
This paper appears in theProceedings of the 2002 Usenix Annual Technical Conference, Monterey, CA, June 2002.

Cooperative Task Management
without Manual Stack Management

or, Event-driven Programming is Not the Opposite of Threaded Programming

Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, John R. Douceur
Microsoft Research

1 Microsoft Way, Redmond, Washington 98052
{adya, howell, theimer, bolosky, johndo}@microsoft.com

Abstract

Cooperative task management can provide program ar-
chitects with ease of reasoning about concurrency is-
sues. This property is often espoused by those who
recommend “event-driven” programming over “multi-
threaded” programming. Those terms conflate several
issues. In this paper, we clarify the issues, and show how
one can get the best of both worlds: reason more simply
about concurrency in the way “event-driven” advocates
recommend, while preserving the readability and main-
tainability of code associated with “multithreaded” pro-
gramming.

We identify the source of confusion about the two pro-
gramming styles as a conflation of two concepts:task
management and stack management. Those two con-
cerns define a two-axis space in which “multithreaded”
and “event-driven” programming are diagonally oppo-
site; there is a third “sweet spot” in the space that com-
bines the advantages of both programming styles. We
point out pitfalls in both alternative forms of stack man-
agement,manual and automatic, and we supply tech-
niques that mitigate the danger in the automatic case.
Finally, we exhibit adaptors that enable automatic stack
management code and manual stack management code
to interoperate in the same code base.

1 Introduction

Our team embarked on a new project and faced the ques-
tion of what programming model to use. Each team
member had been burned by concurrency issues in the
past, encountering bugs that were difficult to even repro-
duce, much less identify and remove. We chose to fol-
low the collective wisdom of the community as we un-

derstood it, which suggests that an “event-driven” pro-
gramming model can simplify concurrency issues by
reducing opportunities for race conditions and dead-
locks [Ous96]. However, as we gained experience, we
realized that the popular term “event-driven” conflates
several distinct concepts; most importantly, it suggests
that a gain in reasoning about concurrency cannot be
had without cumbersome manual stack management. By
separating these concerns, we were able to realize the
“best of both worlds.”

In Section 2, we define the two distinct concepts whose
conflation is problematic, and we touch on three related
concepts to avoid confusing them with the central ideas.
The key concept is that one can choose the reasoning
benefits of cooperative task management without sacri-
ficing the readability and maintainability of automatic
stack management. Section 3 focuses on the topic of
stack management, describing how software evolution
exacerbates problems both for code using manual stack
management as well as code using automatic stack man-
agement. We show how the most insidious problem with
automatic stack management can be alleviated. Sec-
tion 4 presents our hybrid stack-management model that
allows code using automatic stack management to co-
exist and interoperate in the same program with code
using manual stack management; this model helped us
find peace within a group of developers that disagreed
on which method to use. Section 5 discusses our expe-
rience in implementing these ideas in two different sys-
tems. Section 6 relates our observations to other work
and Secton 7 summarizes our conclusions.

2 Definitions

In this section, we define and describe five distinct
concepts: task management, stack management, I/O



response management, conflict management, and data
partitioning. These concepts are not completely orthog-
onal, but considering them independently helps us un-
derstand how they interact in a complete design. We
tease apart these concerns and then return to look at how
the concepts have been popularly conflated.

2.1 Task management

One can often divide the work a program does into con-
ceptually separate tasks: each task encapsulates a con-
trol flow, and all of the tasks access some common,
shared state. High-performance programs are often writ-
ten with preemptive task management, wherein execu-
tion of tasks can interleave on uniprocessors or overlap
on multiprocessors. The opposite approach,serial task
management, runs each task to completion before start-
ing the next task. Its advantage is that there is no conflict
of access to the shared state; one can define inter-task
invariants on the shared state and be assured that, while
the present task is running, no other tasks can violate
the invariants. The strategy is inappropriate, however,
when one wishes to exploit multiprocessor parallelism,
or when slow tasks must not defer later tasks for a long
time.

A compromise approach iscooperative task manage-
ment. In this approach, a task’s code only yields con-
trol to other tasks at well-defined points in its execution;
usually only when the task must wait for long-running
I/O. The approach is valuable when tasks must inter-
leave to avoid waiting on each other’s I/O, but multi-
processor parallelism is not crucial for good application
performance.

Cooperative task management preserves some of the ad-
vantage of serial task management in that invariants on
the global state only need be restored when a task explic-
itly yields, and they can be assumed to be valid when the
task resumes. Cooperative task management is harder
than serial in that, if the task has local state that depends
on the global state before yielding, that state may be in-
valid when the task resumes. The same problem appears
in preemptive task management when releasing locks for
the duration of a slow I/O operation [Bir89].

One penalty for adopting cooperative task management
is that every I/O library function called must be wrapped
so that instead of blocking, the function initiates the I/O
and yields control to another task. The wrapper must
also arrange for its task to become schedulable when the
I/O completes.

2.2 Stack management

The common approach to achieving cooperative task
management is to organize a program as a collection
of event handlers. Say a task involves receiving a net-
work message, reading a block from disk, and replying
to the message. The receipt of the message is an event;
one procedure handles that event and initiates the disk
I/O. The receipt of the disk I/O result is a second event;
another procedure handles that event and constructs the
network reply message. The desired task management
is achieved, in that other tasks may make progress while
the present task is waiting on the disk I/O.

We call the approach just describedmanual stack man-
agement. As we argue in Section 3.1, the problem is that
the control flow for a single conceptual task and its task-
specific state are broken across several language proce-
dures, effectively discarding language scoping features.
This problem is subtle because it causes the most trou-
ble as software evolves. It is important to observe that
one can choose cooperative task management for its ben-
efits while exploiting theautomatic stack management
afforded by a structured programming language. We de-
scribe how in Section 3.3.

Some languages have a built-in facility for transpar-
ently constructing closures; Scheme’s call-with-current-
continuation is an obvious example [HFW84, FHK84].
Such a facility obviates the idea of manual stack
management altogether. This paper focuses on the
stack management problem in conventional systems lan-
guages without elegant closures.

2.3 I/O management

While this paper focuses on the first two axes, we ex-
plicitly mention three other axes to avoid confusing them
with the first two. The first concerns the question ofsyn-
chronous versusasynchronous I/O management, which
is orthogonal to the axis of task management. An I/O
programming interface issynchronous if the calling task
appears to block at the call site until the I/O completes,
and then resume execution. Anasynchronous interface
call appears to return control to the caller immediately.
The calling code may initiate several overlapping asyn-
chronous operations, then later wait for the results to ar-
rive, perhaps in arbitrary order. This form of concur-
rency is different than task management because I/O op-
erations can be considered independently from the com-
putation they overlap, since the I/O does not access the



shared state of the computation. Code obeying any of
the forms of task management can call either type of I/O
interface. Furthermore, with the right primitives, one
can build wrappers to make synchronous interfaces out
of asynchronous ones, and vice versa; we do just that in
our systems.

2.4 Conflict management

Different task management approaches offer different
granularities of atomicity on shared state.Conflict man-
agement considers how to convert available atomicity to
a meaningful mechanism for avoiding resource conflicts.
In serial task management, for example, an entire task is
an atomic operation on shared state, so no explicit mech-
anism is needed to avoid inter-task conflicts on shared
resources. In the limiting case of preemptive task man-
agement, where other tasks are executing concurrently,
tasks must ensure that invariants hold on the shared state
all the time.

The general solution to this problem is synchronization
primitives, such as locks, semaphores, and monitors.
Based on small atomic operations supplied by the ma-
chine or runtime environment, synchronization primi-
tives let us construct mechanisms that maintain complex
invariants on shared state that always hold. Synchro-
nization mechanisms may be pessimistic or optimistic.
A pessimistic mechanism locks other tasks out of the
resources it needs to complete a computation. An op-
timistic primitive computes results speculatively; if the
computation turns out to conflict with a concurrent task’s
computation, the mechanism retries, perhaps also falling
back on a pessimistic mechanism if no forward progress
is being made.

Cooperative (or serial) task management effectively pro-
vides arbitrarily large atomic operations: all of the code
executed between two explicit yield points is executed
atomically. Therefore, it is straightforward to build
many complex invariants safely. This approach is analo-
gous to the construction of atomic sequences with inter-
rupt masking in uniprocessor OS kernels. We discuss in
Section 3.3 how to ensure that code dependent on atom-
icity stays atomic as software evolves.

2.5 Data partitioning

Task management and conflict management work to-
gether to address the problem of potentially-concurrent

cooperative preemptiveserial

“event-driven”

“multithreaded”

task management

sweet spot

Figure 1: Two axes that are frequently conflated.

access to shared state. By partitioning that state, we can
reduce the number of opportunities for conflict. For ex-
ample, task-specific state needs no concurrency consid-
erations because it has been explicitlypartitioned from
shared state. Data is transferred between partitions by
value; one must be careful to handle implicit references
(such as a value that actually indexes an array) thought-
fully.

Explicitly introducing data partitions to reduce the de-
gree of sharing of shared state can make it easier to write
and reason about invariants on each partition; data par-
titioning is an orthogonal approach to those mentioned
previously.

2.6 How the concepts relate

We have described five distinct concepts. They are not
all precisely orthogonal, but it is useful to consider the
effects of choices in each dimension separately. Most
importantly, for the purposes of this paper, the task man-
agement and stack management axes are indeed orthog-
onal (see Figure 1).

The idea behind Figure 1 is that conventional concurrent
programming uses preemptive task management and ex-
ploits the automatic stack management of a standard lan-
guage. We often hear this point in the space referred to
by the term “threaded programming.” The second in-
teresting point in the space is “event-driven program-
ming,” where cooperative tasks are organized as event
handlers that yield control byreturning control to the
event scheduler, manually unrolling their stacks. This
paper is organized around the observation that one can
choose cooperative task management while preserving
the automatic stack management that makes a program-



ming language “structured;” in the diagram, this point is
labeled the “sweet spot.”

3 Stack management

Given our diagram one might ask, “what are thepros and
cons of the two forms of stack management? We address
that question here. We present the principal advantages
and disadvantages of each form, emphasizing how soft-
ware evolution exacerbates the disadvantages of each.
We also present a technique that mitigates the principal
disadvantage of automatic stack management.

3.1 Automatic versus manual

Programmers can express a task employing eitherauto-
matic stack management ormanual stack management.
With automatic stack management, the programmer ex-
presses each complete task as a single procedure in the
source language. Such a procedure may call functions
that block on I/O operations such as disk or remote re-
quests. While the task is waiting on a blocking opera-
tion, its current state is kept in data stored on the pro-
cedure’s program stack. This style of control flow is
one meaning often associated with the term “procedure-
oriented.”

In contrast, manual stack management requires a pro-
grammer to rip the code for any given task into event
handlers that run to completion without blocking. Event
handlers are procedures that can be invoked by anevent-
handling scheduler in response to events, such as the
initiation of a task or the response from a previously-
requested I/O. To initiate an I/O, an event handler “E1”
schedules a request for the operation but does not wait
for the reply. Instead,E1 registers a task-specific object
called acontinuation [FHK84] with the event-handling
scheduler. The continuation bundles state indicating
whereE1 left off working on the task, plus a reference
to a different event-handler procedureE2 that encodes
what should be done when the requested I/O has com-
pleted. After having initiated the I/O and registering the
continuation,E1 returns control to the event-handling
scheduler. When the event representing the I/O com-
pletion occurs, the event-handling scheduler callsE2,
passingE1’s bundled state as an argument. This style
of control flow is often associated with the term “event-
driven.”

To illustrate these two stack-management styles, con-

sider the code for a function,GetCAInfo, that looks
in an in-memory hash table for a specified certificate-
authority id and returns a pointer to the corresponding
object. A certificate authority is an entity that issues cer-
tificates, for example for users of a file system.

CAInfo GetCAInfo(CAID caId) {
CAInfo caInfo = LookupHashTable(caId);

return caInfo;

}

Suppose that initially this function was designed to han-
dle a few globally known certificate authorities and
hence all the CA records could be stored in memory. We
refer to such a function as acompute-only function: be-
cause it does not pause for I/O, we need not consider
how its stack is managed across an I/O call, and thus the
automatic stack management supplied by the compiler is
always appropriate.

Now suppose the function evolves to support an abun-
dance of CA objects. We may wish to convert the hash
table into an on-disk structure, with an in-memory cache
of the entries in use.GetCAInfo has become a func-
tion that may have to yield for I/O. How the code evolves
depends on whether it uses automatic or manual stack
management.

Following is code with automatic stack management that
implements the revised function:

CAInfo GetCAInfoBlocking(CAID caId) {
CAInfo caInfo = LookupHashTable(caId);

if (caInfo != NULL) {
// Found node in the hash table
return caInfo;

}
caInfo = new CAInfo();

// DiskRead blocks waiting for
// the disk I/O to complete.
DiskRead(caId, caInfo);

InsertHashTable(caId, CaInfo);

return caInfo;

}

To achieve the same goal using manual stack
management, we rip the single conceptual func-
tion GetCAInfoBlocking into two source-language
functions, so that the second function can be called from
the event-handler scheduler to continue after the disk
I/O has completed. Here is the continuation object that
stores the bundled state and function pointer:

class Continuation {



// The function called when this
// continuation is scheduled to run.
void (∗function)(Continuation cont);

// Return value set by the I/O operation.
// To be passed to continuation.
void ∗returnValue
// Bundled up state
void ∗arg1, ∗arg2, ...;

}

Here is the original function, ripped into the two parts
that function as event handlers:

void GetCAInfoHandler1(CAID caId,

Continuation ∗callerCont)
{

// Return the result immediately if in cache
CAInfo ∗caInfo = LookupHashTable(caId);

if (caInfo != NULL) {
// Call caller’s continuation with result
(∗callerCont−>function)(caInfo);

return;

}

// Make buffer space for disk read
caInfo = new CAInfo();

// Save return address & live variables
Continuation ∗cont = new

Continuation(&GetCAInfoHandler2,

caId, caInfo, callerCont);

// Send request
EventHandle eh =

InitAsyncDiskRead(caId, caInfo);

// Schedule event handler to run on reply
// by registering continuation
RegisterContinuation(eh, cont);

}

void GetCAInfoHandler2(Continuation

∗cont) {
// Recover live variables
CAID caId = (CAID) cont−>arg1;

CAInfo ∗caInfo = (CAInfo∗) cont−>arg2;

Continuation ∗callerCont =

(Continuation∗) cont−>arg3;

// Stash CAInfo object in hash
InsertHashTable(caId, caInfo);

// Now “return” results to original caller
(∗callerCont−>function)(callerCont);

}

Note that the signature ofGetCAInfo is different from
that ofGetCAInfoHandler1. Since the desired re-

sult from what used to beGetCAInfowill not be avail-
able untilGetCAInfoHandler2 runs sometime later,
the caller ofGetCAInfoHandler1 must pass in a
continuation thatGetCAInfoHandler2 can later in-
voke in order to return the desired result via the continu-
ation record. That is, with manual stack management, a
statement that returns control (and perhaps a value) to a
caller must be simulated by a function call to a continu-
ation procedure.

3.2 Stack Ripping

In conventional systems languages, such as C++, which
have no support for closures, the programmer has to do a
substantial amount of manual stack management to yield
for I/O operations. Note that the function in the previ-
ous section was ripped into two parts because of one I/O
call. If there are more I/O calls, there are even more rips
in the code. The situation gets worse still with the pres-
ence of control structures such asfor loops. The pro-
grammer deconstructs the language stack, reconstructs
it on the heap, and reduces the readability of the code in
the process.

Furthermore, debugging is impaired because when the
debugger stops inGetCAInfoHandler2, the call
stack only shows the state of the current event han-
dler and provides no information about the sequence of
events that the ripped task performed before arriving at
the current event handler invocation. Theoretically, one
can manually recover the call stack by tracing through
the continuation objects; in practice we have observed
that programmers hand-optimize away tail calls, so that
much of the stack goes missing.

In summary, for each routine that is ripped, the program-
mer will have to manually manage procedural language
features that are normally handled by a compiler:

function scoping Now two or more language functions
represent a single conceptual function.

automatic variables Variables once allocated on the
stack by the language must be moved into a new
state structure stored on the heap to survive across
yield points.

control structures The entry point to every basic block
containing a function that might block must be
reachable from a continuation, and hence must be
a separate language-level function. That is, con-
ceptual functions with loops must be ripped into
more than two pieces.



debugging stack The call stack must be manually re-
covered when debugging, and manual optimiza-
tion of tail calls may make it unrecoverable.

Software evolution substantially magnifies the problem
of function ripping: when a function evolves from be-
ing compute-only to potentially yielding,all functions,
along every path from the function whose concurrency
semantics have changed to the root of the call graph may
potentially have to be ripped in two. (More precisely, all
functions up a branch of the call graph will have to be
ripped until a function is encountered that already makes
its call in continuation-passing form.) We call this phe-
nomenon “stack ripping” and see it as the primary draw-
back to manual stack management. Note that, as with
all global evolutions, functions on the call graph may be
maintained by different parties, making the change dif-
ficult.

3.3 Hidden concurrency assumptions

The huge advantage of manual stack management is
that every yield point is explicitly visible in the code
at every level of the call graph. In contrast, the call
to DiskRead in GetCAInfo hides potential concur-
rency. Local state extracted from shared state before
the DiskRead call may need to be reevaluated after
the call. Absent a comment, the programmer cannot tell
which function calls may yield and which local state to
revalidate as a consequence thereof.

As with manual stack management, software evolution
makes the situation even worse. A call that did not yield
yesterday may be changed tomorrow to yield for I/O.
However, when a function with manual stack manage-
ment evolves to yield for I/O, its signature changes to
reflect the new structure, and the compiler will call atten-
tion to any callers of the function unaware of the evolu-
tion. With automatic stack management, such a change
is syntactically invisible and yet it affects the semantics
of every function that calls the evolved function, either
directly or transitively.

The dangerous aspect of automatic stack management is
that a semantic property (yielding) of a called procedure
dramatically affects how the calling procedure should be
written, but there is no check that the calling procedure
is honoring the property. Happily, concurrency assump-
tions can be declared explicitly and checked statically or
dynamically.

A static check would be ideal because it detects viola-

tions at compile time. Functions that yield are tagged
with the yielding property, and each block of a calling
function that assumes that it runs without yielding is
markedatomic. The compiler or a static tool checks
that functions that callyielding functions are themselves
markedyielding, and that no calls toyielding functions
appear insideatomic blocks. In fact, one could rea-
sonably abuse an exception declaration mechanism to
achieve this end.

A dynamic check is less desirable than a static one be-
cause violations are only found if they occur at runtime.
It is still useful in that violations cause an immediate
failure, rather than subtly corrupting system state in a
way that is difficult to trace back to its cause. We chose
a dynamic check because it was quick and easy to im-
plement. Each block of code that depends on atomicity
begins with a call tostartAtomic() and ends with
a call toendAtomic(). ThestartAtomic() func-
tion increments a private counter andendAtomic()
decrements it. When any function tries to block on I/O,
yield() asserts that the counter is zero, and dumps
core otherwise.

Note that in evolving code employing automatic stack
management, we may also have to modify every func-
tion extending along every path up the call graph from
a function whose concurrency semantics have changed.
However, whereas manual stack management implies
that each affected function must be torn apart into mul-
tiple pieces, automatic-stack-management code may re-
quire no changes or far less intrusive changes. If the
local state of a function does not depend on the yielding
behavior of a called function, then the calling function
requires no change. If the calling function’s local stateis
affected, the function must be modified to revalidate its
state; this surgery is usually local and does not require
substantial code restructuring.

4 Hybrid approach

In our project there are passionate advocates for each of
the two styles of stack management. There is a hybrid
approach that enables both styles to coexist in the same
code base, using adaptors to connect between them. This
hybrid approach also enables a project to be written in
one style but incorporate legacy code written in the other.

In the Windows operating system, “threads” are sched-
uled preemptively and “fibers” are scheduled coopera-
tively. Our implementation achieves cooperative task
management by scheduling multiple fibers on a single



thread; at any given time, only one fiber is active.

In our design, a scheduler runs on a special fiber called
MainFiber and schedules both manual stack manage-
ment code (event handlers) and automatic stack manage-
ment code. Code written with automatic stack manage-
ment, that expects to block for I/O, always runs on a fiber
other thanMainFiber; when it blocks, it always yields
control back toMainFiber, where the scheduler se-
lects the next task to schedule. Compute-only functions,
of course, may run on any fiber, since they may be freely
called from either context.

Both types of stack management code are scheduled by
the same scheduler because the Windows fiber package
only supports the notion of explicitly switching from one
fiber to another specified fiber; there is no notion of a
generalizedyield operation that invokes a default fiber
scheduler. Implementing a combined scheduler also al-
lowed us to avoid the problem of having two, potentially
conflicting, schedulers running in parallel: one for event
handlers and one for fibers.

There are other ways in which the two styles of code
can be made to interact. We aimed for simplicity and to
preserve our existing code base that uses manual stack
management. Our solution ensures that code written in
either style can call a function implemented in the other
style without being aware that the other stack manage-
ment discipline even exists.

To illustrate the hybrid approach, we show an ex-
ample that includes calls across styles in both di-
rections. The example involves four functions:
FetchCert, GetCertData, VerifyCert, and
GetCAInfo. (GetCAInfo was introduced in Sec-
tion 3.1).FetchCert fetches a security certificate us-
ingGetCertData and then callsVerifyCert in or-
der to confirm its validity.VerifyCert, in turn, calls
GetCAInfo in order to obtain a CA with which to ver-
ify a certificate. Here is how the code would look with
serial task management:

bool FetchCert(User user,

Certificate ∗cert) {
// Get the certificate data from a
// function that might do I/O
certificate = GetCertData(user);

if (!VerifyCert(user, cert)) {
return false;

}
}

bool VerifyCert(User user,

Certificate ∗cert) {
// Get the Certificate Authority (CA)
// information and then verify cert
ca = GetCAInfo(cert);

if (ca == NULL) return false;

return CACheckCert(ca, user, cert);

}

Certificate∗ GetCertData(User user) {
// Look up certificate in the memory
// cache and return the answer.
// Else fetch from disk/network
if (Lookup(user, cert))

return certificate;

certificate = DoIOAndGetCert();

return certificate;

}

Of course, we want to rewrite the code to use coop-
erative task management, allowing other tasks to run
during the I/O pauses, with different functions adher-
ing to each form of stack management. Suppose that
VerifyCert is written with automatic stack man-
agement and the remaining functions (FetchCert,
GetCertData, GetCAInfo) are implemented with
manual stack management (using continuations). We
will define adaptor functions that route control flow be-
tween the styles.

4.1 Manual calling automatic

Figure 2 is a sequence diagram illustrating how code
with manual stack management calls code with auto-
matic stack management. In the figure, the details of
a call in the opposite direction are momentarily ob-
scured behind dashed boxes. The first event handler
for FetchCert1 calls the functionGetCertData1,
which initiates an I/O operation, and the entire stack
unrolls in accordance with manual stack management.
Later, when the I/O reply arrives, the scheduler executes
theGetCertData2 continuation, which “returns” (by
a function call) to the second handler forFetchCert.
This is pure manual stack management.

When a function written with manual stack management
calls code with automatic stack management, we must
reconcile the two styles. The caller code is written ex-
pecting never to block on I/O; the callee expects to block
I/O always. To reconcile these styles, we create a new
fiber and execute the callee code on that fiber. The caller
resumes (to manually unroll its stack) as soon as the first
burst of execution on the fiber completes. The fiber may



VerifyCert

verifyFiberMainFiber

tim
e

GetCertData1

VerifyCertCFA GetCAInfoFCA

GetCAInfo2

FiberContinue GetCAInfoFCA

FiberContinue

GetCAInfo

GetCAInfoFCA

VerifyCertCFA
Start

SwitchTo
(MainFiber)

SwitchTo
(verifyFiber)

verifyFiber
Done

VerifyCert

FiberStart

FiberStart

CACheckCert

VerifyCert

GetCertData2

FetchCert2

FetchCert1

FetchCert3

VerifyCertCFA2

Block on I/O

I/O Completed Resume from I/O

Unroll stack

fiber switch

function call

function return

I/O message

Manual stack mgmt code

Auto stack mgmt code

scheduler

adaptor code

Compute-only function

Figure 2:GetCertData, code with manual stack man-
agement, callsVerifyCert, a function written with
automatic stack management.

run and block for I/O several times; when it finishes its
work on behalf of the caller, it executes the caller’s con-
tinuation to resume the caller’s part of the task. Thus,
the caller code does not block and the callee code can
block if it wishes.

In our example, the manual-stack-management func-
tion FetchCert2 calls through an adapter to the
automatic-stack-management functionVerifyCert.
FetchCert2 passes along a continuation pointing at
FetchCert3 so that it can eventually regain control
and execute the final part of its implementation. The fol-
lowing code is for the CFA adaptor, ripped into itscall
andreturn parts; CFA stands for “Continuation-To-Fiber
adaptor.”

void VerifyCertCFA(CertData certData,

Continuation ∗callerCont) {
// Executed on MainFiber
Continuation ∗vcaCont = new

Continuation(VerifyCertCFA2,

callerCont);

Fiber ∗verifyFiber = new

VerifyCertFiber(certData, vcaCont);

// On fiber verifyFiber, start executing
// VerifyCertFiber::FiberStart
SwitchToFiber(verifyFiber);

// Control returns here when
// verifyFiber blocks on I/O

}

void VerifyCertCFA2(Continuation

∗vcaCont) {
// Executed on MainFiber.
// Scheduled after verifyFiber is done
Continuation ∗callerCont =

(Continuation∗) vcaCont−>arg1;

callerCont−>returnValue =

vcaCont−>returnValue;

// “return” to original caller (FetchCert)
(∗callerCont−>function)(callerCont);

}

The first adaptor function accepts the arguments
of the adapted function and a continuation (“stack
frame”) for the calling task. It constructs its own
continuation vcaCont and creates a object called
verifyFiber that represents a new fiber (VerifyC-
ertFiber is a subclass of the Fiber class); this object
keeps track of the function arguments andvcaCont
so that it can transfer control toVerifyCertCFA2
when verifyFiber’s work is done. Finally, it
performs a fiber-switch toverifyFiber. When
verifyFiber begins, it executes glue routine



VerifyCertFiber::FiberStart to unpack the
parameters and pass them toVerifyCert, which may
block on I/O:

VerifyCertFiber::FiberStart() {
// Executed on a fiber other than MainFiber
// The following call could block on I/O.
// Do the actual verification.
this−>vcaCont−>returnValue =

VerifyCert(this−>certData);

// The verification is complete.
// Schedule VerifyCertCFA2
scheduler−>schedule(this−>vcaCont);

SwitchTo(MainFiber);

}

This start function simply calls into the func-
tion VerifyCert. At some point, when
VerifyCert yields for I/O, it switches control
back to theMainFiber using a SwitchTo call
in the I/O function (not the call site shown in the
FiberStart() routine above). Control resumes
in VerifyCertCFA, which unrolls the continuation
stack (i.e., GetCertData2 and FetchCert2)
back to the scheduler. Thus, the hybrid task has
blocked for the I/O initiated by the code with automatic
stack management while ensuring that event handler
FetchCert2 does not block.

Later, when the I/O completes,verifyFiber is
resumed (for now, we defer the details on how
this resumption occurs). AfterVerifyCert has
performed the last of its work, control returns to
FiberStart. FiberStart stuffs the return value
into VerifyCertCFA2’s continuation, schedules it to
execute, and switches back to theMainFiber a final
time. At this point,verifyFiber is destroyed. When
VerifyCertCFA2 executes, it “returns” (with a func-
tion call, as code with manual stack management nor-
mally does) the return value fromVerifyCert back
to the adaptor-caller’s continuation,FetchCert3.

4.2 Automatic calling manual

We now discuss how the code interactions occur when a
function with automatic stack management calls a func-
tion that manually manages its stack. In this case, the
former function needs to block for I/O, but the latter
function simply schedules the I/O and returns. To recon-
cile these requirements, we supply an adaptor that calls
the manual-stack-management code with a special con-
tinuation and relinquishes control to theMainFiber,

VerifyCert

verifyFiberMainFiber

tim
e

GetCertData1

VerifyCertCFA GetCAInfoFCA

GetCAInfo2

FiberContinue GetCAInfoFCA

FiberContinue

GetCAInfo

GetCAInfoFCA

VerifyCertCFA
Start

SwitchTo
(MainFiber)

SwitchTo
(verifyFiber)

verifyFiber
Done

VerifyCert

FiberStart

FiberStart

CACheckCert

VerifyCert

GetCertData2

FetchCert2

FetchCert1

FetchCert3

VerifyCertCFA2

fiber switch

function call

function return

I/O message

Manual stack mgmt code

Auto stack mgmt code

scheduler

adaptor code

Compute-only function

Figure 3: VerifyCert, code with automatic stack
management, callsGetCAInfo, a function written with
manual stack management.



thereby causing the adaptor’s caller to remain blocked.
When the I/O completes, the special continuation runs
on theMainFiber and resumes the fiber of the blocked
adaptor, which resumes the original function waiting for
the I/O result.

Figure 3 fills in the missing details of Figure 2 to illus-
trate this interaction. In this example,VerifyCert
blocks on I/O when it callsGetCAInfo, a function
with manual stack management.VerifyCert calls
the adaptorGetCAInfoFCA, which hides the manual-
stack-management nature ofGetCAInfo (FCA means
Fiber-to-Continuation Adaptor):

Boolean GetCAInfoFCA(CAID caid) {
// Executed on verifyFiber
// Get a continuation that switches control
// to this fiber when called on MainFiber
FiberContinuation ∗cont = new

FiberContinuation(FiberContinue,

this);

GetCAInfo(caid, cont);

if (!cont−>shortCircuit) {
// GetCAInfo did block.
SwitchTo(MainFiber);

}
return cont−>returnValue;

}

void FiberContinue(Continuation ∗cont) {
if (!Fiber::OnMainFiber()) {
// Manual stack mgmt code did not perform
// I/O: just mark it as short-circuited
FiberContinuation ∗fcont =

(FiberContinuation) ∗cont;
fcont−>shortCircuit = true;

} else {
// Resumed after I/O: simply switch
// control to the original fiber
Fiber ∗f = (Fiber ∗) cont−>arg1;

f−>Resume();

}
}

The adaptor,GetCAInfoFCA, sets up a special con-
tinuation that will later resumeverifyFiber via the
code inFiberContinue. It then passes this continua-
tion toGetCAInfowhich initiates an I/O operation and
returns immediately to what it believes to be the event-
handling scheduler; of course, in this case, the con-
trol returns toGetCAInfoFCA. Since I/O was sched-
uled and short-circuiting did not occur (discussed later
in this section),GetCAInfoFCA must ensure that con-
trol does not yet return toVerifyCert; to achieve this

effect, it switches control to theMainFiber.

On the MainFiber, the continuation code that
started this burst of fiber execution,VerifyCertCFA,
returns several times to unroll its stack and the sched-
uler runs again. Eventually, the I/O result arrives and the
scheduler executesGetCAInfo2, the remaining work
of GetCAInfo. GetCAInfo2 fills the local hash ta-
ble (recall its implementation from Section 3.1) and “re-
turns” control by calling a continuation. In this case,
it calls the continuation (FiberContinue) that had
been passed toGetCAInfo.

FiberContinue notices thatverifyFiber has
indeed been blocked and switches control back to
that fiber, where the bottom half of the adaptor,
GetCAInfoFCA, extracts the return value and passes it
up to the automatic-stack-management code that called
it (VerifyCert).

The short circuit branch not followed in the example
handles the case whereGetCAInfo returns a result
immediately without waiting for I/O. When it can do
so, it mustnot allow control to pass to the scheduler.
This is necessary so that a caller can optionally deter-
mine whether or not a routine has yielded control and
hence whether or not local state must be revalidated.
Without a short circuit path, this important optimiza-
tion and an associated design pattern that we describe
in Section 5 cannot be achieved. Figure 4 illustrates
the short-circuit sequence: The short-circuit code de-
tects the case whereGetCAInfo runs locally, performs
no I/O, and executes (“returns to”) the current contin-
uation immediately.FiberContinue detects that it
was not executed directly by the scheduler, and sets
the shortCircuit flag to prevent the adaptor from
switching to theMainFiber.

4.3 Discussion

An important observation is that, with adaptors in place,
each style of code is unaware of the other. A function
written with automatic stack management sees what it
expects: deep in its stack, control may transfer away,
and return later with the stack intact. Likewise, the
event-handler scheduler cannot tell that it is calling any-
thing other than just a series of ordinary manual-stack-
management continuations: the adaptors deftly swap the
fiber stacks around while looking like any other continu-
ation. Thus, integrating code in the two styles is straight-
forward: fiber execution looks like a continuation to the
event-driven code, and the continuation scheduler looks



VerifyCert

GetCAInfo

GetCAInfoFCA

FiberContinue

GetCAInfoFCA

VerifyCert

FiberStart

Figure 4: A variation whereGetCAInfo does not need
to perform I/O.

like any other fiber to the procedure-oriented code. This
adaptability enables automatic-stack-management pro-
grammers to work with manual-stack-management pro-
grammers, and to evolve a manual-stack-management
code base with automatic-stack-management functions
andvice versa.

5 Implementation Experience

We have employed cooperative task management in
two systems: Farsite [BDET00], a distributed, se-
cure, serverless file system running over desktops, and
UCoM [SBS02], a wireless phone application for hand-
held devices such as PDAs. The Farsite code is designed
to run as a daemon process servicing file requests on the
Windows NT operating system. The UCoM system, de-
signed for the Windows CE operating system, is a client
application that runs with UI and audio support.

The Farsite system code was initially written in event-
driven style (cooperative task management and manual
stack management) to enable simplified reasoning about
the concurrency conditions of the system. As our code
base grew and evolved over a period of two years, we
came to appreciate the costs of employing manual stack
management and devised the hybrid approach discussed
in the previous section to introduce automatic stack man-
agement code into our system. The UCoM system uses
automatic stack management exclusively.

Farsite uses fibers, the cooperative threading facility
available in Windows NT. With Windows fibers, each
task’s state is represented with a stack, and control is
transferred by simply swapping one stack pointer for

another, as withsetjmp andlongjmp. Since fibers
are unavailable in the Windows CE operating system,
UCoM uses preemptive threads and condition variables
to achieve a cooperative threading facility: each thread
blocks on its condition variable and the scheduler en-
sures that at most one condition variable is signalled at
any moment. When a thread yields, it blocks on its con-
dition variable and signals the scheduler to continue; the
scheduler selects a ready thread and signals its condition
variable.

We implemented the hybrid adaptors in each direction
with a series of mechanically-generated macros. There
are two groups of macros, one for each direction of adap-
tation. Within each group, there are variations to ac-
count for varying numbers of arguments, void or non-
void return type, and whether the function being called
is a static function or an object method; multiple macros
are necessary to generate the corresponding variations in
syntax. Each macro takes as arguments the signature of
the function being adapted. The macros declare and cre-
ate appropriateFiber andContinuation objects.

Our experience with both systems has been positive and
our subjective impression is that we have been able to
preempt many subtle concurrency problems by using co-
operative task management as the basis for our work.
Although the task of wrapping I/O functions (see Sec-
tion 2.1) can be tedious, it can be automated, and we
found that paying an up-front cost to reduce subtle race
conditions was a good investment.

Both systems use extra threads for converting block-
ing I/O operations to non-blocking operations and for
scheduling I/O operations, as is done in many other sys-
tems, such as Flash [PDZ99]. Data partitioning prevents
synchronization problems between the I/O threads and
the state shared by cooperatively-managed tasks.

Cooperative task management avoids the concurrency
problems of locks only if tasks can complete without
having to yield control to any other task. To deal with
tasks that need to perform I/O, we found that we could
often avoid the need for a lock by employing a particular
design pattern. In this pattern, which we call thePin-
ning Pattern, I/O operations are used topin resources in
memory where they can be manipulated without yield-
ing. Note thatpinning does not connote exclusivity: a
pinned resource is held in memory (to avoid the need
to block on I/O to access it), but when other tasks run,
they are free to manipulate the data structures it con-
tains. Functions are structured in two phases: a loop that
repeatedly tries to execute all potentially-yielding oper-
ations until they can all be completed without yielding,



and an atomic block that computes results and writes
them into the shared state.

An important detail of the design pattern is that there
may be dependencies among the potentially-yielding op-
erations. A function may need to compute on the results
of a previously-pinned resource in order to decide which
resource to pin next; for example, in Farsite this occurs
when traversing a path in a directory tree. Thus, in the
fully general version of the design pattern, a check after
each potentially-yielding operation ascertains whether
the operation did indeed yield, and if so, restarts the loop
from the top. Once the entire loop has executed with-
out interruption, we know that the set of resources we
have pinned in memory are related in the way we ex-
pect, because the final pass through the loop executed
atomically.

6 Related Work

Birrell offers a good overview of the conventional
thread-ed programming model with preemptive task
management [Bir89]. Of his reasons for using concur-
rency (p. 2), cooperative task management can help with
all but exploiting multiprocessors, a shortcoming we
mention in Section 2.1. Birrell advises that “you must
be fastidious about associating each piece of data with
one (and only one) mutex” (p. 28); consider coopera-
tive task management as the limiting case of that advice.
There is the complexity that whenever a task yields it ef-
fectively releases the global mutex, and must reestablish
its invariants when it resumes. But even under preemp-
tive task management, Birrell comments that “you might
want to unlock the mutex before calling down to a lower
level abstraction that will block or execute for a long
time” (p. 12); hence this complexity is not introduced by
the choice of cooperative task management.

Ousterhout points out the pitfalls of preemptive task
management, such as subtle race conditions and dead-
locks [Ous96]. We argue that his “threaded” model con-
flates preemptive task management with automatic stack
management, and his “event-driven” model conflates co-
operative task management with manual stack manage-
ment. We wish to convince designers that the choices
are orthogonal, that Ousterhout’s arguments are really
about the task management decision, and that program-
mers should exploit the ease-of-reasoning benefits of co-
operative task management while exploiting the features
of their programming language by using automatic stack
management.

Other system designers have advocated non-threaded
programming models because they observe that for
a certain class of high-performance systems, such
as file servers and web servers, substantial per-
formance improvements can be obtained by re-
ducing context switching and carefully implement-
ing application-specific cache-conscious task schedul-
ing [HS99, PDZ99, BDM98, MY98]. These factors
become especially pronounced during high load situa-
tions, when the number of threads may become so large
that the system starts to thrash while trying to give each
thread its fair share of the system’s resources. We ar-
gue that the context-switching overhead for user-level
threads (fibers) is in fact quite low; we measured the cost
of switching in our fiber package to be less than ten times
the cost of a procedure call. Furthermore, application-
specific cache-conscious task scheduling should be just
as achievable with cooperative task management and au-
tomatic stack management: the scheduler is given pre-
cisely the same opportunities to schedule as in event-
driven code; the only difference is whether stack state is
kept on stacks or in chains of continuations on the heap.

For the classes of applications we reference here, pro-
cessing is often partitioned into stages [WCB01, LP01].
The partitioning of system state into disjoint stages is a
form of data partitioning, which addresses concurrency
at the coarse grain. Within each stage, the designer
of such a system must still choose a form of conflict
management, task management, and stack management.
Careful construction of stages avoids I/O calls within a
stage; in that case, cooperative task management within
the stage degenerates to serial task management, and no
distinction arises in stack management. In practice, at
the inter-stage level, a single task strings through mul-
tiple stages, and reads as in manual stack management.
Typically, the stages are monotonic: once a task leaves
a stage, it never returns. This at least avoids the ripping
associated with looping control structures.

Lauer and Needham show two programming models
to be equivalent up to syntactic substitution [LN79].
We describe their models in terms of our axes: their
procedure-oriented system has preemptive task manage-
ment, automatic stack management (“a process typically
has only one goal or task”), monitors for conflict man-
agement, and one big data partition protected by those
monitors. Their message-oriented system has manual
stack management with task state passed around in mes-
sages, and no conflicts to manage due to many partitions
of the state so that it is effectively never concurrently
shared.

Notably, of the message-oriented system, they say “nei-



ther procedural interfaces nor global naming schemes
are very useful,” that is, the manual stack management
undermines structural features of the language. Neither
model uses cooperative task management as we regard
it, since both models require identically-detailed reason-
ing about conflict management. Thus their comparison
is decidedly not between the models we associate with
multithreaded andevent-driven programming.

7 Conclusions

In this paper we clarify an ongoing debate about “event-
driven” versus “threaded” programming models by iden-
tifying two separable concerns: task management and
stack management. Thus separated, the paper assumes
cooperative task management and focuses on issues
of stack management in that context. Whereas the
choice of task management strategy is fundamental, the
choice of stack management can be left to individual
taste. Unfortunately, the term “event-driven program-
ming” conflates both cooperative task management and
manual stack management. This prevents many peo-
ple from considering using a readable automatic-stack-
management coding style in conjunction with coopera-
tive task management.

Software evolution is an important factor affecting the
choice of task management strategy. When concurrency
assumptions evolve it may be necessary to make global,
abstraction-breaking changes to an application’s imple-
mentation. Evolving code with manual stack manage-
ment imposes the cumbersome code restructuring bur-
den of stack ripping; evolving either style of code in-
volves revisiting the invariant logic due to changing con-
currency assumptions and sometimes making localized
changes to functions in order to revalidate local state.

Finally, a hybrid model adapts between code with au-
tomatic and with manual stack management, enabling
cooperation among disparate programmers and software
evolution of disparate code bases.

8 Acknowledgements

We would like to thank Jim Larus for discussing this
topic with us at length. Thanks also to the anonymous
reviewers for their thoughtful comments.

References

[BDET00] William Bolosky, John Douceur, David Ely,
and Marvin Theimer. Feasibility of a server-
less distributed file system deployed on an
existing set of desktop pcs. InProceed-
ings of the ACM Sigmetrics 2000 Confer-
ence, pages 34–43, June 2000.

[BDM98] Gaurav Banga, Peter Druschel, and Jef-
frey C. Mogul. Better operating system fea-
tures for faster network servers. InPro-
ceedings of the Workshop on Internet Server
Performance (held in conjunction with ACM
SIGMETRICS ’98), Madison, WI, 1998.

[Bir89] Andrew D. Birrell. An introduction to
programming with threads. Technical Re-
port 35, Digital Systems Research Center,
January 1989.

[FHK84] Daniel P. Friedman, Christopher T. Haynes,
and Eugene E. Kohlbecker. Programming
with continuations. In P. Pepper, editor,
Program Transformation and Programming
Environments, pages 263–274. Springer-
Verlag, 1984.

[HFW84] C. T. Haynes, D. P. Friedman, and M. Wand.
Continuations and coroutines. InACM Sym-
posium on LISP and Functional Program-
ming, pages 293–298, Austin, TX, August
1984.

[HS99] J. Hu and D. Schmidt. JAWS: A Frame-
work for High Performance Web Servers. In
Domain-Specific Application Frameworks:
Frameworks Experience by Industry. Wiley
& Sons, 1999.

[LN79] H. C. Lauer and R. M. Needham. On the du-
ality of operating system structures.Oper-
ating Systems Review, 13(2):3–19, January
1979.

[LP01] J. Larus and M. Parkes. Using Cohort
Scheduling to Enhance Server Performance.
Technical Report MSR-TR-2001-39, Mi-
crosoft Research, March 2001.

[MY98] S. Mishra and R. Yang. Thread-based
vs event-based implementation of a group
communication service. InProceedings of
the 12th International Parallel Processing
Symposium, Orlando, FL, 1998.



[Ous96] John Ousterhout. Why threads are a bad idea
(for most purposes). InUSENIX Technical
Conference (Invited Talk), Austin, TX, Jan-
uary 1996.

[PDZ99] V. S. Pai, P. Druschel, and W. Zwaenepoel.
Flash: An efficient and portable web server.
In USENIX Technical Conference, Mon-
terey, CA, June 1999.

[SBS02] E. Shih, P. Bahl, and M. Sinclair. Wake
on Wireless: An event driven power saving
strategy for battery operated devices. Tech-
nical Report MSR-TR-2002-40, Microsoft
Research, April 2002.

[WCB01] Matt Welsh, David Culler, and Eric Brewer.
Seda: An architecture for well-conditioned,
scalable internet services. InProceedings
of the Eighteenth Symposium on Operat-
ing Systems Principles (SOSP-18), Banff,
Canada, October 2001.


