather use more point doubling than padtition to compute the point multiplication.
Morain et al. found Non-adjacent forms (NAFs) is an effective way to aehithe lightest Hamming weight
for scalark in point multiplicationk P, which results to use the least number of point additionstoutate
kP [8]. For example, 255 P, or (1111111} P, requires 7 point additions. But if we transform it to
(10000000- 1) « P, which is 256« P — P, only one addition is required. Note the point subtractian be
replaced by point addition because the inverse of an Affimetpo= (x,y) is —P = (x,—y). We implement
NAFs technique in random point multiplication. Accordirgdur experiments, point multiplication with
NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA, componas generated by a point multiplication
with the fixed base point of a selected elliptic curve. ToHartreduce the execution time, we precompute
some partial results and apply sliding window method [5]deex] up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalkainto a number of — bit bit-clusters, where is also
called window size. Sd can be represented by, s 257 + k1 * 25(m=1) 4 ... 4 ko, wherek; is a bit-cluster.

If we precompute the point multiplication with every podsivalue ofk;, the number of point addition
is bounded by(l—SO} — 1. Note the sliding window method does not reduce the numbpoiot doubling
operations. Obviously, this scheme requires extra menmmagesfor storing partial results. In practice, we
select window siza = 4. Correspondingly, there are 16 entries in the partialltégile. Our experiments
show sliding window method is more effective than NAFs foefbpoint multiplication, the performance of
sliding window method is more than 10% better than that of BIAF

Our initial experimental results indicated that it took diamount of time to perform an ECDSA
verification than to do an ECDSA signature: signature is 4,.3thile verification is 2.85s. The reason
is that the verification requires two ECC point multiplicats (while the signature only needs one point
multiplication); the verifier has to perforo P+ u,Q as shown in Section 2.2.2. To speed up the verification
time, we adopt Shamir’s trick [4] to do multiple point mulgation simultaneously. The idea of Shamir's
trick is similar to the sliding window method discussed foesgly. Givent-bit u; andu,, we use the window
sizew and precompute the valug+ jQ for 0 <i,j < 2%. At each offt/w] steps, we performn doubling

(o]
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and the (precomputed) additions determined by the windowecds. The larger the window size)(is, the
more memory is required for storing the precomputed vallrepractice, we choose the single bit window
size,w = 1. Therefore, only the value &+ Q needs to be precomputed and stored. As the result, the
performance of ECDSA verification has been improved more 8@%6, from 2.85s to 1.96s. There is still
further improvement space if multi-bit window size is uskdt the trade-off is more memory overhead.

4 Experimentsand Performance Evaluation

We have implemented the 160-bit ECC security primitive oiCt mote, and revamped our previous ECC
implementation [13] on TelosB and Tmote Sky motes. MICAzawpred by ATmegal28 microcontroller.
ATmega incorporates an 8MHz, 8-bit RISC CPU, 128K bytes flagimory (ROM) and 4KB RAM. The
RF transceiver on MICAz is IEEE 802.15.4/ZigBee compliamd can have 250kbps data rate. TelosB and
Tmote Sky share the same platform with TI MSP430 16-bit ppsce 48K bytes programming memory
and 10KB RAM. The only difference between TelosB and TmotgiSkhe CPU frequency. Tmote Sky can
work at 8MHz, while TelosB only works at 4Mhz.

41 ECC Evaluation

In this subsection, we first present the performance of optdmentation on three sensor platforms. Then
we use the MICAz mote as an example to give an overall analysjsantify the computation complexity.

4.1.1 Theperformance of ECC Implementation

In experiments, we measure execution time and code sizerahplementation. We choose secpl60rl
as the elliptic curve in all experiments. We use the embedgstem clock (921.6kHz for MICAz and
32.6kHz for TelosB/Tmote Sky) to measure the execution tfn@ajor operations in ECC, such as point
multiplication, point addition and point doubling.

We first test point multiplication operation, which is conggd of point addition and doubling. We con-
sider two cases in point multiplication. One is multiplyilagge integer with a fixed point(base point), and
the other one is with a random point. Fixed point multiplicatallows for optimization by precomputing.
We apply sliding window technique[5] and set window size {d.d., precomputing 2— 1 = 15 points.

In experiments, we randomly generate 20 large integers ftiptyuwith the point and take the average
execution time as the result.

Since ECC point multiplication consists of addition and lding operations, we further evaluate these
two operations individually. We generate random pointslarge integers for tests. Since a single operation
takes very little time, to reduce the error of clock inaccyrave measure 100 operations every round and
take the average value.

We summarize the performance in Table 1, including ECC fixfaiultiplication (with size-4 sliding-
window optimization) (FPM), random point multiplicatioRPM), point addition (PAdd), point doubling
(PDbl), ECDSA signature (SIGN) and verification (VERIFY)clearly shows that the performance of ECC
operation on MICAz is slightly better than that on TelosBemthough TelosB is equipped with an 8MHz,
16-bit CPU. After a careful investigation, we found the pemfiance degradation on TelosB is due to the
following two reasons. First, the 8MHz CPU (MSP430) frequeon TelosB is just a nominal value. The
maximum CPU clock rate is actually 4MHz. Second, the hardwaultiplier in MSP430 CPU uses a group
of special peripheral registers which are located outsfdd®P430 CPU. As the result, it takes MSP430

10



Technical Report WM-CS-2007-11

FPM | RPM | PAdd | PDbl | SIGN | VERIFY
MICAz | 1.24s| 1.35s| 6.2ms| 5.8ms| 1.35s 1.96s
Tmote | 0.74s| 0.77s| 3.7ms| 3.5ms| 0.77s 1.12s
TelosB | 1.44s| 1.55s| 7.3ms| 7.0ms| 1.55s| 2.25s

Table 1: The comparison of ECC execution Time on three mattgpins, including fixed point multipli-
cation (FPM), random point multiplication (RPM), point dtiloh (PAdd) and point doubling (PDbl) and
ECDSA signature generation (SIGN), verification (VERIFi¥)é.

eight CPU cycles to perform an unsigned multiplication, levliti at most takes four cycles to do the same
operation in ATmega CPU. The above two reasons explain wiysBecannot perform better than MICAz.
Tmote Sky is capable of running at BMHz CPU frequency instdatMHz on TelosB because it equips
with an external resistor on the ROSC pin of MSP430 that esahle DCO to operate at a higher frequency.
We simply enable the external resistor on Tmote and achiev&€C performance twice faster than that on
TelosB. As shown in Table. 1, it only takes 0.77s to finish aaigre generation and 1.12s to verify it.

ECC library ECDSA UART Comm.
ROM | RAM | ROM | RAM | ROM | RAM
MICAz 10,360 978 | 8,244 | 202 | 3,452| 147
TelosB/Tmote| 7,018 | 1,012| 4,420| 164 | 3,202| 233

Table 2: ECC implementation code size.

Table 2 presents code sizes and data sizes of the ECC impgktinas. For TelosB and Tmote Sky
platforms, the ECC library uses 7,018 byte ROM (for code) &/@d2 byte RAM (for data). Note more
than 60% of data size is used to store the 15 elliptic pointshware used in sliding-window optimization.
When the data size budget is tight, the sliding-window ogation can be removed to have more data
space. ECDSA module accounts for 4,420 bytes on TelosB amtel8ky. The reason is the included
SHAL1 module consumes around 3KB code size. Finally, for Delirpose, we also have the UART
communication module, which uses 3,202 bytes for code aBdgfes for data. The total code size of our
test program is 19,290 bytes.

Compared to TelosB and Tmote Sky, our ECC package is more sjgananding on MICAz platform.
The ECC library requires 10,360 bytes in code size for MIC#&6 more than that on TelosB/Tmote. This
is due to our assembly codes for optimizing the large numitteger operations. Since the CPU register
number in MICAz is twice the amount that in TelosB/Tmote, morstructions are needed to handle the
extra register operations. For the same reason, the coel@fSECDSA requires 8,244 bytes. Overall, the
test program on MICAz uses 24,258 bytes for code and 1507 igtalata.

4.1.2 A Performance Anatomy of ECC Point Multiplication on MICAz

Since ECC point multiplication dominates the computati@amnplexity in ECC signature and verification,
we are curious to learn the performance anatomy in ECC paittiptication.

This analysis is based on 160-bit ECC curves. We use sechH0the example. We also assume 4-
bit sliding window method is used, and partial results aecpmputed. The computational cost for each
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window unit is 4 point doubling and 1 point addition. Given@lbit private key, there are 41 window units.
Totally , 164 point doubling and 41 point additions are regdito finish 1 point multiplication.

Large (160-bit) integer multiplication, squaring and reiiion are the most expensive operations in point
doubling and point addition. To learn the amount of time dboted by the above three operations in a fix
point multiplication. We first individually test the perfoance of large integer multiplication, squaring and
reduction. Our results show that it taked ins, 0.44ms and 007ms to perform a 160« 160 multiplication,
squaring and reduction, respectively. Next, we count teentimber of each operation required in a point
multiplication. Since we adopt the mixed coordination (toenbination of Jacobian coordinate and Affine
coordinate), each point addition requires 8 large integeltiptications and 3 large integer squaring, and
each point doubling requires 4 large integer multiplicasi@and 4 large integer squaring. In addition, each
multiplication, squaring or shifting operation has to békdiwed by a modular reduction. Our program shows
the point addition requires 12 modular reductions, and thetgoubling requires 11 modular reductions. In
total, each point multiplication costs 164+ 41x 8 = 984 large integer multiplications, 1644+41x 3 =
779 large integer squaring and 1841+ 41x 12 = 2,296 large integer modular reductions. Plugging in
the results of the individual tests, we get the total amofitihree consumed on the three operations is 0.97s,
roughly 78.2% of the total time to do a fix point multiplicatio The rest of 21.8% of the time is spent on
various operations, including inversion operation (toweshthe Jacobian coordinate to Affine), addition,
subtraction, shifting and memory copy, etc. Based on aboaé/sis, we believe the performance of ECC
operations on MICAz can be further improved by more refinetdl @areful programming.

4.2 Performance Comparison

In the last part of the evaluation, we compare the performafiour implementation with existing research
results [3, 6, 7] and give the possible explanation of théoperance gap.

MICAz TelosB
WM-ECC | Sun-ECC| TinyeCC | EccM2.0 | WM-ECC | TinyECC
SIGN 1.35s 0.81s 1.92s 30s 1.55s 4,36s
VERIFY 1.96s - 2.43s - 2.25s 5.44s

Table 3: The performance comparison of our ECC implememtaiVM-ECC, with other research results,
including Sun-ECC [3], TinyECC [6] and EccM2.0 [7]. We use@Mz and TelosB as the two platforms.

We first compare the computation time of ECC operations. Wmtdeour ECC implementation as
WM-ECC, and compare the ECDSA signature generation anficatibn time with other implementations
in Table 3. Obviously, our WM-ECC is more computationallfi@éént than TinyECC and EccM2.0. On
MICAz platform, TinyECC is 42% slower in signature genesatithan our implementation. On TelosB
platform, the performance gap increases to 180%.

We also notice than Sun-ECC is more efficient than our WM-ETi&ir result, 0.81s for a random
point multiplication, is about 40% faster than 1.35s of asuit. We notice that the time for their 16060
multiplication is 0.39ms, roughly 17% faster than our 0.47nn general, we believe their code is more
polished and optimized in many aspects than our code. Furthve, Our code is implemented in TinyOS,
and mostly written with NesC (except several critical lairgeger operations), which could introduce more
CPU cycles.

Since memory storage is extremely limited in sensor motes ptogram code size and data size de-
termine the feasibility of the ECC package. We compare our-B@GAL with TinyECC and EccM2.0. We
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ECC+ECDSA MICAz TelosB
ROM | RAM | ROM | RAM
WM-ECC 18,604| 1,180| 11,438| 1,176
TinyeCC 13,858 1,440| 12,564 | 1,526
EccM2.0 43k 820 - -

Table 4: ECC implementation code size and data size congparis

do not compare Sun-ECC because it is not based on TinyOSsaat icomparable. To compare with the
code size and data size of TinyECC that only has ECC and ECD&Ales, we combine ECC library and
ECDSA of our WM-ECC, but not UART communication module. N&&M2.0 only has the ECC module,
there is no ECDSA available. Table 4 shows WM-ECC has thdaimprogram code size and data size as
TinyECC. The code and data sizes shown for Comparativelg2d consumes much more code space.
Given 128KB ROM, 4KB RAM on MICAz, and 48KB ROM, 10KB RAM on T@é$B, WM-ECC can easily
fit in existing applications. One may notice that WM-ECC riegsl extra 5KB code size than TinyECC on
MICAz platform. This is due to the trade-off of the computatiefficiency. We have extensively optimized
the large integer operations on MICAz platform. As the reghke code size is slightly inflated due to the
techniques such as loop unrolling. Considering the prograng space MICAz is relatively large, 128KB,
we believe this trade-off of 5KB code size is worthwhile.

5 Conclusion

In this technical report, we present how viable that WM-EG@B cun on small, less-powerful sensor de-
vices. We implement 160-bit ECC on popular sensor motekjdivggy MICAz, Tmote Sky and TelosB. Our
experiments show that WM-ECC is practical for all three semqatforms. ECC signature of WM-ECC
only takes 1.35s, 0.77s, 1.35s for MICAz, Tmote Sky and Rlosspectively. Meanwhile, we believe
there is still performance improvement space, which carch&aed by more careful programming.
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