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Abstract. The Tower of Hanoi puzzle, invented by Édouard Lucas in 1883,
is well known to students of discrete mathematics and computer science. Many
variations have been proposed as exercises and challenges over the past 125 years,
including some with more than three pegs which remain unsolved.

In this paper we pose several new variations, all involving two or more stacks
of disks, identical except for color. The goal in each variation is to move each
stack of disks from its initial location to its final location. As usual, disks must
be moved one at a time, and a disk can never sit above a disk of equal or smaller
diameter, regardless of color.

Hints are provided, along with solutions.

1. Introduction

The Tower of Hanoi, a puzzle invented by French mathematician Édouard Lucas
in 1883, consists of three vertical pegs and some number n of disks, all with a hole in
the center that allows them to be stacked on the pegs. The disks are all of different
radii, and we imagine that they are numbered 1 through n in increasing order of
size. They are initially stacked in order on one of the pegs, with disk n on the
bottom and 1 on the top. The object is to transport this tower from the starting
peg to a destination peg, moving one disk at a time, and always placing a disk on
either an empty peg or on a larger disk. The third peg is used to temporarily hold
disks during the process. See [1] or [5] for an early discussion of this puzzle.

It is well known that there is a unique minimum-move solution that takes 2n−1
steps. It is most easily described recursively: for n > 0, recursively move a tower of
n−1 disks from the initial peg to the temporary peg; move disk n from the initial
peg to the destination peg; and then recursively move the tower of n−1 disks from
the temporary peg to the destination peg. If M0(n) is the number of moves made,
we have the recurrence relation M0(n) = M0(n−1) + 1 + M0(n−1) for n > 0 with
M0(0) = 0, which has the solution M0(n) = 2n − 1 given above.

Many variations on this simple puzzle soon followed, with features such as colored
disks, multiple pegs, and restricted moves. In fact, Lucas himself invented a version
with five pegs and a stack of disks of four different colors [3]. The puzzles presented
here, most of which were invented and patented by Victor Mascolo of Bayville,
New York, all involve multiple stacks of disks. Each stack has a unique color, but
otherwise the stacks are identical. As before, we imagine that the disks in each stack
are numbered from 1 to n in increasing order of size. Each stack must be moved
from its assigned initial peg to its destination peg, always moving just one disk at
a time. Unlike the multi-stack Towers of Antwerpen puzzle posed by Derrick Wood
[7] and solved by Steven Minsker [4], we enforce a strict size rule: a disk can only
be placed on an empty peg or on top of a strictly larger disk of any color. For n > 1
this necessitates that we have at least two more pegs than stacks. For each puzzle,
a minimum-move algorithm is desired, along with a proof of minimality.
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2. The Puzzles

We present our puzzles in increasing order of difficulty, starting with the easiest
one.

Puzzle 1: There are four pegs, numbered from 0 to 3. A stack of n white disks,
stack 0, is initially on peg 0, and a stack of n black disks, stack 1, is initially on peg
2. The destination pegs for the white stack and the black stack are pegs 2 and 0,
respectively. In other words, the goal is to interchange the two stacks, using pegs 1
and 3 as temporary holding pegs.

One obvious algorithm is to use the standard tower algorithm to move the white
stack from peg 0 to peg 1, using 3 as the temporary peg; then moving the black stack
from peg 2 to peg 0, again using 3 as the temporary peg; and finally moving the
white stack from peg 2 to peg 3, once more using 3 as the temporary peg. Clearly
this takes 3(2n−1) moves. Can you do better?

Puzzle 2: This is actually the first puzzle we explored, and the first puzzle invented
by Mr. Mascolo. It is sometimes referred to as Turtle. It is the same as Puzzle 1
except that peg 1 can hold only white disks (from stack 0), while peg 3 can hold
only black disks (from stack 1). Thus the white disks can use only pegs 0, 1, and 2
in moving from 0 to 2, while the black disks can use only pegs 2, 3, and 0 in moving
from 2 to 0.

It is not immediately obvious that this puzzle can always be solved. Certainly
the moves of the white disks must be carefully intertwined with the moves of the
black disks in any possible solution.

Puzzle 3: For this puzzle we have s stacks, s ≥ 3, numbered 0 through s− 1, and
m = 2s pegs, numbered 0 through 2s− 1. Stack i starts on peg 2i, can temporarily
make use of peg 2i + 1, and must end up on peg 2i + 2, where all numbers are
reduced modulo 2s. Thus peg 2i serves as both the starting peg for stack i and
the destination peg for stack i − 1, and peg 2i + 1 is for the exclusive use of stack
i. (Puzzle 2 was this puzzle with s = 2 stacks, but the puzzle for s ≥ 3 behaves
somewhat differently.)

Puzzle 4: This is a 2-stack 5-peg puzzle, similar to Puzzle 2 but with an additional
peg 4 that can temporarily hold disks of either color. The white disks can use pegs
0, 1, 2, and 4 in moving from peg 0 to peg 2, while the black disks can use pegs 2,
3, 0, and 4 in moving from peg 2 to peg 0.

The traditional 4-peg single stack puzzle, often called the Reve’s Puzzle, is still an
open problem. The name is due to British puzzle king Henry Dudeney, who posed
it in his collection of Canterbury Puzzles [2]. There is a presumed minimum-move
solution to the Reve’s puzzle, but a proof of minimality is still lacking. So perhaps
the most we can hope for with our Puzzle 4 is an algorithm that seems likely to be
optimal, but without a proof of optimality.

3. The Hints

In this section we provide a specific hint for each puzzle.

Hint 1: We derive a lower bound for the number of moves needed for Puzzle
1, using the “small disk” induction principle popularized by the second author.
Suppose we have an algorithm for two stacks of n−1 disks each, and we seek an
algorithm for stacks of n disks. We can use the known algorithm for the 2(n−1)
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larger disks (disks numbered 2 through n in each stack) and intersperse moves of
the smallest disks (the two disks numbered 1) when necessary.

The constraints of the puzzle force both the first move and the last move to use
one of the smallest disks. Moreover, in any minimum-move solution, there must be
at least one move of a smallest disk between any two moves of larger disks. To see
this, note that when moving larger disks, the two smallest disks tie up two of the
four pegs. We can move a larger disk between the other two pegs, but then we must
move one of the smallest disks, since the only alternative is to reverse the move of
the larger disk, which would clearly not be optimal. We conclude that the number
of moves of the smallest disks is at least one more than the total number of moves
of all larger disks.

Now let M1(n) be the number of moves made in a minimum-move algorithm for
this puzzle. We know that the larger disks must collectively make at least M1(n−1)
moves, since those moves must constitute a solution to the puzzle with stacks of size
n−1. Moreover, from the previous paragraph we know that the smallest disks must
then collectively make at least M1(n−1)+1 moves, for a total of at least 2M1(n−1)+1
moves for n ≥ 2, with M1(1) = 3. This implies that M1(n) ≥ 2n+1 − 1.

Can you find an algorithm that attains this lower bound?

Hint 2: We can derive a lower bound for Puzzle 2 the same way we did for Puzzle
1. This time the constraints of the puzzle require that the first two moves and the
last two moves must all use one of the smallest disks. And as before, there must
be at least one move of a smallest disk between any two moves of the larger disks.
So the number of moves of the smallest disks must be at least three more than the
total number of moves of the larger disks.

If M2(n) is the number of moves made in a minimum-move algorithm, we know
that the larger disks must make at least M2(n−1) moves, while the smallest disks
must make at least M2(n−1) + 3 moves, for a total of at least 2M2(n−1) + 3 moves
for n ≥ 2, with M2(1) = 3. This implies that M2(n) ≥ 3 · 2n − 3 = 3 (2n − 1) for
this puzzle.

If this lower bound is attainable, you can use it to help generate an optimal
algorithm. Start with a 3-move solution to the n = 1 puzzle. Consider these to be
the moves of the larger disks of an n = 2 puzzle and see if you can find 6 moves
of the smallest disks to combine with this moves, in a pattern SSLSLSLSS, where
S indicates a move of one of the two smallest disks and L indicates a move of one
of the two larger disks. If this works, you can try for n = 3 by using this 9-move
sequence as the moves of the 4 larger disks and searching for 12 moves of the two
smaller disks to combine with them.

Hint 3: The lower bound technique we used above does not work well for Puzzle
3, because it is possible to have consecutive moves of larger disks in an optimal
solution, as well as consecutive moves of smallest disks. However, each stack is
limited to three pegs, and must move from one to another. So s(2n − 1) is an
obvious lower bound. On the other hand, the optimal algorithm for Puzzle 2 might
suggest that this puzzle can be solved in (s + 1)(2n − 1) moves. Perhaps the real
answer is somewhere between these two formulas.

Hint 4: Perhaps it is possible to construct an algorithm for Puzzle 4 based on the
presumed minimum-move solution to the Reve’s Puzzle. That solution, like that of
the Tower of Hanoi, is most easily described recursively. For n > 0 first compute a
value k. Recursively move the top n−k disks of the tower from the initial peg to one
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of the two temporary pegs; then move the bottom k disks to the destination peg,
using the standard Tower of Hanoi algorithm; and then recursively move the top
n−k disks from their temporary location to the destination peg. The value k should
be chosen so as to minimize the number of moves. It is known that k =

{√
2n

}

will always do so, where {x} denotes the integer nearest to x—see [6] for example.
Now try incorporating these ideas into the solution to Puzzle 2.

4. The Solutions

In this section we give pseudo-code for algorithms for each of the puzzles. For
Puzzles 1, 2, and 3, these are provably minimum-move solutions; for Puzzles 4 we
conjecture that our algorithm is optimal. Many of these algorithms will utilize a
very general algorithm for the standard Tower of Hanoi, which we list here as the
procedure Hanoi. Also, we use the notation Move(disk, stack, from, to) for an
instruction to move a designated disk of a stack from one peg to another.

procedure Hanoi(bottom, top, stack, from, via, to)

if(top<=bottom)

Hanoi(bottom-1, top, stack, from, to, via);

Move(bottom, stack, from, to);

Hanoi(bottom-1, top, stack, via, from, to);

This algorithm moves disks numbered from bottom up to top (always 1 in the
classical Tower puzzle) of the indicated stack between pegs, using peg via as the
temporary peg. It is assumed that disks numbered less than top, if any, are on some
peg other than the three listed.

Algorithm 1: We list procedure Free as a minimum-move algorithm for Puzzle
1, where n is the number of disks in each stack. We assume here that n is positive.

procedure Free(n)

Hanoi(n-1, 1, 0, 0, 3, 1);

Move(n, 0, 0, 3);

Hanoi(n, 1, 1, 2, 3, 0);

Move(n, 0, 3, 2);

Hanoi(n-1, 1, 0, 1, 3, 2);

Clearly the number of moves made by this algorithm is (2n−1 − 1) + 1 + (2n − 1) +
1 + (2n−1 − 1) = 2n+1 − 1, in agreement with the lower bound found earlier. We
see that the disks of stack 0 make a total of 2n moves while the disks of stack 1
make 2n − 1 moves. The total is just one move more than required for two separate
Hanoi puzzles. Alternatively, it is the number of moves required for a Hanoi puzzle
of n + 1 disks.

Algorithm 2: In this section we present an algorithm for Puzzle 2 developed
by the first author. Later we will give an alternative version crafted by the second
author. We again assume that n is positive, and that all stack parameters are
reduced modulo 4.

A key property of this algorithm can be proved by induction: at the end of each
iteration of the top loop, disks from 1 down to i+1 of the current stack are on their
temporary peg while disks i+2 down to n are still on their initial peg. For the
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procedure Turtle(n)

stack = 0;

Move(1, 0, 0, 1);

for i from 1 to n-1 do

stack = 1-stack;

Move(i, stack, 2*stack, 2*stack+2);

Hanoi(i-1, 1, stack, 2*stack+1, 2*stack, 2*stack+2);

Move(i+1, stack, 2*stack, 2*stack+1);

Hanoi(i, 1, stack, 2*stack+2, 2*stack, 2*stack+1);

stack = 1-stack;

Move(n, stack, 2*stack, 2*stack+2);

for i from n-1 down to 1 do

stack = 1-stack;

Hanoi(i, 1, stack, 2*stack+1, 2*stack+2, 2*stack);

Move(i+1, stack, 2*stack+1, 2*stack+2);

Hanoi(i-1, 1, stack, 2*stack, 2*stack+2, 2*stack+1);

Move(i, stack, 2*stack, 2*stack+2);

stack = 1-stack;

Move(1, 0, 1, 2);

opposite stack, disks from 1 down to i are on their temporary peg and disks i+1

down to n are still on their initial peg. An analogous property holds at the end of
each iteration of the bottom loop: disks from 1 down to i-1 of the current stack
are on their temporary peg while disks i down to n are settled on their destination
peg. For the opposite stack disks from 1 down to i are on their temporary pegs
and disks i+1 down to n are settled on their destination peg. It follows from these
properties that all moves are legal and that the code correctly solves the puzzle.

Iteration i of the top loop makes 1 + (2i−1 − 1) + 1 + (2i − 1) = 3 · 2i−1 moves,
which sums to 3(2n−1 −1). The bottom loop makes an equal number of moves, and
there are an addition 3 moves outside of the loops, for a total of 3(2n − 1) moves,
in agreement with our lower bound.

The move sequence is unique except for deciding which stack’s disk 1 should move
first.

Algorithm 3: For Puzzle 3 we present an algorithm built on a quartet of co-
routines. In these routines we refer to the initial peg of stack i (peg 2i) as its Home
peg, the temporary peg of stack i (peg 2i + 1) as its Run peg, and the destination
peg of stack i (peg 2i + 2) as its Away peg. The four letters in the name of each
routine denote, in order, the peg where the indicated disks of stack 0 reside at the
beginning of the routine; the peg where the indicated disks of stack 0 reside at the
end of the routine; the peg where the indicated disks of all other stacks reside at the
beginning of the routine; and the peg where the indicated disks of all other stacks
reside at the end of the routine. For example, the routine HAHR(n, s) assumes that
there are s stacks, and that at the start of the routine the top n disks of all stacks
are on their Home pegs. At the end of the procedure the top disks of stack 0 will
be on their Away peg while the top disks of all other stacks will be on their Run
pegs. As before, we assume that each procedure does nothing if n is not positive,
and that all stack parameters are reduced modulo 2s.
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procedure HAHR(n, s)

HRHA(n-1, s);

for i from 1 to s-1 do

Move(n, i, (2*i), (2*i+1));

Hanoi(n-1, 1, i, (2*i+2), (2*i), (2*i+1));

Move(n, 0, 0, 2);

Hanoi(n-1, 1, 0, 1, 0, 2);

procedure HRHA(n, s)

HAHR(n-1, s);

Move(n, 0, 0, 1);

Hanoi(n-1, 1, 0, 2, 0, 1);

for i from s-1 down to 1 do

Move(n, i, (2*i), (2*i+2));

Hanoi(n-1, 1, i, (2*i+1), (2*i), (2*i+2));

procedure HARA(n, s)

Hanoi(n-1, 1, 0, 0, 2, 1);

Move(n, 0, 0, 2);

for i from 1 to s-1 do

Hanoi(n-1, 1, i, (2*i+1), (2*i+2), (2*i));

Move(n, i, (2*i+1), (2*i+2));

RAHA(n-1, s);

procedure RAHA(n, s)

for i from s-1 down to 1 do

Hanoi(n-1, 1, i, (2*i), (2*i+2), (2*i+1));

Move(n, i, (2*i), (2*i+2));

Hanoi(n-1, 1, 0, 1, 2, 0);

Move(n, 0, 1, 2);

HARA(n-1, s);

All of these procedures make the same number of moves. There is a call to
another one of the procedures, plus s moves and s calls to Hanoi in some order. If
H(n) is the number of moves made by any of these routines, then we have H(n) =
H(n−1)+s·2n−1, with H(0) = 0. The solution to this recurrence is H(n) = s(2n−1).
These routines are clearly optimal in what they do, since each must carry out s

separate Tower transformations.
Our solution for Puzzle 3 is given by our HAHA procedure. We again make our

usual assumptions about n and the stack parameters. We see that this procedure

procedure HAHA(n, s)

HAHR(n-1, s);

Move(n, 0, 0, 1);

for i from s-1 down to 2 do

Move(n, i, (2*i), (2*i+2));

Hanoi(n-1, 1, 0, 2, 1, 0);

Move(n, 1, 2, 4);

Move(n, 0, 1, 2);

HARA(n-1, s);
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makes two calls to earlier H-procedures, one call to Hanoi, and s + 1 individual
moves, for a total of M3(n, s) = s(2n − 1) + 2n−1 moves.

To see that this is optimal, we observe that not all of the s disks of size n can
move directly from their Home pegs to their Away pegs. At least one such disk (on
stack 0 in our code) must move from its Home peg to its Run peg, and later from
its Run peg to its Away peg. The top n − 1 disks of this stack must at least first
move from their Home peg to their Away peg before the first move of the largest
disk, then back to their Home peg between moves of the largest disk, and then back
to their Away peg after the final move of the largest disk. So this stack must make
at least 3(2n−1 − 1) + 2 = (2n − 1) + 2n−1 moves. The other s− 1 stacks must make
at least 2n − 1 moves each, for a sum of M3(n, s).

The procedure Turtle2 provides an alternative way to generate the optimal move
sequence for Puzzle 2, using the H-procedures. We leave the analysis to the reader.

procedure Turtle2(n)

HAHR(n-1, 2);

Move(n, 0, 0, 1);

Hanoi(n-1, 1, 0, 2, 0, 1);

Move(n, 1, 2, 0);

Hanoi(n-1, 1, 0, 1, 2, 0);

Move(n, 0, 1, 2);

HARA(n-1, 2);

Algorithm 4: Our algorithm for Puzzle 4, which we conjecture is optimal, uses
the procedure Reve(n) that generates the moves of the presumed minimum-move
solution to the Reve’s Puzzle. In addition to our usual assumption that the proce-
dure does nothing if n is not positive, we assume that k is always the integer nearest
to

√
2n.

procedure Reve(n, stack, from, via, to, extra)

Reve(n-k, stack, from, to, via, extra);

Hanoi(n, n-k+1, stack, from, extra, to);

Reve(n-k, stack, via, from, to, extra);

We will also need Reve versions of the H-procedures used in Puzzle 3. We list the
procedure R_HAHR(n) as an example. Note that because there are only two stacks
in this puzzle, there are no loops in the procedure.

procedure R_HRHA(n)

R_HAHR(n-k);

Hanoi(n, n-k+1, 0, 0, 4, 1);

Reve(n-k, 0, 2, 0, 1, 4);

Hanoi(n, n-k+1, 1, 2, 4, 0);

Reve(n-k, 1, 3, 2, 0, 4);

Finally, we present the procedure R_HAHA as our solution to Puzzle 4, with the
usual assumptions. It is a variation of the procedure Turtle2 above.

We very briefly sketch an analysis of this procedure. Let R(n) be the number
of moves made in the presumed minimum-move solution to the Reve’s Puzzle, as
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procedure R_HAHA(n)

R_HAHR(n-k);

Hanoi(n-1, n-k+1, 0, 0, 4, 1);

Reve(n-k, 0, 2, 0, 1, 4);

Move(n, 0, 0, 4);

Hanoi(n, n-k+1, 1, 2, 4, 0);

Move(n, 0, 4, 2);

Reve(n-k, 0, 1, 2, 0, 4);

Hanoi(n-1, n-k+1, 0, 1, 4, 2);

R_HARA(n-k);

presented in the procedure Reve. We see from our procedure that R(n) = 2R(n −
k) + 2k − 1. This recurrence relation has the solution

R(n) = (k − 1)2k −
(

k(k + 1)

2
− n

)

2k−1 + 1,

where as usual, k is the integer closest to
√

2n. Each procedure such as R_HAHR

performs the Reve moves on each of two stacks, for a total of 2R(n) moves. In the
procedure R_HAHA, the disks in stack 1 make a total of R(n) moves, while the disks
in stack 0 make a total of 4R(n − k) + 2k moves. It can be shown that this last
expression is equal to 2R(n− 1) + 2. Thus our solution to Puzzle 4 takes a total of
M4(n) = R(n) + 2R(n − 1) + 2 moves.
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