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Abstract

The cyclic Tower of Hanoi puzzle is similar to the traditional
tower puzzle, but with the added restriction that all disks move
between pegs in a clockwise direction, from peg A to B, from B
to C, or from C to A. Many aspects of this puzzle have been
analyzed, including the average distance in the state digraph
from a random state to a designated goal state in which all disks
are on one peg. Using similar but somewhat cleaner methods,
we extend this result by computing the mean and variance of
the distance between a random pair of states. Our results are
compared to analogous ones for the traditional Tower of Hanoi
puzzle.

1 Introduction and Background

The Tower of Hanoi

The famous Tower of Hanoi puzzle, invented in 1883 by the French
mathematician Édouard Lucas [8], consists of three pegs, usually des-

ignated A, B, and C, and a set of n pierced disks of differing diameters
that can be stacked on the pegs. By convention the disks are numbered

from 1 to n in increasing order of size, and a tower is formed by stack-
ing the disks on one of the pegs, in order, with disk n on the bottom
and disk 1 on the top. The challenge is to transport the tower to an-

other peg, moving the disks from peg to peg one at a time, without
ever placing a disk on top of a smaller one. It is well known that 2n−1

moves are necessary and sufficient for performing this task.
All early solutions to this puzzle were described recursively: to

transport a tower of n disks from A to C, say, we transport the
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subtower consisting of the top n − 1 disks from A to B; then move

disk n from A to C; and then transport the subtower from B to C.
Although compact and elegant, this recipe is not particularly helpful

to humans actually trying to carry out the moves necessary to solve
the puzzle. A variety of iterative algorithms have been developed that

generate the minimal move sequence in a more user friendly manner.

The Cyclic Puzzle

The cyclic tower of Hanoi puzzle was invented in 1981 by Atkinson [1]
in an attempt to find a variation for which no simple iterative solu-

tion could be devised. The fact that several iterative algorithms were
soon discovered for this version—see [3] and [11]—does not diminish

its attractiveness.

In the cyclic tower puzzle, the pegs are assumed to be arranged in
a triangle, with clockwise ordering A, B, C. The disks are restricted

to moving from peg to peg in a clockwise direction, from A to B,
from B to C, or from C to A. Atkinson considers two problems: to

transport a tower of n disks one step clockwise, which we call the short
problem; and to transport a tower of n disks one step counterclockwise,
which we call the long problem. His elegant solution consists of two

interdependent recursive procedures. Stripped to their bare essentials
they are given in Figure 1.

procedure short(n); procedure long(n);

if (n > 0) then if (n > 0) then

long(n-1); long(n-1);

move disk n; move disk n;

long(n-1); short(n-1);

move disk n;

long(n-1);

Figure 1

Of course an actual computer program might want to specify the source

peg as a parameter, and print out a list of moves giving disk number,
source peg, and perhaps destination peg. We are primarily interested

here in the number of disk moves these procedures generate. If we let
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S(n) and L(n) denote the number of disk moves made by the proce-

dures short(n) and long(n), respectively, we see immediately that

S(n) = 2L(n − 1) + 1 and

L(n) = 2L(n − 1) + S(n − 1) + 2

for n ≥ 1, with S(0) = L(0) = 0. Standard techniques yield the
solutions

S(n) =
3 +

√
3

6

(

1 +
√

3
)n

+
3 −

√
3

6

(

1 −
√

3
)n

− 1 and

L(n) =
3 + 2

√
3

6

(

1 +
√

3
)n

+
3 − 2

√
3

6

(

1 −
√

3
)n

− 1,

which can be confirmed by induction.

Atkinson did not provide a proof that his two procedures produce
minimal length move sequences, perhaps believing that it was obvious.

We will prove a stronger and somewhat surprising result as Fact 3 in
a later section.

Generalizations

Several authors have suggested generalizing the Tower of Hanoi puzzle
by allowing the starting configuration to be any distribution of disks

to pegs, with the disks on each peg stacked in order. As before, the
challenge is to form the disks into a tower on a designated peg, following

the standard rules for moves. This generalization was extended to
the cyclic puzzle by Er [4], who developed minimal move algorithms

for solving the cyclic puzzle from an arbitrary starting distribution
of disks. Subsequently, Er [5] computed the average number A(n)

of moves needed to transform a random initial proper configuration
(with the disks stacked in order on their assigned pegs) to a designated

goal configuration (with all n disks stacked on a designated peg). We
present an alternative derivation of his result later as Theorem 1.

The main purpose of this paper is to extend this result to the

case where both the initial configuration and the final configuration
are randomly chosen. Informally speaking, we answer the question

“how many (cyclic) moves apart, on the average, are two randomly
chosen configurations?” This is analogous to the result of Hinz [6] and

Chan [2] for the standard tower puzzle. Along the way we make some
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interesting observations and relate the cyclic case to the standard case

when appropriate.

2 The State Digraph

Definitions and Conventions

The idea of a state graph for the Tower of Hanoi puzzle originated with
Scorer, Grundy, and Smith [9]. In this graph, the vertices, or nodes,
are the 3n proper states or configurations of the tower puzzle, and the

edges are the (3n+1 − 3)/2 allowable moves between states. It is well
known that for any number n of disks, the state graph is a planar graph

that can be embedded in an equilateral triangle with all edges of equal
length. With this embedding, the graph approaches the familiar fractal

known as the Sierpiński Gasket (see [7], [10]) as n increases. For the
cyclic puzzle, the state graph becomes a digraph, with each arc oriented

in the direction representing a clockwise disk move. Although not
absolutely essential for understanding what follows, the state digraph

makes the concepts and theorems of graph theory available to us, and
provides us with a useful visualization.

We observe certain conventions in drawing the state digraph for
the cyclic tower puzzle. Each vertex is labeled with a string of length

n from the set {A, B, C }, naming the pegs that the disks occupy in
that state, from the largest to the smallest. We place vertex AA. . .A in

the lower left corner, vertex BB. . .B at the top, and vertex CC. . .C in
the lower right corner. We call these three vertices the corner vertices,

representing what we called goal states above, or what some authors
call perfect states. The digraph consists of three major subdigraphs,

each isomorphic to the digraph of the puzzle with one fewer disk, joined
by arcs we call links. The A subdigraph in the lower left, for example,

contains all states for which the largest disk is on peg A. It is joined
to the B subdigraph by the A→B link from vertex AC. . .C to vertex
BC. . .C, representing a move of disk n from peg A to peg B. The B

subdigraph is joined to the C subdigraph by the B→C link from vertex
BA. . .A to vertex CA. . .A, representing a move of disk n from peg B

to peg C. Figure 2, which displays the state digraph for the cyclic
puzzle with 4 disks, should make our conventions and nomenclature

clear.
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Figure 2

Following standard graph theory terminology, a path is a sequence
v0, v1, . . . , vk of distinct vertices where vertex vi−1 is adjacent to vertex

vi for all i from 1 to k. The length of the path is k, and the distance
from one vertex to another is the length of the shortest path from the

first to the second. The reader is invited to trace the path of length
L(4) = 59 from AAAA to CCCC and the path of length S(4) = 43

from CCCC to AAAA in Figure 2.

Some Simple Facts

In this section we note several useful facts about the state digraph,
all easily proved. Some are so intuitively clear that people tend to

overlook the fact that a proof is warranted, while others are surprisingly
counterintuitive.

Fact 1. The state digraph for the cyclic puzzle is strongly connected:

there is a path joining any given vertex to any other.

Proof. This is easily proved by induction on n. If n is 0 there is nothing

to prove, while if the two vertices are in the same major subdigraph, the
result follows immediately from the induction hypothesis. Otherwise,

the induction hypothesis allows us to piece together the desired path
from subpaths in two or three of the major subdigraphs, connected by

one or two links.
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Fact 2. Rotating the state digraph through ±120 degrees constitutes

a digraph automorphism. Reflecting it in a line through a corner ver-
tex and the opposite link creates an anti-automorphism, mapping the

digraph onto its converse.

Proof. A rotation corresponds to a cyclic relabeling of the pegs, which
has no effect on the allowable moves. A reflection corresponds to in-

terchanging the labels on two of the pegs, which reverses the allowable
direction of every move.

One consequence of this fact, which we shall use later, is that the

average distance A(n) from a random vertex to a specified corner vertex
is the same as the average distance from a specified corner vertex to

a random vertex. This is so despite the fact that the distance from a
vertex v to a corner vertex is generally not equal to the distance from
the corner vertex to v.

Fact 3. There is only one path from any given corner vertex to another
corner vertex.

Proof. From Fact 2, we may assume that the first corner is vertex
AA . . .A. A path from this corner to the corner vertex BB . . .B must

use the A→B link exactly once, and no others. By induction, we know
that there is only one path in the A subdigraph from vertex AA . . .A

to the beginning of the A→B link at AC . . .C, and only one path in
the B subdigraph from the end of the A→B link at BC . . .C to the

corner vertex BB . . .B. These two paths, together with the A → B
link, form the unique path from AA . . .A to BB . . .B. Similarly, the

one path from AA . . .A to CC . . .C consists of the unique path from
AA . . .A to AC . . .C in the A subdigraph, the A→B link, the unique

path from BC . . .C to BA . . .A in the B subdigraph, the B→C link,
and the unique path from CA . . .A to CC . . .C in the C subdigraph.

In terms of disk moves, we see that the move sequences generated
by the procedures short(n) and long(n) are not just minimal solution

sequences, they are in fact the only move sequences that solve their
corresponding problems without ever repeating a puzzle state. This is

in sharp contrast to the case with the standard puzzle, for which there
exist non-repeating solution sequences, i.e. corner to corner paths, of

all lengths from 2n − 1 to 3n − 1.

Fact 4. For any two states in the same major subdigraph, a mini-
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mal length path from one to the other lies entirely within that major

subdigraph.

Proof. Let v1 and v2 be any two vertices in the A subdigraph. A path

from v1 to v2 is either entirely within the A subdigraph or else it crosses
all three links. In the second case, the path contains a subpath from
AC . . .C to AB . . .B that crosses the three links and passes through

the B and C subdigraphs. This subpath has length 1+S(n− 1)+ 1 +
S(n−1)+1 = 2S(n−1)+3. But there is a shorter path from AC . . .C

to AB . . .B, entirely within subdigraph A, of length L(n− 1). Thus a
path crossing all three links can not be minimal.

Fact 5. The shortest path from any one vertex to any other is unique.

The proof is similar to those given above, and is left to the reader.
We note that the analogous statement for the standard puzzle is false.

In the standard puzzle there are pairs of vertices, for example, that
are connected by one minimal path containing one link, and a second

minimal path containing the other two links.

Fact 6. The maximum distance between any two vertices is L(n).
This distance only occurs between corner vertices.

This proof is also left to the reader. Fact 6 asserts that the long

problem is the hardest problem that can be posed for the cyclic puzzle,
at least in terms of the required number of moves between proper

states. In the case of the standard puzzle, the corner to corner distance
of 2n − 1 is also maximal, but not uniquely so—there are many other

pairs of vertices that are this far apart.

3 Main Results

We are now in a position to state and prove the main results of this
paper. Although the theorems are stated in terms of paths and distance

in the state digraph, the reader should have no trouble translating
them into statements about sequences of disk moves. We begin with

an alternative derivation of the result of Er [5] mentioned earlier.

Theorem 1. (Er) Let v be a vertex selected from a uniform distribu-
tion over the vertices of the n-disk cyclic Tower of Hanoi digraph, and

let v0 be a designated corner vertex. Then the average value A(n) of
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the distance D(v, v0) from v to v0 satisfies the recurrence relation

A(n) = A(n − 1) +
1

3

(

L(n) + 1
)

for n ≥ 1, with A(0) = 0. The solution to this recurrence is

A(n) =
5 + 3

√
3

18

(

1 +
√

3
)n

+
5 − 3

√
3

18

(

1 −
√

3
)n

− 5

9
.

Proof. We can assume without loss of generality that v0 is the corner
vertex CC . . .C. The derivation considers three cases, depending on

the location of v. We have

A(n) =
1

3n

(

∑

v∈A

D(v, v0) +
∑

v∈B

D(v, v0) +
∑

v∈C

D(v, v0)

)

=
1

3n

(

(

3n−1
)(

A(n − 1) + 1 + S(n− 1) + 1 + L(n − 1)
)

+
(

3n−1
)(

A(n − 1) + 1 + L(n − 1)
)

+
(

3n−1
)

A(n − 1)

)

=
1

3

(

3A(n− 1) + 2L(n − 1) + S(n− 1) + 3
)

= A(n − 1) +
1

3

(

L(n) + 1
)

.

This recurrence is easily solved by standard methods, using the expres-
sion for L(n) given earlier. Alternatively, the formula for the solution

can be confirmed by induction.

We now generalize this result to the case of two random vertices.

Theorem 2. Let v1 and v2 be independently chosen, uniformly dis-
tributed vertices in the n-disk cyclic Tower of Hanoi digraph. Then

the mean value M(n) of the distance D(v1, v2) satisfies the recurrence
relation

M(n) =
1

3

(

M(n − 1) + 4A(n− 1) + S(n− 1)
)

+ 1

for n ≥ 1, with M(0) = 0. The solution to this relation is

M(n) =
77 + 57

√
3

414

(

1 +
√

3
)n

+
77− 57

√
3

414

(

1 −
√

3
)n

− 6

23
(1/3)n − 1

9
.
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Proof. We can assume without loss of generality that v2 is in the C

subdigraph. Following the same scheme as in the proof of Theorem 1,
we have

M(n) =
3

(3n)2

(

∑

v1∈A

v2∈C

D(v1, v2) +
∑

v1∈B

v2∈C

D(v1, v2) +
∑

v1∈C

v2∈C

D(v1, v2)

)

=
3

(3n)2

(

(

3n−1
)2 (

A(n − 1) + 1 + S(n − 1) + 1 + A(n − 1)
)

+
(

3n−1
)2 (

A(n − 1) + 1 + A(n − 1)
)

+
(

3n−1
)2

M(n − 1)

)

=
1

3

(

M(n − 1) + 4A(n − 1) + S(n − 1) + 3
)

.

As before, this recurrence can be solved by standard methods, or the
formula for the solution can be verified by induction.

With significantly more effort, we can also obtain the variances for

the distances D(v, v0) and D(v1, v2). Space requirements prevent the
inclusion of the proofs, but sketches of the derivations will be available

at the web site http://www.cs.wm.edu/~pkstoc/toh.html.

Theorem 3. The variance V1 of the distance D(v, v0) from a random
vertex to a specified corner vertex of the n-disk cyclic Tower of Hanoi

digraph has the value

V1(n) =
6 + 5

√
3

162

(

1 +
√

3
)2n

+
6 − 5

√
3

162

(

1 −
√

3
)2n

− 2

81
(−2)n − 4

81
.

The analogous variance V2 of the distance D(v1, v2) between two ran-

dom vertices has the value

V2(n) =
5127+19346

√
3

557037

(

1+
√

3
)2n

+
5127−19346

√
3

557037

(

1−
√

3
)2n

+
154 + 114

√
3

1587

(

1 +
√

3

3

)n

+
154− 114

√
3

1587

(

1 −
√

3

3

)n

− 36

529

(

1

3

)2n

− 2

273

(

1

3

)n

− 500

13041
(−2)n − 8

81
.
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