
Deep Learning Similarities from Different
Representations of Source Code

Michele Tufano
College of William and Mary
Williamsburg, Virginia, USA

mtufano@cs.wm.edu

Cody Watson
College of William and Mary
Williamsburg, Virginia, USA

cawatson@cs.wm.edu

Gabriele Bavota
Università della Svizzera italiana (USI)

Lugano, Switzerland
gabriele.bavota@usi.ch

Massimiliano Di Penta
University of Sannio
Benevento, Italy

dipenta@unisannio.it

Martin White
College of William and Mary
Williamsburg, Virginia, USA

mgwhite@cs.wm.edu

Denys Poshyvanyk
College of William and Mary
Williamsburg, Virginia, USA

denys@cs.wm.edu

ABSTRACT
Assessing the similarity between code components plays a pivotal
role in a number of Software Engineering (SE) tasks, such as clone
detection, impact analysis, refactoring, etc. Code similarity is gen-
erally measured by relying on manually defined or hand-crafted
features, e.g., by analyzing the overlap among identifiers or com-
paring the Abstract Syntax Trees of two code components. These
features represent a best guess at what SE researchers can utilize to
exploit and reliably assess code similarity for a given task. Recent
work has shown, when using a stream of identifiers to represent
the code, that Deep Learning (DL) can effectively replace manual
feature engineering for the task of clone detection. However, source
code can be represented at different levels of abstraction: identi-
fiers, Abstract Syntax Trees, Control Flow Graphs, and Bytecode.
We conjecture that each code representation can provide a different,
yet orthogonal view of the same code fragment, thus, enabling a
more reliable detection of similarities in code. In this paper, we
demonstrate how SE tasks can benefit from a DL-based approach,
which can automatically learn code similarities from different rep-
resentations.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Software
and its engineering → Reusability;

KEYWORDS
deep learning, code similarities, neural networks

ACM Reference Format:
Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta,
Martin White, and Denys Poshyvanyk. 2018. Deep Learning Similarities
from Different Representations of Source Code. In MSR ’18: MSR ’18: 15th
International Conference on Mining Software Repositories , May 28–29, 2018,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196431

Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3196398.3196431

1 INTRODUCTION
Source code analysis is a rock-solid foundation of many Software
Engineering (SE) tasks. Source code analysis methods depend on
a number of different code representations (or models), which in-
clude, source code identifiers and comments, Abstract Syntax Trees
(ASTs), Control-Flow Graphs (CFGs), data flow, bytecode, etc. These
distinct representations of code provide different levels of abstrac-
tion, which create explicit and implicit relationships among source
code elements.

The importance of a specific code representation is dependent
upon the SE task. For example, identifiers and comments encode
domain semantics and developers’ design rationale, making them
useful in the context of feature location [19, 20, 22, 58] and software
(re)modularization [11–13]. Additionally, programs that have a well-
defined syntax can be represented by ASTs, which, in turn, can be
successfully used to capture programming patterns and similarities
[6, 52, 54]. Since there are numerous SE tasks, such as static and
dynamic program analysis, change history analysis, automated test-
ing, verification, program transformation, clone detection etc., it is
important to rely on different available code representations so that
different source code relationships can be efficiently identified. Yet,
many existing solutions to these SE tasks are based on “hardcoded”
algorithms rooted in the underlying properties of the specific code
representation they use, which in order to work properly, also need
to be adequately configured [56, 57, 71].

While SE researchers regularly use machine learning (ML) or
Information Retrieval (IR) techniques to solve important SE tasks,
many of these techniques rely on manually defined or hand-crafted
features. These features then allow for ML-based SE applications.
For example, distinct identifiers are typically used as features in con-
cept location approaches [21], APIs (a reserved subset of identifiers)
are used as features in approaches for identifying similar applica-
tions [47, 69], and AST pattern similarities are used to enable clone
detection and refactoring [26, 33, 50]. However, it should be noted
that all these features are selected via “an art of intuitive feature en-
gineering” by SE researchers or domain (task) experts. While there
are many successful and widely adopted ML-based approaches
that use different code representations to support SE tasks, their
performance varies depending on the underlying datasets [56, 57].

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

Improvements in both computational power and the amount of
memory in modern computer architectures have enabled the devel-
opment of new approaches to canonical ML-based tasks. The rise of
deep learning (DL) has ushered in tremendous advances in different
fields [43, 48]. These new approaches use representation learning
[16] — a significant departure from traditional approaches — to
automatically extract useful information from the disproportionate
amount of unlabeled software data. The value in circumventing
conventional feature engineering when designing ML-based ap-
proaches to SE tasks is two-fold. Firstly, learning transformations
of the data drastically reduces the cost of modeling code, since
software (and various code representations) store a lot of data to
improve the effectiveness of learning. Secondly, performance is
increased because generally, learning algorithms are more efficient
than humans at discovering correlations in high dimensional spaces.

While the number of applications of DL to SE tasks is growing
[4, 5, 15, 25, 29–32, 41, 42, 42, 51, 53, 70, 73], one recent example
by White et al. [74] shows that DL can effectively replace manual
feature engineering for the task of clone detection. Existing clone
detection approaches leverage algorithms working on manually
specified sets of features, and include, for example, text-based [23,
34–36, 59] string-based [7–9], token-based [37, 44, 60, 61], AST-
based [14, 33, 39, 75], graph-based [18, 26, 38, 40, 45], or lexicon-
based [46] approaches.

In this paper, we posit a fundamental question of whether an
underlying code representation can be successfully used to auto-
matically learn code similarities. In our approach, we employ the
representations of identifiers, ASTs, CFGs, and Bytecode and use DL
algorithms to automatically learn necessary features, which in turn,
can be used to support SE tasks. Moreover, we also study whether
combinations of the models trained on diverse code representations
can yield more accurate and robust support for a SE task at hand.
Our conjecture is that each code representation can provide an
orthogonal view of the same code fragment, thus allowing a more
reliable detection of similar fragments. Being able to learn similari-
ties from diverse code representations can also be helpful in many
practical settings, where some representations are simply not avail-
able or when some of the representations are compromised (e.g.,
code obfuscation would prevent using identifier-based approaches).

While we conduct our experiments on a specific SE task — clone
detection — our goal is not to develop an ultimate clone-detection
approach, but rather show that effective DL-based solutions can be
assembled from diverse representations of source code. Specifically,
the noteworthy contributions of this work are as follows:
(1) Deep Learning from different code representations. We demon-

strate that it is indeed possible to automatically learn code simi-
larities from different representations, such as streams of identi-
fiers, AST nodes, bytecode mnemonic opcodes, and CFGs. We
evaluate how these representations can be used in a DL-based
approach for clone detection.We argue that our results should be
useful for any SE task that relies on analyzing code similarities.

(2) Assembling a combined model.We demonstrate that combined
models can be automatically assembled to consider multiple rep-
resentations for SE tasks (in our example, code clone detection).
In fact, we show that the combined model achieves overall better
results as compared to stand-alone code representations.

(3) Inter-project similarities. We also demonstrate that the proposed
models can be effectively used to compute similarities, not only
in the context of a single project, but also to analyze code similar-
ities among different (diverse) software projects (e.g., detecting
clones or libraries across multiple projects).

(4) Model reusability and transfer learning. We demonstrate that
we can learn multi-representation models on available software
systems and then effectively apply these models for detecting
code similarities on previously unseen systems.

(5) Open science.We release all the data used in our studies [2]. In
particular, we include all the source code, datasets, inputs/out-
puts, logs, settings, analysis results, and manually validated data.

2 DEEP LEARNING IN SE
To the best of our knowledge, our work is the very first attempt
to show that it is possible to automatically learn (via DL) simul-
taneously from different source code representations. There has
been some preliminary work on using DL to replace manual feature
engineering for the task of clone detection [74]. However, we are
not aware of any other learning-based approach that operates on
code representations other than identifiers and comments. In this
section, we review some of the recent and representative papers
that rely on DL in the context of SE tasks.

White et al. [74] used DL and, in particular, representation learn-
ing via recursive autoencoder, for the purpose of code clone de-
tection. They represent each source code fragment as a stream of
identifiers and literal types (from the AST leaf nodes).

Lam et al. [41] focuses on bug localization using both DL and
IR techniques. Rather than manually defining features, the IR tech-
nique revised Vector Space Models (rVSM) collects these features
which capture textual similarity. After that, a deep neural network
learns how to relate terms in bug reports to tokens within source
code.

Allamanis et al. [4] proposed an approach for suggesting mean-
ingful class and method names. To accomplish this, identifiers in
code are assigned a continuous vector, which considers the local
context as well as long range dependencies by a neural log-bilinear
context model. Then, identifiers which have similar vectors or em-
beddings will also appear to have similar contexts. However, in or-
der to capture the global context of tokens, features are engineered,
which requires configuration and manipulation when integrated
with the model. To build upon their previous work, Allamanis et
al. [5] used an Attentional Neural Network (ANN) combined with
convolution on the input tokens for assigning descriptive method
names. Their approach allows for automatic learning of translation-
invariant features.

Gu et al. [29] used DL, to avoid feature engineering, in order
to learn API usage scenarios given a natural language query. The
approach encodes a query or annotation of the code into a fixed-
length context vector. This vector helps to decode an API sequence
which should correlate with the query. Therefore, once the model
is trained, a natural language query will result in the correct API
usage scenario for the context given in the query.

Wang et al. [70] used a Deep Belief Network (DBN) to learn se-
mantic features from token vectors extracted from ASTs to perform
defect prediction. Similar to our work, they learn a code represen-
tation and apply it to a SE task.

Deep Learning Similarities from Different
Representations of Source Code MSR ’18, May 28–29, 2018, Gothenburg, Sweden

As in our case, features are learned automatically from the DL
approach. The input to the DBN begins with source code, which is
parsed, and a token vector is created. Then, the DBN produces a
feature vector which can be analyzed for fault prediction.

All the aforementioned works are instances of DL approaches
on source code applied to different SE tasks. Although our work is
similar in that we use DL, our goal is not to develop an approach
for a specific SE task. Rather, our intent is to empirically demon-
strate that DL applied to SE can benefit from considering multiple
representations of code. As the previous work has shown, DL can
be applied to different representations and yield meaningful results
to many SE tasks. However, we show that there is value in every
code representation, and therefore all representations should be
considered in order to identify all possible features from the data.

3 PROPOSED APPROACH
Our approach can be summarized as follows. First, code fragments
are selected at the different granularities we wish to analyze (e.g.,
classes, methods). Next, for each selected fragment, we extract its
four different representations (i.e., identifiers, AST, bytecode, &
CFG). Code fragments are embedded as continuous valued vectors,
which are learned for each representation. In order to detect similar
code fragments, distances are computed among the embeddings.

3.1 Code Fragments Selection
Given a compiled code base, formed by source code files and com-
piled classes, code fragments are selected at the desired level of
granularity: classes or methods. We start by listing all the .java
files in the code base. For each Java file, we build the AST rooted
at the CompilationUnit of the file. To do this, we rely on the
Eclipse JDT APIs. We use the Visitor design pattern to traverse
the AST and select all the classes and methods corresponding to
TypeDeclaration and MethodDeclaration nodes. We discard in-
terfaces and abstract classes since their methods do not have a
bytecode and CFG representation. While it is possible to extract
the other two representations (identifiers and ASTs), we chose to
discard them so that we only learned similarities from code which
exhibits all four representations. In addition, we filter out frag-
ments (i.e., classes or methods) smaller than 10 statements. Similar
thresholds have been used in previous work for minimal clone size
[72]. Furthermore, smaller repetitive snippets are defined as micro-
clones. Syntactic repetitiveness below this threshold has simply
been considered uninteresting because it lacks sufficient content
[10]. For each code fragment ci ∈ {Classes ∪Methods} we extract
its AST node ni and its fully qualified name (signature) si . Identifier
and AST representations are extracted from an AST node ni , while
the bytecode and CFG representations are queried using the fully
qualified name si .

3.2 Code Representation Extraction
We use the following representations of the code: (i) identifiers; (ii)
ASTs; (iii) bytecode; and (iv) CFGs. Extraction and normalization are
two prepossessing steps we perform for each representation. In this
section we describe these two steps for each selected representation.

3.2.1 Identifiers. In this representation a code fragment is ex-
pressed as a stream (sentence) of identifiers and constants from the
code. A similar representation is used by White et al. [74].
Extraction. Given the code fragment ci and its corresponding AST
node ni , we consider the sub-tree rooted at the node ni . To extract
the representation, we select the terminal nodes (leaves) of the
sub-tree and print their values. The leaf nodes mostly correspond
to the identifiers and constants used in the code.
Normalization. Given the stream of printed leaf nodes, we nor-
malize the representation by replacing the constant values with
their type (< int >, < float >, < char >, < string >).

3.2.2 AST. In this representation, a code fragment is expressed
as a stream (sentence) of the node types that compose its AST.
Extraction. Similarly to what was described above, the sub-tree
rooted at the node ni is selected for a given code fragment ci . Next,
we perform a pre-order visit of the sub-tree printing, for each node
encountered, its node type.
Normalization.We remove two AST node types: SimpleName and
QualifiedName. These nodes refer to identifiers in the code, and
were removed because: (i) they represent low-level nodes, which
are less informative than high-level program construct nodes in the
AST (e.g., VariableDeclarationFragment, MethodInvocation);
(ii) they account for ∼46% of the AST nodes leading to a very large
yet repetitive corpus; (iii) we target an AST representation able
to capture orthogonal information as compared to the identifiers
representation. The latter is formed for ∼77% of terms belonging to
SimpleName/QualifiedName nodes.

3.2.3 CFG. In this representation a code is expressed as its CFG.
Extraction. To extract the CFG representation, we rely on Soot
[3], a popular framework used by researchers and practitioners
for Java code analysis. First, we extract the fully qualified name of
the class from the signature si of the code fragment ci . We use it
to load the compiled class in Soot. For each method in the class,
the CFG G = (V ,E) is extracted, where V is the set of vertices (i.e.,
statements in the method) and E the set of directed edges (i.e., the
control flow between statements). In particular, the node represents
the numerical ID of the statement as it appears in the method. Since
the CFG is an intra-procedural representation, the method-level
representation is a graph, while the class-level representation is a
forest of graphs (CFGs of its methods).
Normalization.The CFG represents code fragments at a high-level
of abstraction, therefore, no normalization is performed.

3.2.4 Bytecode. In this representation, a code fragment is ex-
pressed as a stream (sentence) of bytecode mnemonic opcodes (e.g.,
iload, invokevirtual) forming the compiled code.
Extraction. Let ci be the code fragment and si its signature. If
ci is a method, we extract the fully qualified name of its class
from si , otherwise si already represents the name of the class.
Then, the bytecode representation is extracted using the command
javap − c − private < classname > passing the fully qualified
name of the compiled class. The output is parsed, allowing for the
extraction of the class- or method-level representation.
Normalization. In the normalization step we remove the refer-
ences to constants, keeping only their opcodes. For example, the

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

x1 x2 x3 x4 x5 x6 x7

z z z z z z

εℓ εr

w1 w2 w3 w4 w5 w6 w7

x̂5 x̂6

δℓ δr

Figure 1: First iteration to encode a stream of terms

instruction putfield#2 is normalized as putfield. We also sepa-
rate the opcodes stream of each method with the special tag < M >.

3.3 Embedding Learning
For each code fragment c ∈ {Classes ∪ Methods}, we extract its
representations: rident , rAST , rbyte , and rCFG . We learn a single
embedding (i.e., vector) for each representation, obtaining: eident ,
eAST , ebyte , and eCFG . An embedding represents a code fragment
in a multidimensional space where similarities among code frag-
ments can be computed as distances.

We use two strategies to learn embeddings for the aforemen-
tioned representations. For identifier, AST and bytecode represen-
tations, we use a DL-based approach that relies on recursive au-
toencoders [63, 64]. For the CFG representation we use a Graph
Embedding technique [55].

3.3.1 DL Strategy. Let C be the set of all code fragments and R
the corpus comprising the representations of the code fragments in
a representation (rident , rAST , rbyte). For each code fragment c ∈ C ,
its representation r ∈ R is a sentence of the corpus R. The sentence
r is a stream of words r = w1,w2, . . . ,w j , where wi is a term of
the particular representation (i.e., an identifier, AST node type or
bytecode opcode). The corpus is associated with a vocabulary V
containing the unique terms in the corpus.

To learn an embedding for a sentence r , we perform two steps. In
the first stage, we learn an embedding for each termwi (i.e., word
embeddings), which comprises the sentence. In the second stage, we
recursively combine the word embeddings to learn an encoding for
the entire sentence r . We now describe these two stages in detail.

In the first stage we train a Recurrent Neural Network (RtNN)
on the corpus R, where the size of the hidden units is set to n,
which corresponds to the embedding size [49]. The model, trained
on the corpus R, generates a continuous valued vector, called an
embedding, for each wordwi ∈ V .

The second stage involves training a Recursive Autoencoder [63,
64] to encode arbitrarily long streams of embeddings. Fig. 1 shows
the recursive learning procedure. Consider the sentence r ∈ R
formed by seven terms {w1, . . . ,w7}. The first step maps the stream
of terms to a stream of n−dimensional embeddings {x1, . . . ,x7}.
In the example in Fig. 1, there are six pairs of adjacent terms (i.e.,
[xi ;xi+1]). Each pair of adjacent terms [xℓ ;xr] is εncoded by per-
forming the following steps: (i) the two n-dimensional embeddings,
corresponding to the two terms, are concatenated in a single 2n-
dimensional vector x = [xℓ ;xr] ∈ R2n ; (ii) x is multiplied by a
matrix ε = [εℓ , εr] ∈ Rn×2n ; (iii) a β ias vector βz ∈ Rn is added
to the result of the multiplication; (iv) the result is passed to a
nonlinear vector f unction f : z = f (εx + βz).

The result z is an n-dimensional embedding that represents an
encoding for the stream of two terms, corresponding to x . In the ex-
ample in Fig. 1, xℓ and xr correspond to the embeddings x5 and x6
respectively, which in turn, correspond to the termsw5 andw6. In
this step the autoencoder performs dimensionality reduction. In or-
der to assess how good z encodes the pair [xℓ ;xr], the autoencoder
tries to reconstruct the original input x from z in the δecoding phase.
z is δecoded by multiplying it by a matrix δ = [δℓ ;δr] ∈ R2n×n
and adding a β ias vector βy ∈ R2n : y = δz + βy .

The output y = [x̂ℓ ; x̂r] ∈ R2n is referred to as the model’s
reconstruction of the input. This model θ = {ε,δ , βz , βy } is called an
autoencoder, and training the model involves measuring the Error
between the original input vector x and the reconstruction y:

E (x ;θ) = | |xℓ − x̂ℓ | |22 + | |xr − x̂r | |22 (1)

The model is trained by minimizing Eq. (1). Training the model
to encode streams with more than two terms requires recursively
applying the autoencoder. The recursion can be performed follow-
ing predefined recursion trees or by using optimization techniques,
such as the greedy procedure defined by Socher et al. [62]. The pro-
cedure works as follows: in the first iteration, each pair of adjacent
terms are encoded (Fig. 1). The pair whose encoding yields the low-
est reconstruction error (Eq. (1)) is the pair selected for encoding at
the current iteration. For example, in Fig. 1, each pair of adjacent
terms are encoded (e.g., dashed lines) and the pair of termsw5 and
w6 is selected to be encoded first. As a result, in the next iteration,
x5 and x6 are replaced by z and the procedure repeats. Upon deriv-
ing an encoding for the entire stream, the backpropagation through
structure algorithm [27] computes partial derivatives of the (global)
error function w.r.t. θ . Then, the error signal is optimized using
standard methods.

3.3.2 Graph Embedding Strategy. To generate the embeddings
for CFG representations we employ the Graph Embedding Tech-
nique HOPE [55] (High-Order Proximity preserved Embedding).
We rely on this technique for two main reasons: (i) it has been
shown to achieve good results in graph reconstruction [28]; (ii)
differently from other techniques (e.g., SDNE), HOPE embeds di-
rected graphs (as needed in the case of Control Flow Graphs).

v2 v3

v5

v4

v1

.13 .25 .16

1

.33 .65 .46

0

Figure 2: HOPE

Given a graph G = (V ,E), HOPE gen-
erates an embedding for each node in
the graph. Next, a single embedding
is generated for the whole graph per-
forming mean pooling on the node’s
embeddings. HOPE works by observ-
ing a critical property of directed
graphs known as asymmetric transi-
tivity. This property helps to preserve
the structure of directed graphs by identifying correlations of di-
rected edges. For example, assume three distinct, directed paths
from v1 to v5 . Each of these paths increases the correlation proba-
bility that there exists a directed edge from v1 to v5 , however, the
lack of directed paths from v5 to v1 decreases the probability of
there being a direct edge from v5 to v1.

HOPE preserves asymmetric transitivity by implementing the
highly correlated metric known as the Katz proximity. This metric
gives weights to the asymmetric transitivity pathways, such that

Deep Learning Similarities from Different
Representations of Source Code MSR ’18, May 28–29, 2018, Gothenburg, Sweden

they can be captured through the embedding vectors. HOPE learns
two embedding vectors; the source vector and the target vector for
each vertex. These vectors are then assigned values based upon
the weights of the edges and their nature (source or target). For
example, consider the graph in Fig. 2. Each of the solid lined edges
are directed edges and the dotted edges capture the asymmetric
transitivity of the graph. The vector created for v1 as the target
vector will be 0 since no paths lead to v1 as their target. However,
the value assigned to v5 target vector will be much higher since
many paths end with v5 as their target. HOPE creates and learns
the embeddings of the graph via Singular Value Decomposition for
each vertex. Then, through mean pooling on the nodes embeddings,
a single embedding for the entire graph can be generated.

3.4 Detecting Similarities
Let E be the set of embeddings learned for all code fragments by
a particular representation (i.e., Eident , EAST , Ebyte , ECFG). We
compute pairwise Euclidean distances between each and every pair
of embeddings ei , ej ∈ E. The set of distances D are normalized
between [0, 1] and a threshold t is applied to the distances in order
to detect similar code fragments.

3.5 Combined Models
Each of the fourmodels we built is trained on a single representation
and identifies a specific set of similar code fragments. Such models
can be combined using Ensemble Learning, an ML paradigm where
multiple learners are trained to solve the same problem. In contrast
to ordinary machine learning approaches, which try to learn one
hypothesis from training data, ensemble methods try to construct
a set of hypotheses and combine them [76].

A simple class of Ensemble Learning techniques are the alge-
braic combiners, where distances computed by several, single-
representation models are combined through an algebraic expres-
sion, such as minimum, maximum, sum, mean, product, median,
etc. For example, a weighted average sum of the distances com-
puted from each representation can be computed. Formally, given
two code fragments a and b, and their n representations, one can
compute a dissimilarity score ds as follows:

ds (a,b) =
1
n

nX

i=1
widi (a,b)

Where di (a,b) is the distance between a and b computed using
the i-th representation, and wi is the weight assigned to the i-th
representation. Weights can be set based on the importance of each
representation and the types of similarities we wish to detect.

Single-representation models can also be treated as experts and
combined using voting-based methods. Each single-representation
model expresses its own vote about the similarity of two code
fragments (i.e., are similar vs are not similar) and these decisions
are combined in a single label. Different strategies can be used
depending on the goal: (i) (weighted) majority of voting; (ii) at least
one vote (max recall); (iii) all votes needed (max precision).

The aforementioned strategies are non-trainable combiners.
However, given a set of instances for which the oracle is avail-
able, ensemble learning techniques can be employed to perform

Table 1: Project Statistics
Project #Classes #Methods Total LOC
ant-1.8.2 1,608 12,641 127,507
antlr-3.4 381 3,863 47,443
argouml-0.34 1,408 8,465 105,806
hadoop-1.1.2 3,968 21,527 319,868
hibernate-4.2.0 7,119 46,054 431,693
jhotdraw-7.5.1 765 6,564 79,672
lucene-4.2.0 4,629 23,769 412,996
maven-3.0.5 837 5,765 65,685
pmd-4.2.5 872 5,490 60,739
tomcat-7.0.2 1,875 15,275 181,023

training. Random Forest is one of the most effective ensemble learn-
ing method for classification, which relies on decision tree learning
and bagging [17]. Bagging (i.e., bootstrap aggregating), is a tech-
nique that generates bootstrapped replicas of the training data. In
particular, different training data subsets are randomly drawn, with
replacement from the entire training dataset. Random Forest, in
addition to classic bagging on the training instances, also selects
a random subset of the features (feature bagging). Each training
data subset is used to train a different deep decision tree. For a new
instance, Random Forest averages the predictions by each decision
tree, effectively reducing the overfitting on the training sets.

In the following, we show the effectiveness of combining simi-
larities learned from different representations training two models
in the context of clone detection (i.e., a model classifying clone
candidates as true or false positives) and classification (i.e., a model
that other than discerning clone candidates in true or false positives,
also classifies the true positives in their own clone type).

Similarities from different code representations can be useful not
only to detect clones, but also to classify them into types. For exam-
ple, clone pairs with very high AST similarity, but low identifiers
similarity are likely to be Type-II clones (possibly parameterized
clones, where all the identifiers have been systematically renamed).

4 EXPERIMENTAL DESIGN
The goal of this study is to investigate whether source code similar-
ity can be learned from different kinds of program representations,
with the purpose of understanding whether one can combine dif-
ferent representations to obtain better results, or use alternative
representations when some are not available. More specifically, the
study aims at answering the following research questions (RQ):
RQ1 How effective are different representations in detecting sim-

ilar code fragments?
RQ2 What is the complementarity of different representations?
RQ3 How effective are combined multi-representation models?
RQ4 Are DL-based models applicable for detecting clones among

different projects?
RQ5 Can trained DL-based models be reused on different, previ-

ously unseen projects?

4.1 Datasets Selection
Wemake use of two datasets: (i) Projects: a dataset of 10 Java projects;
(ii) Libraries: a dataset comprising 46 Java libraries.

4.1.1 Projects. This dataset comprising 10 compiled Java
projects extracted from the Qualitas.class Corpus [68]. We rely on

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

this dataset because it is publicly available and the projects have
already been compiled. This (i) avoids any potential problem/in-
consistency in compiling projects, and (ii) ensures reproducibility.
The selection of 10 projects aimed at obtaining a diverse dataset, in
terms of application domain and code size. Table 1 reports statistics
of the dataset that we use in all our research questions but RQ4.

4.1.2 Libraries. This dataset comprising 46 different Apache
commons libraries [1]. We selected all the Apache commons li-
braries, for which we were able to identify both binaries and source
code of the latest available release. We downloaded the compressed
files for binaries and source code. Within the binaries, we located
the jar file, which represents the library, and extracted the .class
files. The compressed source code files were simply decompressed.
The list of considered libraries is available in our replication pack-
age. We use this dataset in RQ4 for inter-project clone detection.

4.2 Experimental Procedure and Data Analysis
We discuss the experimental procedure and data analysis we fol-
lowed to answer each research question.

4.2.1 RQ1: How effective are different representations in detecting
similar code fragments? Given the projects dataset P = {P1, . . . , P10}
and the four code representations R = {R1,R2,R3,R4}, we ex-
tract for each code artifact c ∈ {Classes ∪ Methods} its four rep-
resentations r1, r2, r3, r4. Then, for each project Pi we train the
representation-specific model on the code representations at class-
level. With the trained models, we subsequently generate the em-
beddings for both classes and methods in the project. Therefore,
the code artifact represented as r1, r2, r3, r4 will be embedded as
e1, e2, e3, e4, where ei is the embedding of the i-th representation.
We set the embedding size of Identifiers, AST and Bytecode to 300,
and the CFG embedding size to 4. The latter is significantly smaller
than the former because (i) CFGs are abstract representations that
do not require large embeddings; (ii) in order to converge towards
an embedding representation, HOPE (and internally SVD) needs the
embedding size to be smaller than the minimum number of nodes
or edges in the graph. Pairwise Euclidean distances are computed
for each pair of classes and methods of each system Pi . The smaller
the distance, the more similar the two code artifacts.

In the next step, for each code representation Ri , we query the
clone candidates from the dataset P at class and method level. To
query the clone candidates, we apply a threshold on the distances to
discern what qualifies as clones. We use the same two thresholds at
class- andmethod-level (Tclass = 1.00e−08 andTmethods = 1.00e−
16, similar to [74]) for each representation. While, ideally, these
thresholds should be tuned for each project and representation, we
chose the same thresholds to facilitate the comparison among the
four representations. Once we obtain the two sets of candidates
CandClassesi and CandMethodsi for each representation Ri , we
perform the union of the candidate sets of the same granularity
among all the representations: CandClasses = S4

i=1CandClassesi
(the same applies for CandMethods).

For each candidate c ∈ CandClasses (or CandMethods) we gen-
erate a tuple tc = {b1,b2,b3,b4}wherebi = True iff c ∈ CandClassi
(i.e., if c is identified as a clone by Ri) and bi = False otherwise. tc
can assume 24 = 16 possible values (i.e., tc = {FFFF , FFFT , . . . ,

TTTT }). However, the combination FFFF does not appear in our
dataset since CandClasses and CandMethods are sets containing
the union of the clones identified by all representations, thus en-
suring the presence of at least one True value. Therefore, there are
15 unique classes of values for tc . We use these sets to partition
the candidates in CandClasses and CandMethods . Next, from each
candidate clones partition, we randomly draw a statistically sig-
nificant sample with 95% confidence level and ±15% confidence
interval. The rationale is that we want to evaluate candidates be-
longing to different levels of agreement among the representations.
Three authors independently evaluated the clone candidate sam-
ples. The evaluators decided whether the candidates were true or
false positives and, in the former case, the clone type. To support
consistent evaluations, we adapted the taxonomy of editing sce-
narios designed by Svajlenko et al. [67] to model clone creation
and to be general enough to apply to any granularity level. Given
the manually labeled dataset from each of the three evaluators, we
computed the two-judges agreement to obtain the final dataset (e.g.,
a candidate clone was marked as a true positive if at least two of
the three evaluators classified it as such). In order to statistically
assess the evaluators’ agreement, we compute the Fleiss’ kappa
[24]. In particular, we compute the agreement for True and False
positives as well as the agreement in terms of Clone Types. On the
final dataset, precision and recall were computed for each candidate
clones partition (e.g.,TFFF , FTFF , etc.) and, overall, for each repre-
sentation in isolation. We quantitatively and qualitatively discuss
TP/FP pairs for each representation, as well as the distribution of
clone types.

4.2.2 RQ2: What is the complementarity of different represen-
tations? To answer RQ2 we further analyze the data obtained in
RQ1 to investigate the complementarity of the four representations.
First, we compute the intersection and the difference of the true
positive sets identified with each representation. Precisely, the inter-
section and difference of two representations Ri and Rj are defined
as follows:

Ri ∩ Rj =
|TPRi ∩TPRj |
|TPRi ∪TPRj |

% and Ri \ Rj =
|TPRi \TPRj |
|TPRi ∪TPRj |

%

whereTPRi represents true positive candidates identified by Ri . We
compute the percentage of candidates exclusively identified by a
single representation and missed by all the others:

EXC (Ri) =
|TPRi \

S
j,i TPRj |

|Sj TPRj |
%

Then, to understand whether these code representations are or-
thogonal to each other, we collect all the distance values of each
representation computed for each pair of code fragments (classes or
methods) in the dataset. Given these distance values, we compute
the Spearman Rank Correlation [65] between each pair of represen-
tations, to investigate the extent to which distances computed from
different representations on the same pairs of artifacts correlate.

4.2.3 RQ3: How effective are combined multi-representation mod-
els? To answer RQ3 we evaluate the effectiveness of two combined
models: CloneDetector, which classifies candidate clones as true/-
false positives, and CloneClassifier ; which provides information
about the type of detected clone (Type-1, 2, 3 or 4). While we are

Deep Learning Similarities from Different
Representations of Source Code MSR ’18, May 28–29, 2018, Gothenburg, Sweden

aware that once a clone pair has been identified it is possible to
determine its clone type by comparing the sequence of tokens, the
purpose of this classification is to show the potential of the pro-
posed approach to provide complete information about a clone pair.
The two models are trained using the manually labeled dataset
obtained in RQ1, with the distances computed by each representa-
tion used as features and the manual label used as target for the
prediction. To train the two models we rely on Random Forest em-
ploying the commonly used 10-fold cross-validation technique to
partition training and test sets. We evaluate the effectiveness of the
two models computing Precision, Recall and F-Measure for each
class to predict (e.g., clone vs not-clone for the CloneDetector).

4.2.4 RQ4: Are DL-based models applicable for detecting clones
among different projects? The goal of RQ4 is two-fold. On the one
hand, we want to instantiate our approach in a realistic usage
scenario in which only one code representation is available. On
the other hand, we also want to show that the DL based model can
be used to identify inter-project clones. Indeed, the latter is one of
the major limitations of the work by White et al. [74], where given
the potentially large vocabulary of identified-based corpora, the
approach was evaluated only to detect intra-project clones.

We instantiate two usage scenarios both relying on the same Li-
brary dataset, and on training performed on the binaries (bytecode
from .class files). In the first scenario, a software maintainer has
to analyze the amount of duplicated code across projects belonging
to their organization. We use the entire Library dataset and filter
for inter-project clone candidates only (i.e., candidates belonging
to different projects). Clone candidates are evaluated by inspecting
the corresponding Java files from the downloaded code.

In the second scenario, a software developer is using a jar file
(i.e., compiled library) in their project. The developer has no infor-
mation about other libraries that could be redistributed with the
jar file, since only compiled code is present. For provenance and/or
licensing issues, the developer needs to address whether the jar file
j imports/shadows any of the libraries in a given dataset L.

To perform this study we select weaver-1.3 as the jar j and the
remaining 45 libraries in the Library dataset as L. We identify similar
classes between j and L. Then, to assess whether the identified
classes have actually been imported in j from library x ∈ L, we
downloaded the j’s source code and analyzed the building files
(weaver-1.3 relies on Maven, thus we investigated the .pom files)
to check whether the library x is imported as a dependency in j.

4.2.5 RQ5: Can trained DL-based models be reused on different,
previously unseen projects? One of the drawbacks of DL-based mod-
els is their long training time. This training time could be amortized
if these models could be reused across different projects belonging
to different domains. The major factor that hinders the reusability
of such models is the possible variability in the vocabulary for new,
unseen projects. For example, a language model and a recursive
autoencoder trained on a given vocabulary would not be able to
provide adequate results on a vocabulary containing terms not pre-
viously seen during the training phase. Such a vocabulary should be
cleaned, either by stripping off the unknown terms, replacing them
with special words (e.g., < unkw >) or using smoothing techniques.
These solutions negatively impact the performance of the models.

Table 2: Performances for different clone partitions

ID Iden AST CFG Byte Precision %
Methods Classes

1 F F F T 5 49
2 F F T F 9 58
3 F F T T 88 73
4 F T F F 79 63
5 F T F T 95 93
6 F T T F 100 100
7 F T T T 100 100
8 T F F F 95 100
9 T F F T 100 100
10 T F T F 100 -
11 T F T T 100 100
12 T T F F 100 100
13 T T F T 100 100
14 T T T F 100 100
15 T T T T 100 100

While in principle, with enough training data and available time,
any of the aforementioned representation-specific models could
be reused on a different dataset (i.e., unseen project), in practice
some representation-specific models are more suitable than others
to be reused. In particular, models trained on representations with
a limited or fixed vocabulary are easier to be reused on different
projects. In our study, AST and Bytecode representations both have
a fixed vocabulary, limited respectively by the number of different
AST node types and bytecode opcodes.

To answer RQ5 we perform a study aimed at evaluating the ef-
fectiveness of reusing AST models. We evaluate the effectiveness,
showing that a reused model identifies a similar list of clone candi-
dates as compared to the original model trained on the set projects.
We select the AST representation which was trained on one of
the largest projects in the dataset, i.e., lucene. We use this AST
model to generate the embeddings for the remaining nine projects
in the dataset. Using the generated embeddings we compute the
distances and query the clone candidates using the same class- and
method-level thresholds used in RQ1. Then, let LR and LO be the
lists of candidates returned from the reused model and from the
original model, we compute the percentage of candidates in LR that
are in LO and vice versa.

We also show that the combined model CloneDetector, trained
on clone candidates belonging to a single project (hibernate), can
be effectively used to detect clones in the remaining nine systems.

5 RESULTS
RQ1: How effective are different representations in detect-
ing similar code fragments? Table 2 shows precision results for
different candidate clone partitions, where each clone partition
includes clones detected only by a given combination of represen-
tations. For example, the first partition FFFT stands for the clone
candidates identified by the Bytecode representation, but not by
the other three representations. Note that for the partition with
ID = 10 (TFTF) no class-level clones have been identified.

Table 2 shows that most of the partitions exhibit a good precision,
with peaks of 100%. The notable exceptions are the partitions with
ID 1 and 2, referring to clone candidates detected only by the Byte-
code and by the CFG representations, respectively. We investigated
such false positives and qualitatively discuss them later.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

Table 3: Performances for different representations
Methods

Representation FP TP Type I Type II Type III Type IV Precision Recall
Iden 1 201 151 15 35 0 100% 52%
AST 11 292 138 132 19 3 96% 75%
CFG 43 178 69 81 19 9 81% 46%
Byte 46 222 89 77 49 7 83% 57%

Classes
Representation FP TP Type I Type II Type III Type IV Precision Recall
Iden 0 120 23 51 46 0 100% 40%
AST 18 188 18 121 44 5 91% 63%
CFG 24 120 7 65 41 7 83% 40%
Byte 34 217 23 115 77 2 86% 73%

Table 3 shows the overall results for method- and class-level
aggregated by representation. The table contains the raw count of
True Positives (TP), False Positives (FP) and clone types identified by
each representation. Estimated precision and recall is also reported
in the last two columns of the tables. Note that the results of the
single representation Ri (e.g., Identifier) reported in Table 3 refer
to aggregated candidates of Table 2 where the representation Ri is
the True (e.g., clone partitions ID 8-15).

The Identifier-based models achieve the best precision, both
when working at method- and class-level. AST-based models pro-
vide the best balance between precision and recall. In terms of
types of clones, Identifier-based models detect the highest number
of Type I, AST-based models identify the highest number of Type II,
Bytecode models identify the highest number of Type III, and CFG
models detect the highest number of Type IV. This suggests that
the four representations are complementary, and will be addressed
further in RQ2.

The data presented in this section is based on the agreement of
three evaluators. The Fleiss’ kappa shows substantial agreement in
terms of TP/FP (93% for methods and 65% for classes) and a mod-
erate/substantial agreement in terms of clone types classification
(75% for methods and 57% for classes). In the following, we discuss
in detail results achieved by models using different representations.

Identifiers. The identifiers-based model achieves the best preci-
sion both in method- and class-level results. However its estimated
recall is respectively 52% and 40%, meaning that the model fails to
detect a significant percentage of clones. While the recall could be
increased by appropriately raising the threshold (i.e., by adopting a
more permissive threshold) at the expense of precision, we found
that this would still not be enough to detect most of the clones de-
tected by other representations. Indeed, we manually investigated
several TP clone candidates identified by other representations and
missed by the Identifier-based model. We found that the distances
computed by the Identifier-based model for such clones were sev-
eral orders of magnitude higher than a reasonable threshold (e.g.,
the ones we use or the ones used by White et al. [74]). Moreover, a
close inspection at the vocabulary of the candidates showed that
they share a small percentage of identifiers, which in turn, makes
them hard to detect with such a representation. Clearly, clone candi-
dates where pervasive renaming or obfuscation has been performed,
would be very difficult to detect with this model.

Bytecode & CFG. From Table 2, we can notice that candidates
detected only by Bytecode or only by CFG models (partitions with
ID 1 and 2) tend to be false positives. The precision for such parti-
tions is 5% and 9% at method-level and 49% and 58% at class-level.

Table 4: Complementarity Metrics
Methods

Intersection % Difference % Exclusive %
R1 ∩ R2 Iden AST CFG Byte R1 \ R2 Iden AST CFG Byte Ri EXC (Ri)

Iden 40 21 36 Iden 17 43 29 Iden 5% (21)
AST 42 44 AST 43 46 38 AST 9% (33)
CFG 36 CFG 36 12 24 CFG 1% (4)
Byte Byte 35 18 39 Byte 1% (2)

Classes
Intersection % Difference % Exclusive %

R1 ∩ R2 Iden AST CFG Byte R1 \ R2 Iden AST CFG Byte Ri EXC (Ri)

Iden 33 14 42 Iden 19 43 8 Iden 3% (8)
AST 31 51 AST 48 49 19 AST 9% (26)
CFG 34 CFG 43 20 14 CFG 7% (21)
Byte Byte 49 30 52 Byte 7% (21)

However, when both Bytecode and CFG models detect clones not
detected by the AST and Identifier-based models (partition with ID
3), they achieve reasonable levels of precision (88% and 73%).

Bytecode and CFG representations have a very high degree of
abstraction. Within the CFG, a statement is simply represented by
a node. Similarly, the bytecode is formed by low level instructions,
which do not retain the lexical information present in the code (e.g.,
a method call is represented as a invokevirtual or invokestatic
opcode). Such a level of abstraction appears to be imprecise for fine
granularities such as methods, where the code fragments might
have similar structure but, at the same time, perform very different
tasks. Better results are achieved at class-level, where false positives
are mainly due to Java Beans, thus classes having a very similar
structure, i.e., class attributes with getters and setters acting on them
performing similar low-level operations (storing/loading a variable,
creating an object, etc.). While these classes are false positives in
terms of code clones, they still represent a successful classification
in terms of learning structural and low-level similarities from the
code. The general lesson learned is that the use bytecode and CFG in
a combined model yield an acceptable precision. Indeed, if bytecode
is available (compiled code) CFGs can be extracted as well.

Table 3 also shows that Bytecode and CFG are the representations
that detect the most Type IV clones in our dataset. Again, this is
likely due to their high level of abstraction in representing the code.

AST. AST-based models seem to have the best overall balance
between precision and recall. These models can identify similar
code fragments, even when their set of identifiers (i.e., vocabulary)
is significantly different and share almost no lexical tokens. This
has been confirmed by our manual investigation of the candidates.
We report several examples of candidates identified exclusively by
the AST model in our online appendix.

RQ2: What is the complementarity of different represen-
tations? Table 4 reports the complementarity metrics between the
different representations. In particular, on the left side of Table 4 we
report the intersection of sets of true positive candidates detected
by the four representations. For example, 40% of the true positives
are detected by both the AST and Identifier models. The relatively
small overlap among the candidate sets, at both method and class
granularity (no more than 51%), suggests that these representations
complement each other.

The middle section of Table 4 shows the difference in the sets
of true positive candidates detected by the four representations.
The reported values show the percentage of true positive clones

Deep Learning Similarities from Different
Representations of Source Code MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 5: Spearman’s rank correlation
ρ (R1,R2) Ident AST CFG Byte
Ident 0.094 0.120 0.069
AST 0.157 0.031
CFG 0.046
Byte

Table 6: Performance of the CloneDetector
Methods Classes

Precision % Recall % F-Measure % Precision % Recall % F-Measure %
Clone 98 97 98 90 93 91
Not Clone 90 91 90 61 52 56
Weighted Avg. 96 96 96 85 86 85

detected by a certain representation and missed by the other. For
example, 48% of the true positive clones identified by the ASTmodel
at class level are not identified by the Identifier-based model.

Finally, the left section of Table 4 shows the percentage and
number of instances (in parenthesis) of true positive candidates
identified by each representation and missed by all the others. From
these results, we note that there are candidates exclusively identified
by a single representation. Note that the number of instances and
percentages are computed only on the manually validated sample.

Table 5 shows the Spearman’s Rank correlation coefficient (ρ) for
the different representations. While all the computed correlations
are statistically significant, their low value suggest that distances
computed with different representations do not correlate and pro-
vide different perspectives about the similarity of code pairs. Indeed,
the "strongest" correlation we observe is between the AST and the
CFG representations, which is still limited to 0.157 (basically, no
correlation).

For example, the classes MessageDestination and ContextEjb
were detected only by the AST representation. They both extend
ResourceBase and offer the same features. These classes share only
a few identifiers (therefore not detected by the Identifier model) and
differ in some if-structures, making them more difficult to detect
by CFG and Bytecode representations. This and other examples are
available in our online appendix [2].

RQ3: How effective are combined multi-representation
models? Table 6 reports the results of the CloneDetector at class-
and method-levels. When identifying clone instances, the model
achieves 90% precision and 93% recall at class, and 98% precision
97% recall at method level. The lower performance at class-level
could be due to the smaller dataset available (i.e., 483 methods vs 362
classes). The overall classification performance (i.e., the weighted
average of the Clone/Not Clone categories) is also lower for the
class-level (∼85% F-Measure for classes, and ∼96% for methods).
We also trained the model by considering a subset of the represen-
tations. In our online appendix, we provide results considering all
possible subsets of features. We found that single-representation
models tend to have worse performance than the combined model,
which was trained on all representations. However, the combi-
nations with Identifiers+AST+{CFG or Bytecode} obtain results
similar to the overall model trained on all representations.

Table 7 shows the results of the CloneClassifier at class- and
method-levels. At class level, the CloneClassifier has overall F-
Measure of 68%, with average precision of 67% and recall of 68%. At
method level, the model obtains an overall F-Measure of 84%, with
an average precision and recall of 84% across the different categories

Table 7: Performance of the CloneClassifier
Methods Classes

Precision % Recall % F-Measure % Precision % Recall % F-Measure %
Not Clone 89 94 91 59 61 60
Type I 89 88 88 86 78 82
Type II 82 84 83 81 85 83
Type III 74 75 75 61 59 60
Type IV 67 18 29 00 00 00
Weighted Avg. 84 84 84 67 68 68

(i.e., Not Clone and the four types of detected clones). As expected,
the category with the lowest precision and recall is the Type IV
clones for both method and class level, while other clone types
achieve a precision ≥ 74% and a recall ≥ 75%. Single-representation
models obtain significantly worse results in the classification task
(with a bigger gap with respect to what observed for the CloneDe-
tector). All the results are available in our online appendix.

RQ4: Are DL-basedmodels applicable for detecting clones
among different projects? We identified several groups of dupli-
cate code across different Apache commons libraries in the dataset.
The largest group of clones is between the libraries lang3-3.6
and text-1.1. The duplicated code involves classes operating
on Strings, for example: StringMatcher, StrBuilderWriter, StrTo-
kenizer, StrSubstitutor etc., for a total of 21 shared similar classes
identified. We also identified another group of similar classes be-
tween text-1.1 (package diff) and collections4-4.1 (package
sequence). In particular, the class StringsComparator in text-1.1
appears to be a Type III clone of the class SequencesComparator
in collections4-4.1. An example of Type II clone within these
two libraries is instead the pair EditScript and ReplacementsFinder
classes. These clones are classified as Type II, since only package
information has been changed.

The libraries math3-3.6.1 and rng-1.0 contain two shared
classes: ISAACRandom and Gamma/InternalGamma. ISACCRan-
dom is a pseudo-random number generator. The classes share many
similarities across the two libraries, however, they differ on a state-
ment and structural level. As an example, both classes implement
a method which sets a seed. In one class, the seed is set by an in-
teger passed through an argument, while the other class sets the
seed by using a combination of the current time and system hash
code of the instance. Gamma and InternalGamma, named respec-
tively to the library they belong to, are clones since parts of the
Gamma class were used to develop InternalGamma. The develop-
ers only took the needed functionalities out of the Gamma class,
stripped it of unnecessary code, and built InternalGamma. There-
fore, many of the methods in Gamma either do not appear or are
significantly smaller in InternalGamma. Despite InternalGamma
being significantly smaller than Gamma, our tool was still able to
detect similarity between the two classes.

The libraries codec-1.9 and net-3.6 share the same implemen-
tation for the class Base64, providing encoding/decoding features.
Note that the classes mentioned in this study do not refer to im-
ported libraries but to actual Java duplicated code, i.e., the source
code files are in both libraries.

We also identified false positives in this study, mainly due to
small inner classes and enumerators. Enumerators have a very
similar bytecode structure even if containing different constants.
They are uninteresting with respect to the goal of this scenario.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

Table 8: Model Reusability

Project Methods % Classes %
LR ∈ LO LO ∈ LR LR ∈ LO LO ∈ LR

ant-1.8.2 99 88 73 31
antlr-3.4 100 100 33 100
argouml-0.34 99 96 97 73
hadoop-1.1.2 99 95 95 74
hibernate-4.2.0 89 82 30 84
jhotdraw-7.5.1 99 98 82 77
maven-3.0.5 97 84 50 100
pmd-4.2.5 97 99 99 99
tomcat-7.0.2 98 97 87 69
Overall 97 93 58 90

Imported and shaded classes.We identified a large list of shared
classes between the library j (weaver-1.3) and the following li-
braries in the dataset L: collections4-4.1 (373 classes), lang3-3.
6 (79), and io-2.5 (13). A closer inspection of the building files of
weaver-1.3 showed that the aforementioned libraries have been
imported and shaded. That is, the dependencies have been included
and relocated in a different package name in order to create a private
copy that weaver-1.3 bundles alongside its own code.

RQ5: Can trained DL-basedmodels be reused on different,
previously unseen projects? Table 8 shows the percentage of
candidates in LR that are also in LO and vice versa, both at method-
and class-level. Generally, the list of candidates identified by the
reused model and the original models tend to be similar. At method-
level, we can see that 97% of the candidates identified by the reused
model were also identified by the original model. Similarly, 93% of
the candidates returned by the original model are identified by the
reused model. At class-level we notice smaller percentages. This
is mostly due to the fact that fewer clones are identified at the
class-level. For example, for antlr-3.4 the reused model identifies
three candidates while the original model only identifies one. For
maven-3.0.5, two candidates are identified by the reused model
and only one by the original model. Still, 90% of the class-level
candidates identified by the original models are detected by the
reused model.

We also show that combined models can be reused on different
systems. The CloneDetector model has been trained only on the data
available for one project (hibernate) and tested on all the instances
of the remaining projects. It achieved 98% precision and 92% recall
at method-level and 99% precision and 95% recall at class-level.

6 THREATS TO VALIDITY
Construct validity. The main threat is related to how we assess
the complementarity of the code representations. We support this
claim by performing different analyses: (i) complementarity metrics;
and (ii) correlation test.
Internal validity. This is related to possible subjectiveness when
evaluating similarities of code fragments. To mitigate such threat,
we employed three evaluators who independently checked the can-
didates. Then, we computed two-judge agreement on the evaluated
candidates. We also qualitatively discuss false positives and border-
line cases. Also, all our evaluations are publicly available [2].
External validity. The results obtained in our study using the
selected datasets might not generalize to other projects. To mitigate
this threat, we applied our approach in different contexts and used
two different datasets; Projects and Libraries. For Projects, which

is a subset of systems from the Qualitas.class corpus, we selected
diverse systems in terms of size and domain, focusing on popular
ones. All the Libraries, including all the Apache commons libraries,
are publicly available, ensuring the replicability of the study. We did
not utilize other clone-focused datasets (e.g., such as BigCloneBench
[66]) since in order to extract some representations (i.e., CFG and
Bytecode) we needed compiled code. Another threat in this category
is related to the fact that we apply our approach on Java code only.
While the representation extraction steps are implemented for Java,
all the subsequent steps are completely language-agnostic because
they rely on a corpus of sentences with arbitrary tokens. As a
matter of fact, Recursive Autoencoders have been used in several
contexts with different inputs such as natural language, source
code, images. We do not compare our approach against code clone
detection techniques since the focus of this paper is to show a
general technique on how to learn similarities from multiple code
representations, rather than building a code clone detector tool.
Last, but not least, we focused on four code representations, but
there may be others that are worthwhile to investigate (e.g., data-
flow or program dependency graphs).

7 CONCLUSION
In this paper, we show that code similarities can be learned from
diverse representations of the code, such as Identifiers, ASTs, CFGs
and bytecode. We evaluated the performance of each representation
for detecting code clones and show that such representations are
orthogonal and complementary to each other.We also show that our
model is reusable, therefore, avoiding to retrain the DL approach
so that it is project specific. This eliminates a large timesink, native
to DL approaches, and broadens the applicability of our approach.

Moreover, combined models relying on multiple representations
can be effective in code clone detection and classification. Addition-
ally, we show that Bytecode and CFG representations can be used
for library provenance and code maintainability. These findings
speak to the vast amount of SE tasks which benefit from analyzing
multiple representations of the code. We instantiated our approach
in different use case scenarios and datasets.

Our approach inherently highlights the benefits of not only
single code representations, but the combinations of these represen-
tations. This work also emphasizes the attributes that different code
representations can accentuate. This allows for a more targeted
choice by SE researchers of a code representation when applying
representation-DL algorithms to a SE tasks. We believe that learn-
ing similarities from different representations of the code, without
manually specifying features, has broad implications in SE tasks,
and is not limited solely to clone detection.

8 ACKNOWLEDGMENT
This work was performed in part using computing facilities at the
College of William and Mary which were provided by contribu-
tions from the National Science Foundation, the Commonwealth of
Virginia Equipment Trust Fund, and the Office of Naval Research.
This research was supported in part via NSF CAREER CCF-1253837
and CCF-1525902 grants. Gabriele Bavota gratefully acknowledges
the financial support of the Swiss National Science Foundation for
the JITRA projects (SNF Project No. 172479).

Deep Learning Similarities from Different
Representations of Source Code MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] 2017. Apache Commons Project Distributions: https://archive.apache.org/dist/

commons/. (2017).
[2] 2017. Online Appendix: https://sites.google.com/view/learningcodesimilarities,

Source Code: https://github.com/micheletufano/AutoenCODE. (2017).
[3] 2017. Soot: https://github.com/Sable/soot. (2017).
[4] M. Allamanis, E. Barr, C. Bird, and C. Sutton. [n. d.]. Suggesting Accurate Method

and Class Names (FSE’15).
[5] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. 2016. A Convolutional

Attention Network for Extreme Summarization of Source Code. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. 2091–2100. http://jmlr.org/proceedings/papers/
v48/allamanis16.html

[6] Miltiadis Allamanis and Charles A. Sutton. 2014. Mining idioms from source code.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014.
472–483.

[7] B. Baker. [n. d.]. On Finding Duplication and Near-duplication in Large Software
Systems (WCRE’95).

[8] B. Baker. 1992. A program for identifying duplicated code. In Computer Science
and Statistics.

[9] B. Baker. 1996. Parameterized Pattern Matching: Algorithms and Applications.
JCSS 52, 1 (1996).

[10] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The Plastic Surgery Hypothesis. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 306–317. https://doi.org/10.1145/2635868.2635898

[11] Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-
vanyk, and Andrea De Lucia. 2013. An Empirical Study on the Developers'
Perception of Software Coupling. In Proceedings of the 2013 International Confer-
ence on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 692–701.
http://dl.acm.org/citation.cfm?id=2486788.2486879

[12] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and An-
drea de Lucia. 2014. Improving Software Modularization via Automated Analysis
of Latent Topics and Dependencies. ACM Trans. Softw. Eng. Methodol. 23, 1,
Article 4 (Feb. 2014), 33 pages. https://doi.org/10.1145/2559935

[13] Gabriele Bavota, Rocco Oliveto, MalcomGethers, Denys Poshyvanyk, and Andrea
De Lucia. 2014. Methodbook: Recommending Move Method Refactorings via
Relational Topic Models. IEEE Trans. Softw. Eng. 40, 7 (July 2014), 671–694.
https://doi.org/10.1109/TSE.2013.60

[14] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. [n. d.]. Clone Detection
Using Abstract Syntax Trees (ICSM’98).

[15] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. 2016.
Testing Advanced Driver Assistance Systems Using Multi-objective Search and
Neural Networks. In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2016). ACM, New York, NY, USA, 63–74.
https://doi.org/10.1145/2970276.2970311

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 8 (Aug. 2013), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50

[17] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[18] K. Chen, P. Liu, and Y. Zhang. [n. d.]. Achieving Accuracy and Scalability
Simultaneously in Detecting Application Clones on Android Markets (ICSE’14).

[19] Bogdan Dit, Latifa Guerrouj, Denys Poshyvanyk, and Giuliano Antoniol. 2011.
Can Better Identifier Splitting Techniques Help Feature Location?. In Proceedings
of the 2011 IEEE 19th International Conference on Program Comprehension (ICPC
’11). IEEE Computer Society, Washington, DC, USA, 11–20. https://doi.org/10.
1109/ICPC.2011.47

[20] Bogdan Dit, Evan Moritz, Mario Linares-Vásquez, Denys Poshyvanyk, and Jane
Cleland-Huang. 2015. Supporting and Accelerating Reproducible Empirical
Research in Software Evolution and Maintenance Using TraceLab Component
Library. Empirical Softw. Engg. 20, 5 (Oct. 2015), 1198–1236. https://doi.org/10.
1007/s10664-014-9339-3

[21] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53–95. https://doi.org/10.1002/smr.567

[22] Bogdan Dit, Meghan Revelle, and Denys Poshyvanyk. 2013. Integrating In-
formation Retrieval, Execution and Link Analysis Algorithms to Improve Fea-
ture Location in Software. Empirical Softw. Engg. 18, 2 (April 2013), 277–309.
https://doi.org/10.1007/s10664-011-9194-4

[23] S. Ducasse, M. Rieger, and S. Demeyer. [n. d.]. A Language Independent Approach
for Detecting Duplicated Code (ICSM’99).

[24] J.L. Fleiss et al. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76, 5 (1971), 378–382.

[25] Wei Fu and Tim Menzies. 2017. Easy over hard: a case study on deep learning. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. 49–60.
[26] M. Gabel, L. Jiang, and Z. Su. [n. d.]. Scalable Detection of Semantic Clones

(ICSE’08).
[27] C. Goller and A. Küchler. [n. d.]. Learning Task-Dependent Distributed Repre-

sentations by Backpropagation Through Structure (ICNN’96).
[28] Palash Goyal and Emilio Ferrara. 2017. Graph Embedding Techniques, Applica-

tions, and Performance: A Survey. CoRR abs/1705.02801 (2017).
[29] X. Gu, H. Zhang, D. Zhang, and S. Kim. [n. d.]. Deep API Learning (FSE’16).
[30] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:

Fixing Common C Language Errors by Deep Learning.. In AAAI. 1345–1351.
[31] Vincent J. Hellendoorn and Premkumar T. Devanbu. 2017. Are deep neural

networks the best choice for modeling source code?. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017. 763–773.

[32] Xuan Huo, Ming Li, and Zhi-Hua Zhou. 2016. Learning Unified Features from
Natural and Programming Languages for Locating Buggy Source Code. In Pro-
ceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16). AAAI Press, 1606–1612. http://dl.acm.org/citation.cfm?id=3060832.
3060845

[33] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. [n. d.]. DECKARD: Scalable and
Accurate Tree-Based Detection of Code Clones (ICSE’07).

[34] J. Johnson. [n. d.]. Identifying Redundancy in Source Code Using Fingerprints
(CASCON’93).

[35] J. Johnson. [n. d.]. Substring Matching for Clone Detection and Change Tracking
(ICSM’94).

[36] J. Johnson. [n. d.]. Visualizing Textual Redundancy in Legacy Source (CAS-
CON’94).

[37] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: A Multilinguistic Token-
based Code Clone Detection System for Large Scale Source Code. TSE 28, 7
(2002).

[38] R. Komondoor and S. Horwitz. [n. d.]. Using Slicing to Identify Duplication in
Source Code (SAS’01).

[39] R. Koschke, R. Falke, and P. Frenzel. [n. d.]. Clone Detection Using Abstract
Syntax Suffix Trees (WCRE’06).

[40] J. Krinke. [n. d.]. Identifying Similar Code with Program Dependence Graphs
(WCRE’01).

[41] A. Lam, A. Nguyen, H. Nguyen, and T. Nguyen. [n. d.]. Combining Deep Learning
with Information Retrieval to Localize Buggy Files for Bug Reports (ASE’15).

[42] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2017.
Bug localization with combination of deep learning and information retrieval. In
Proceedings of the 25th International Conference on Program Comprehension, ICPC
2017, Buenos Aires, Argentina, May 22-23, 2017. 218–229.

[43] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. 2010. Convolutional
networks and applications in vision. In International Symposium on Circuits and
Systems (ISCAS 2010), May 30 - June 2, 2010, Paris, France. 253–256.

[44] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. 2006. CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. TSE 32, 3 (2006).

[45] C. Liu, C. Chen, J. Han, and P. Yu. [n. d.]. GPLAG: Detection of Software Plagiarism
by Program Dependence Graph Analysis (KDD’06).

[46] Andrian Marcus and Jonathan I. Maletic. 2001. Identification of High-Level Con-
cept Clones in Source Code. In 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San Diego,
CA, USA. 107–114.

[47] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting
Similar Software Applications. In Proceedings of the 34th International Conference
on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 364–374.
http://dl.acm.org/citation.cfm?id=2337223.2337267

[48] T. Mikolov. 2012. Statistical Language Models Based on Neural Networks. Ph.D.
Dissertation.

[49] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. [n. d.]. Distributed
Representations of Words and Phrases and their Compositionality.

[50] Narcisa Andreea Milea, Lingxiao Jiang, and Siau-Cheng Khoo. 2014. Vec-
tor Abstraction and Concretization for Scalable Detection of Refactorings. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE 2014). ACM, New York, NY, USA, 86–97.
https://doi.org/10.1145/2635868.2635926

[51] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neu-
ral Networks over Tree Structures for Programming Language Processing. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16).
AAAI Press, 1287–1293. http://dl.acm.org/citation.cfm?id=3015812.3016002

[52] Anh Tuan Nguyen and Tien N. Nguyen. 2015. Graph-based Statistical Language
Model for Code. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 858–868.
http://dl.acm.org/citation.cfm?id=2818754.2818858

[53] Anh Tuan Nguyen and Tien N. Nguyen. 2017. Automatic categorization with
deep neural network for open-source Java projects. In Proceedings of the 39th In-
ternational Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina,
May 20-28, 2017 - Companion Volume. 164–166.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk

[54] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and
Tien N. Nguyen. 2009. Graph-based Mining of Multiple Object Usage Patterns.
In Proceedings of the the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering (ESEC/FSE ’09). ACM, New York, NY, USA, 383–392. https://doi.org/
10.1145/1595696.1595767

[55] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric Transitivity Preserving Graph Embedding. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’16). ACM, New York, NY, USA, 1105–1114. https://doi.org/10.1145/2939672.
2939751

[56] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2013. How to effectively use topic models
for software engineering tasks? an approach based on genetic algorithms. In
35th International Conference on Software Engineering, ICSE ’13, San Francisco,
CA, USA, May 18-26, 2013. 522–531.

[57] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys
Poshyvanyk, and Andrea De Lucia. 2016. Parameterizing and Assembling IR-
Based Solutions for SE Tasks Using Genetic Algorithms. In IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016 - Volume 1. 314–325. https://doi.org/10.1109/
SANER.2016.97

[58] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. 2010. Using Data Fusion
and Web Mining to Support Feature Location in Software. In Proceedings of the
2010 IEEE 18th International Conference on Program Comprehension (ICPC ’10).
IEEE Computer Society, Washington, DC, USA, 14–23. https://doi.org/10.1109/
ICPC.2010.10

[59] Chanchal Kumar Roy and James R. Cordy. 2008. NICAD: Accurate Detection
of Near-Miss Intentional Clones Using Flexible Pretty-Printing and Code Nor-
malization. In The 16th IEEE International Conference on Program Comprehension,
ICPC 2008, Amsterdam, The Netherlands, June 10-13, 2008. 172–181.

[60] Hitesh Sajnani and Cristina Lopes. 2013. A Parallel and Efficient Approach to
Large Scale Clone Detection. In Proceedings of the 7th International Workshop
on Software Clones (IWSC ’13). IEEE Press, Piscataway, NJ, USA, 46–52. http:
//dl.acm.org/citation.cfm?id=2662708.2662719

[61] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. 2016. SourcererCC: Scaling Code Clone Detection to Big-code. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 1157–1168. https://doi.org/10.1145/2884781.2884877

[62] R. Socher, C. Lin, A. Ng, and C. Manning. [n. d.]. Parsing Natural Scenes and
Natural Language with Recursive Neural Networks (ICML’11).

[63] R. Socher, J. Pennington, E. Huang, A. Ng, and C. Manning. [n. d.]. Semi-
supervised Recursive Autoencoders for Predicting Sentiment Distributions

(EMNLP’11).
[64] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. [n.

d.]. Recursive Deep Models for Semantic Compositionality Over a Sentiment
Treebank (EMNLP’13).

[65] Student. 1921. An Experimental Determination of the Probable Error of Dr
Spearman’s Correlation Coefficients. Biometrika 13, 2/3 (1921), 263–282. http:
//www.jstor.org/stable/2331754

[66] J. Svajlenko and C. Roy. 2015. Evaluating Clone Detection Tools with Big-
CloneBench (ICSME’15).

[67] Jeffrey Svajlenko, Chanchal K. Roy, and James R. Cordy. 2013. A mutation
analysis based benchmarking framework for clone detectors. In Proceeding of
the 7th International Workshop on Software Clones, IWSC 2013, San Francisco, CA,
USA, May 19, 2013. 8–9.

[68] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and Roberto S.
Bigonha. 2013. Qualitas.class Corpus: A Compiled Version of the Qualitas Corpus.
Software Engineering Notes 38, 5 (2013), 1–4.

[69] Mario Linares Vásquez, Andrew Holtzhauer, and Denys Poshyvanyk. 2016. On
automatically detecting similar Android apps. In 24th IEEE International Confer-
ence on Program Comprehension, ICPC 2016, Austin, TX, USA, May 16-17, 2016.
1–10. https://doi.org/10.1109/ICPC.2016.7503721

[70] S. Wang, T. Liu, and L. Tan. [n. d.]. Automatically Learning Semantic Features
for Defect Prediction (ICSE’16).

[71] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for
better configurations: a rigorous approach to clone evaluation. In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian
Federation, August 18-26, 2013. 455–465.

[72] TiantianWang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Searching for Better
Configurations: A Rigorous Approach to Clone Evaluation. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
ACM, New York, NY, USA, 455–465. https://doi.org/10.1145/2491411.2491420

[73] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017. 3034–3040.
https://doi.org/10.24963/ijcai.2017/423

[74] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. [n. d.]. Deep Learning
Code Fragments for Code Clone Detection (ASE’16).

[75] W. Yang. 1991. Identifying Syntactic Differences Between Two Programs. SPE
21, 7 (1991).

[76] Zhi-Hua Zhou. 2009. Ensemble Learning. Springer US, Boston, MA, 270–273.
https://doi.org/10.1007/978-0-387-73003-5_293

