
Body Sensor Network Security:
An Identity-Based Cryptography Approach

Chiu C. Tan
College of William and Mary

cct@cs.wm.edu

Haodong Wang
College of William and Mary

wanghd@cs.wm.edu

Sheng Zhong
SUNY at Buffalo

szhong@cse.buffalo.edu

Qun Li
College of William and Mary

liqun@cs.wm.edu

ABSTRACT
A body sensor network (BSN), is a network of sensors de-
ployed on a person’s body, usually for health care monitor-
ing. Since the sensors collect personal medical data, secu-
rity and privacy are important components in a body sensor
network. At the same time, the collected data has to read-
ily available in the event of an emergency. In this paper,
we present IBE-Lite, a lightweight identity-based encryp-
tion suitable for sensors, and developed protocols based on
IBE-Lite for a BSN.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security

Keywords
Security, Body Sensor Networks, Identity-based cryptogra-
phy

1. INTRODUCTION
Applying wireless sensors toward health care monitoring

allows for new ways to provide quality health care to pa-
tients. A diverse array of specialized sensors can be de-
ployed to monitor, for instance, at-risk patients with history
of heart attacks, or senior citizens living independently at
home. These sensors provide continuous, long term monitor-
ing in an unobtrusive manner, allowing doctors to diagnose
problems more effectively.

A body sensor network, or BSN, is a network of sensors
deployed on a person’s body to collect physiological informa-
tion. In this paper, we focus on a BSN deployed for medical
monitoring. We term the person wearing the BSN as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’08, March 31–April 2, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-814-5/08/03 ...$5.00.

patient, and the person access the data as the doctor. The
term “doctor” is used loosely, and refers to any person want-
ing to access the data. The data collected by the BSN is
either stored on the sensors, or forwarded and archived on
publicly accessible site known as the storage site. Figure 1
illustrates a BSN.

Sensors

Storage Site

Query storage
Depository

Certificate
Authority (CA)

Query BSN directly

PDA

Figure 1: A Body Sensor Network

1.1 Motivating example
Privacy and security for a BSN is important since the data

collected is directly associated with a particular patient. At
the same time, the data must be easily accessible to rele-
vant personal in the event of an emergency. The following
scenarios serve to better illustrates such concerns.

1. Alice wears a BSN that monitors her EKG data when
she is working out. One day, Alice suddenly falls un-
conscious and is sent to the emergency room. The data
collected by the BSN should be stored in a public place
and made easily accessible in an emergency.

2. After the incident, Alice instructs her BSN to collect
some additional data. Alice would like to restrict this
information to only physicians in an ER. However, Al-
ice cannot predict which doctor or hospital will treat
her. Alice may not be physically competent to authen-
ticate anybody when she is admitted to a hospital. A
BSN security scheme should be able to tolerate this
form of ambiguity.

3. Furthermore, due to privacy reasons, a doctor requir-
ing two days worth of data prior to Alice’s illness should
only be able to obtain data collected within those two
days. However, since Alice does not know when she
might have a relapse, a BSN should be able to limit
access to the collected data, even when the data is
stored in a public space.

4. Alice’s family and friends are worried about her condi-
tion. To allay their concerns, Alice would like some of
her family members to be able to have partial access
to her BSN data. Since the data collected by the BSN
belongs to Alice, a security scheme should be flexible
enough to allow Alice to easily add additional access
permissions to people she chooses.

1.2 BSN security requirements
While a complete BSN system will have many different

components, a crucial factor is that any security design must
be lightweight enough to be executed by a sensor in a BSN
since a sensor can be lost or stolen, leaving the data stored
within the sensor exposed.

From the scenario presented, we derive the following se-
curity and privacy requirements for a BSN.

1. Protect patient privacy from the storage site. Since
the data is stored on a third party storage site, we
cannot trust the storage site with the data. We as-
sume an honest-but-curious storage site that will not
maliciously delete the data, but may attempt to learn
the contents of a patient’s data.

2. Tolerate compromised BSN sensors. The BSN sensors
may be misplaced or stolen, and a compromised BSN
sensor should not allow an adversary from obtaining
the patient’s data.

3. Prevent unauthorized access to information. This in-
cludes a doctor with permissions to access some data
and not others. We assume that a doctor may attempt
to obtain additional data about a patient beyond what
was authorized. Since storage site is not trusted, ac-
cess control can only be performed by the CA.

4. Flexibility in granting permissions. The patient may
decide to allow different people to access the BSN data,
and the BSN should be able to generate keys on-the-fly
without additional interaction with the CA.

1.3 Identity-based encryption
Our solutions are based on a type of cryptographic prim-

itive known as identity-based encryption (IBE). After an
initial setup phase, IBE allows a public key to be generated
from an arbitrary string. The corresponding secret key can
be derived separately by a trusted party. For example, Al-
ice may want to encrypt a message for the doctor in charge
on Monday. Alice can independently generated a public key
using the strings “Monday”and “doctor” to encrypt her data
without further contact with the trusted party. To decrypt
the message, a doctor will have to convince the trusted party
that he is a doctor in charge on Monday. The same doctor
working on Tuesday cannot decrypt messages encrypted us-
ing the string “Tuesday” and “doctor” even if he knows the
secret key from Monday.

The simple example cannot be easily accomplished with-
out using IBE. Alice can try to generate many public/secret
key pairs, one for each occasion. However, Alice will have
to store the secret key created with the trusted party each
time a new public/secret key pair is generated. Otherwise,
the trusted party cannot derive the secret key on its own.
This is inefficient.

Another possible alternative is for Alice to include some
instructions with each of her message, and encrypt every-
thing with the trusted parties public key. When a doctor

receives an encrypted message, the doctor will forward it to
the trusted party. The trusted party can decrypt can ob-
tain Alice’s instructions. The trusted party will release the
message to the doctor only if he meets Alice’s instructions.
This solution is also inefficient since a BSN may generate
many pieces of data, each of which has to be forwarded to
the trusted party for decryption. Using IBE, the doctor only
needs to be given a single secret key once.

1.4 Our contributions
In this paper, we design protocols based on identity-based

encryption (IBE) that provide security and privacy protec-
tions to a body sensor network, while allowing flexible ac-
cess to stored data. The use of IBE in a medical setting has
been proposed by several researchers [22, 21, 19]. However,
conventional IBE cannot be efficiently implemented on sen-
sors used in a BSN. In this paper, we propose IBE-Lite, a
lightweight IBE scheme that is suitable for sensors. We im-
plement a proof-of-concept of our schemes based on IBE-Lite
on commercially available sensors similar to the ones used
in a BSN. While IBE schemes have been suggested by pre-
vious researchers to protect medical data, we are the first to
present a lightweight IBE suitable for body sensor networks.

The rest of the paper is as follows. The next section
presents our protocols and Section 3 contains the security
analysis. Our schemes are evaluated in Section 4, with re-
lated work presented in Section 5. Section 6 concludes.

2. OUR SOLUTION
Our protocols are based on a lightweight IBE scheme IBE-

Lite. IBE-LIE shares two properties with conventional IBE,
namely the ability to use an arbitrary string to generate a
public key, and the ability to generate a public key sepa-
rately from the corresponding secret key. We begin by first
reviewing Elliptic Curve Cryptography (ECC), a public key
primitive suitable for BSN [18], followed by the modifications
made to derive IBE-Lite. Finally, we present our protocols
based on IBE-Lite.

2.1 Basic ECC Primitives
To setup ECC, we first select a particular elliptic curve

E over GF (p), where p is a big prime number. We also
denote P as the base point of E and q as the order of P ,
where q is also a big prime. We then pick a secret key x,
and the corresponding public key y, where y = x · P , and a
cryptographic hash function h(). Finally, we have the secret
key x and public parameters (y, P, p, q, h(.)).

We denote encrypting a message m using public key y as
EccEncrypt(m,y). The resulting ciphertext is denoted by
c. The decryption of ciphertext c using the secret key x is
given as EccDecrypt(c, x). The algorithms for EccEncrypt
and EccDecrypt are found in Alg. 1 and Alg. 2 respectively.

Algorithm 1 EccEncrypt(m,y)

1: Generate a random number r ∈ GF (p). Encrypt m with
r, Er(m)

2: Calculate Ar = h(r) · y
3: Calculate Br = h(r) · P
4: Calculate αr = r ⊕ χ(Ar), where χ(Ar) is the x coordi-

nate of Ar

5: Return ciphertext c = 〈αr, Br, Er(m)〉

Algorithm 2 EccDecrypt(c, x)

1: Calculate x · Br = x · h(r) · P = h(r) · y = Ar

2: Determine the x coordinate, χ(Ar)
3: Derive symmetric key r with αr ⊕χ(Ar) = r ⊕χ(Ar)⊕

χ(Ar) = r

4: Apply r to Er(m) to return m

2.2 IBE-Lite
From the basic ECC primitives, we derive the following

IBE-Lite primitives, setup, keygen, encrypt and decrypt.
For ease of explanation, we assume in this subsection that all
primitives are executed by the patient. The actual protocols
involving the patient, CA and doctor are explained in the
next subsection.

The intuition behind is to let a sensor independently gen-
erate a public key on-the-fly using an arbitrary string. For
example, a sensor collecting EKG readings on Monday 1 pm
will first create a string str = (monday|1 pm|EKG). Using
this string, the sensor can derive a public key, ystr to en-
crypt the data and send it to the storage site. There is no
corresponding secret key created. In fact, the sensor cannot
create the secret key needed to decrypt the message.

When the patient wishes to release this information to a
doctor, the patient can derive the corresponding secret key,
xstr, by using the same string str = (monday|1pm|EKG).
This secret key only allows the doctor to decrypt messages
encrypted by a sensor using the same string. This simpli-
fies the key management, since the patient can generate the
secret key on-demand without keeping track of which keys
were used to encrypt which data. The only requirement is
that the string used to describe the event is the same.
Setup: We select an elliptic curve E over GF (p), where p

is a big prime number. We also denote P as the base point
of E and q as the order of P , where q is also a big prime. A
set of n secret keys x1, · · · , xn ∈ GF (q) is chosen to generate
the master secret key,

X = (x1, · · · , xn).

The n public keys are then generated to make up the
master public key,

Y = (y1, · · · , yn)

where yi = xi · P , 1 ≤ i < n. Finally, a collision resistant
one-way hash function h: {0, 1}∗ → {0, 1}n is chosen. The
parameters

〈Y, P, p, q, h(.)〉

are released as the system public parameters.
Keygen: To derive a secret key xstr corresponding to a

public key generated by a string str, the patient executes
Keygen(str) = xstr,

xstr =
n

X

i=1

hi(str) · xi,

where hi(str) is the i-th bit of h(str).
Encrypt: To encrypt a message m using a public key

derived from string str, the sensor does Encrypt(m, str) to
determine the ciphertext c. Alg. 3 shows the process. Note
that Alg. 3 lines 1 and 2 need only be run once to derive
the public key ystr.

Algorithm 3 Encrypt(m, str)

1: Determine string str using agreed upon syntax
2: Generate public key ystr where

ystr =
P

n

i=1
hi(str) · yi

3: Execute EccEncrypt(m,ystr) to obtain c

Decrypt: The doctor executes Decrypt(c, xstr) to obtain
the original message m which was encrypted using a secret
key derived from str. The process is shown in Alg. 4.

Algorithm 4 Decrypt(c, str))

1: Requests permission from patient to obtain data de-
scribed by str

2: Patient runs Keygen(str) to derive xstr

3: Doctor executes EccDecrypt(c, xstr) to obtain m

2.3 BSN Security Protocols
We first describe the initialization phase where the patient

configures the BSN, followed by the data collection phase
which outlines how a sensor encrypts the collected data. The
data transfer phase describes how a BSN transfers data to a
storage site, and finally, the query phase which occurs when
a doctor needs to obtain data from the storage site.

We assume that an agreed upon syntax is used to describe
the string needed to derive a public key, and this description
is termed as str. For example, the patient deciding to collect
data on a hourly basis will set the sensors in the BSN to affix
a timestamp rounded to the nearest hour when creating str.
In other words, two EKG readings collected on Monday at
1:05 pm and 1:20 pm will both be described using the same
string str = {monday|1 pm|EKG}.

As mentioned earlier, we assume an honest-but-curious
storage site which will try to learn the contents of the stored
data, but will otherwise not delete the stored data. We also
assume a separate security mechanism is in place so that
only the patient can store BSN data onto the storage site.

Initialization: The patient first executes Setup to ob-
tain the master secret key X = (x1, · · · , xn), and public pa-
rameters 〈Y, P, p, q, h(.)〉. The patient loads the parameters
〈Y, P, p, q, h(.)〉 into every sensor in the BSN. The patient
then registers the master secret key together with additional
instructions with the CA.

Data collection: Let the sensor collect data d at event
str. The sensor executes Alg. 5 to encrypt its data. The

Algorithm 5 Sensor encrypting data

1: Derive the string str, and generate a random number n

2: Calculate m1 = (flag|n) where flag is a known bitstring
3: Calculate m2 = (d|n)
4: Calculate c1 =Encrypt(str,m1)
5: Calculate c2 =Encrypt(str,m2)

tuple (c1, c2) is then stored in sensor memory. The flag is
a commonly known bitstring several bits long.

Data transfer: Periodically, each sensor in the BSN will
transfer its data to the storage site. This is done by first ag-
gregating all the data into a cellphone like device [28]. The
cellphone then forwards the aggregated data to the storage
site. Assuming that there are k tuples generated by the BSN,

the cellphone will forward the set {(c1

1, c
1

2), · · · , (ck

1 , ck

2)}. Al-
ternatively, a sensor with enough storage capacity can opt
to store the data within the sensor itself. In this case, there
is no data transfer process.

Querying: A doctor wishing to obtain data collected un-
der some str will first contact the CA for permission. After
the CA agrees, the CA will run Keygen(str) to derive the
corresponding secret key xstr needed to decrypt data.

The doctor then contacts the storage site and retrieves the
data as shown in Alg. 6. When the data is stored within
the sensor, the role of the storage site will be executed by
the sensor.

Algorithm 6 Doctor querying for data

1: for every (ci

1, c
i

2) i ∈ k for patient do

2: Storage site sends ci

1 to doctor
3: Doctor runs Decrypt(ci

1, str)
4: if the initial bits of the result match flag then

5: Doctor requests corresponding ci

2 from storage site
6: Doctor executes Decrypt(ci

2, str) and checks
whether the n matches the value from ci

1

7: Doctor accepts d if both are correct
8: end if

9: end for

Since all the data is encrypted, the storage site cannot
return a specific encrypted tuple to the doctor. Instead, the
storage site simply lets the doctor try to decrypt each tuple
(c1, c2) belonging to the patient. The reason for returning
c1 to the doctor first instead of returning c2 directly is to
improve efficiency. Since the length of c1 is much shorter
than c2, letting the doctor first attempt to decrypt c1 before
sending the much longer c2 reduces transmission time.

The doctor can check if the data obtained from the storage
site belongs to his patient by checking whether the same
random number n is used in both c1 and c2. Since this
random n is known only to the sensor encrypting the data,
only that sensor can embed the same n in both c1 and c2.

3. SECURITY ANALYSIS
We begin by examining the basic primitives, followed by

an analysis of the protocols themselves.

3.1 Analysis of Basic Primitives
Our Setup is similar to that of the basic ECC setup scheme,

except that instead of picking a single secret x, our Setup

picks n secrets and n corresponding public keys. Knowing
only one xstr and h(str), the doctor cannot determine the
patient’s master secret X since there are n unknown xi. The
doctor is only able to determine X when he has in this pos-
session n different secret keys x1

str, · · · , xn

str.
The use of xstr and ystr as the private key and public

key derived from string str does not violate the discrete
logarithm property of ECC where, given a y = x · P , it
is infeasible to determine x given y and P , since both are
simply the result of addition of points. Also, both Encrypt

and Decrypt are secure since both rely on well established
ECC encryption and decryption methods.

3.2 Analysis of Protocols
Our protocols protects the privacy of the patient’s data by

encrypting all the information before forwarding the data to

the storage site. After a sensor collects the data, the sen-
sor encrypts the data using Encrypt, resulting in the tuple
(c1, c2). The storage site receives an aggregated set of tuples
{(c1

1, c
1

2), · · · , (ck

1 , ck

2)}. Since all tuples are in ciphertext, the
storage site learns nothing about the patient’s data.

The protocols also prevent unauthorized access to the pa-
tient’s data. Each piece of data collected by a sensor is en-
crypted with a ystr, the public key derived from the string
str. When the doctor receives permissions to access data
encrypted under str, the doctor receives the secret key xstr,
which cannot be used to decrypt any other ciphertext not
encrypted using ystr.

A compromised sensor does not allow the adversary to
obtain any useful data about a patient from the storage site
since the sensor only stores the publicly known parameters.
At most the adversary obtains the ciphertext pair (c1, c2).
The adversary can try to launch a matching attack by first
creating many public keys using different strings str. The
adversary then encrypts all possible values using the differ-
ent public keys to determine whether there is a match for
the tuple (c1, c2). This is possible since the number of po-
tential EKG readings for example are bounded. However,
both c1 and c2 contains a random number n generated by
the sensor. Since the adversary cannot predict the value of
n, the matching attack fails.

Finally, our protocols provide flexibility. The string str

can be used to specify access to the data, without using ad-
ditional certificates. For instance, consider the string str =
{Date | ER | Doctor} used to encrypt data. A doctor want-
ing to obtain the corresponding secret key will have to con-
vince the CA that he is indeed an ER doctor on the given
date. The process of specifying what str to construct can be
programmed by the patient without additional permissions
from the CA.

3.3 Additional Discussion
As mentioned earlier, a doctor knowing one xstr and h(str)

cannot determine the master secret X. However, when the
doctor receives n secret keys x1

str, · · · , xn

str, the doctor is able
to solve for X. We can prevent such an attack by selecting
a large enough n and periodically rekeying the BSN.

The value of n is limited by the storage capacity of an indi-
vidual sensor in the BSN. As we will show in the evaluation
section, a typical sensor used in a BSN can accommodate
an n of several hundred public keys with reasonable perfor-
mance. Since the BSN is worn on the patient’s body, the
patient can rekey the BSN by periodically creating a new
master secret X and derive the new public parameters for
the BSN. The frequency of the rekeying is related to the
number of secret keys given out by the patient.

4. EVALUATION
We evaluate our protocols using experiments conducted on

commercially available sensor hardware. Since every sensor
has to perform certain cryptographic operations indepen-
dently from each other, we are primarily interested in the
performance of a sensor within a BSN, rather than the per-
formance of an entire BSN.

We use the Tmote Sky motes as the sensors that make up
our BSN. The Tmote Sky sensor has a 8MHz TI MSP430
CPU, 10KB on-chip RAM, 48KB programming ROM, and
1MB permanent flash storage. A portion of the flash mem-
ory to store the master public keys Y , thus enabling us to

evaluate IBE-Lite with a larger set of keys, i.e. with larger
values of n. We show in our subsequent evaluation that the
processing delay due to loading keys from flash memory to
RAM is negligible. Radio communication is performed with
a 802.15.4/ZigBee radio, and an integrated antenna provides
up to 125 meter radio transmission range.

The IBE-Lite primitives are based on Elliptic Curve Cryp-
tography (ECC). Optimizations to improve ECC performance
can be found in [10, 15, 26, 27]. Due to space constraints,
we omit further discussion on the ECC primitives. Table 1
briefly summerizes our performance. For details, please refer
to [27].

PubKey Sign Verify Code Data
0.74 s 0.77 s 1.12 s 25 KB 1.6 KB

Table 1: PubKey refers to the time taken to gen-

erate a public key, Sign, time taken to generate a

signature. Verify refers to the time taken to verify

a signature verification time. Code and Data is the

size of the binary code and data respectively.

500 1000 1500 2000 2500 3000
0

2

4

6

8

Number of keys (y)

y st
r g

en
er

at
io

n
tim

e
(s

)

256B buffer
1KB buffer
2KB buffer
8KB buffer

Figure 2: Time needed to derive one ystr using dif-

ferent n number of public keys, y1, · · · , yn.

500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

Number of keys (y)

F
la

sh
 s

to
ra

ge
 (

K
B

)

Figure 3: Flash memory storage needed to store dif-

ferent values of n public keys, y1, · · · , yn.

The main overhead of our protocols is the amount of time
needed to generate a single ystr from a string str using n

number of public keys y1, · · · , yn. For clarity, we refer to the

public key generated using str as simply ystr. The n number
of keys y1, · · · , yn are referred to as public keys. Note that
the value of n is not related to the number of different ystrs
that can be generated. The BSN can continue to generate
as many ystr on-the-fly as needed, regardless of the value of
n. Once ystr is generated, the remaining encryption is the
same as that for a regular ECC encryption.

Fig. 2 shows the amount of time needed to generate a
single ystr with varying values of n. All n public keys are
initially stored in the flash memory. Fig. 3 shows the amount
flash storage need to store different n public keys. We see
from Fig. 2 that, for n = 360, we need only 0.9 seconds
to generate ystr. Usually, 200∼300 public key bases are
sufficient for the BSN applications we are concerned about.
For example, a BSN requiring a new public key for data
encryption in every hour requires 168 keys for an entire week.
At the end of week, the public key bases can be refreshed.

Note that a key ystr once generated can be used for a
considerable long period of time. Therefore, while the key
generation time is longer than the data encryption time,
this does not pose an excessive overhead for common BSN
applications.

Since all n keys are stored in the flash memory, we ran
the code using different size buffers in RAM and evaluate
the performance. Large buffer allows us to fetch multiple
pages to the buffer in one operation. We observe that the
performance gain from choosing a 8KB buffer over a 256B
buffer is very small. This is because reading multiple pages
in one operation takes approximately the same amount to
read one page at a time. Furthermore, the speedup from a
larger buffer is only apparent for large values of n. This is a
beneficial finding, since this means IBE-Lite can be executed
with a smaller buffer cache in RAM with negligible perfor-
mance penalty. Fig. 4 shows the time needed to perform the

2 4 6 8 10
0

5

10

15

Number of keys (y
str

)

T
im

e
ta

ke
n

(s
)

Figure 4: Time needed for different number of pub-

lic keys ystr to encrypt data.

encryption once the public key ystr has been derived. For
a given data, encrypting with just one ystr requires about
1.5 seconds. Again this is the encryption time for the sym-
metric key (r), which will be used then to encrypt the raw
data. The symmetric key can be used for a period, say 10
minutes. The cost of the 1.5s can be amortized over the
10 minute period. The amount of time needed for multiple
ystrs to encrypt the same data is proportional to the number
of ystrs. While in Fig. 4 the amount of time needed for 10
different ystr is close to 15 seconds, in practice we are un-
likely to use many different public keys to encrypt the same
event. For example, a string str = {ER | doctor} can be

used to cover all ER doctors. Thus even if there are many
potential doctors that might access the data, the same str

can be used.

5. RELATED WORK
The motivation behind a BSN is to place low cost sensors

directly on the patient for health care monitoring. With
this in mind, several research prototypes have been devel-
oped [18, 28, 8, 19]. The use of identity-based cryptography
(IBE) [25, 2, 5] for medical applications was also suggested
by [22, 21], but our work presents practical implementaion
on actual sensors rather than a general architecture. Other
applications of IBE include [13, 1, 11].

Sensor network security is a widely researched area [24,
12], with solutions focusing on key deployment [7, 14, 17, 16,
4], public key cryptography [15, 23, 9] and management [6,
20, 3]. Unlike prior work, our security protocols incorportate
identity-based cryptography primitives.

6. CONCLUSION
In this paper, we presented IBE-Lite, a lightweight iden-

tity based encryption method suitable for a body sensor net-
work. We provided protocols based on IBE-Lite to provide
security and privacy support for a BSN. We evaluated our
protocols using a combination of security analysis, simula-
tions, and practical implementation on actual sensors.

Acknowledgments
The authors would like to thank all the reviewers for their
helpful comments. This project was supported in part by
US National Science Foundation award CCF-0514985 and
CNS-0721443. Sheng Zhong was partially supported by NSF
CNS-0524030.

7. REFERENCES
[1] N. Asokan, K. Kostiainen, P. Ginzboorg, J. Ott, and

C. Luo. Applicability of identity-based cryptography
for disruption-tolerant networking. In MobiOpp 2007.

[2] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. In CRYPTO 2001.

[3] S. Capkun, L. Buttyán, and J.-P. Hubaux.
Self-organized public-key management for mobile ad
hoc networks. IEEE TMC 2003.

[4] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In IEEE
SP 2003.

[5] C. Cocks. An identity based encryption scheme based
on. quadratic residues. In LNCS 2260 (2001).

[6] W. Du, R. Wang, and P. Ning. An efficient scheme for
authenticating public keys in sensor networks. In
MobiHoc 2005.

[7] L. Eschenauer and V. D. Gligor. A key-management
scheme for distributed sensor networks. In CCS 2002.

[8] R. Ganti, P. Jayachandran, and T. Abdelzaher. Satire:
A software architecture for smart attire. In Mobisys
2006.

[9] J. Girao, D. Westhoff, E. Mykletun, and T. Araki.
Tinypeds: Tiny persistent encrypted data storage in
asynchronous wireless sensor networks. Ad Hoc
Networks 2007.

[10] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung,
N. Gura, H. Eberle, and S. C. Shantz. Sizzle: A
standards-based end-to-end security architecture for
the embedded internet. In PerCom 2005.

[11] U. Hengartner and P. Steenkiste. Exploiting
hierarchical identity-based encryption for access
control to pervasive computing information. In
SecureComm 2005.

[12] C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link
layer security architecture for wireless sensor
networks. In SenSys 2004.

[13] A. Kate, G. Zaverucha, and U. Hengartner.
Anonymity and security in delay tolerant networks. In
SecureComm 2007.

[14] L. Lazos and R. Poovendran. Serloc: Secure
range-independent localization for wireless sensor
networks. ACM TOSN 2005.

[15] A. Liu, P. Kampanakis, and P. Ning. Tinyecc: Elliptic
curve cryptography for sensor networks (version 0.3).
2007.

[16] D. Liu and P. Ning. Establishing pairwise keys in
distributed sensor networks. In CCS 2003.

[17] D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical
broadcast authentication in sensor networks. In
MobiQuitous 2005.

[18] B. Lo and G. Z. Yang. Key technical challenges and
current implementations of body sensor networks. In
BSN 2005.

[19] D. Malan, T. Fulford-Jones, M. Welsh, and
S. Moulton. Codeblue: An ad hoc sensor network
infrastructure for emergency medical care. In BSN
2004.

[20] D. J. Malan, M. Welsh, and M. D. Smith. A
public-key infrastructure for key distribution in tinyos
based on elliptic curve cryptography. In SECON 2004.

[21] K. Malasri and L. Wang. Addressing security in
medical sensor networks. In HealthNet 2007.

[22] M. Mont, P. Bramhall, and K. Harrison. A flexible
role-based secure messaging service: exploiting IBE
technology for privacy in health care. In International
Workshop on Database and Expert Systems
Applications 2003.

[23] E. Mykletun, J. Girao, and D. Westhoff. Public key
based cryptoschemes for data concealment in wireless
sensor networks. In ICC2006.

[24] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.
Tygar. SPINS: Security protocols for sensor networks.
In Mobicom 2001.

[25] A. Shamir. Identity-based cryptosystems and
signature schemes. In CRYPTO 1984.

[26] H. Wang and Q. Li. Efficient Implementation of Public
Key Cryptosystems on Mote Sensors (Short Paper). In
International Conference on Information and
Communication Security (ICICS 2006), LNCS 4307.

[27] H. Wang, B. Sheng, C. C. Tan, and Q. Li. WM-ECC:
an Elliptic Curve Cryptography Suite on Sensor
Motes. In Technical Report WM-CS-2007-11, 2007.

[28] L. Zhong, M. Sinclair, and R. Bittner. A
phone-centered body sensor network platform: cost,
energy efficiency and user interface. In BSN 2006.

