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Figure 1: Comparison of visualization of a Cook-Torrance BRDF model [CT82] fitted to the Nickel material from the MERL-MIT BRDF
database [MPBM03] using three different BRDF fitting metrics: classic cosine weight error [LFTG97], squared error of the logarithm of the
BRDF [LKYU12], and our novel image-driven BRDF fitting strategy.

Abstract

We propose a novel image-driven fitting strategy for isotropic BRDFs. Whereas existing BRDF fitting methods minimize a
cost function directly on the error between the fitted analytical BRDF and the measured isotropic BRDF samples, we also
take into account the resulting material appearance in visualizations of the BRDF. This change of fitting paradigm improves the
appearance reproduction fidelity, especially for analytical BRDF models that lack the expressiveness to reproduce the measured
surface reflectance. We formulate BRDF fitting as a two-stage process that first generates a series of candidate BRDF fits based
only on the BRDF error with measured BRDF samples. Next, from these candidates, we select the BRDF fit that minimizes the
visual error. We demonstrate qualitatively and quantitatively improved fits for the Cook-Torrance and GGX microfacet BRDF
models. Furthermore, we present an analysis of the BRDF fitting results, and show that the image-driven isotropic BRDF fits
generalize well to other light conditions, and that depending on the measured material, a different weighting of errors with
respect to the measured BRDF is necessary.
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1. Introduction

Bidirectional reflectance distribution functions (BRDFs) character-
ize the scattering of incident irradiance to outgoing radiance at a
surface point. Accurately mimicking the reflectance behavior of
real-world materials is crucial for photorealistic light transport sim-
ulations. While directly using the measured surface reflectance of a
material guarantees accurate results, it is not a universally practical
solution due to the potential storage requirements, the lack of effi-
cient sampling strategies, and/or the difficulty of altering the mate-

rial properties. While there exist partial solutions to these shortcom-
ings [DJ18], currently the standard procedure to overcome these
limitations is to fit an analytical BRDF model to the measurements
such that the resulting BRDF best reflects the reflectance behavior
of the measured exemplar material.

BRDF fitting is typically formulated as an optimization for the
set of BRDF parameters that minimizes a cost function that nu-
merically quantifies the difference between measured surface re-
flectance samples and the corresponding samples from the analyti-
cal BRDF model. The most commonly used cost function is the co-
sine weighted square distance [LFTG97, NDM05, WLT04]. How-
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ever, when visualized these BRDF fits tend to exhibit a too strong
diffuse component because the squared error is dominated by the
much larger specular reflectance. To alleviate this issue, a log-based
cost function that non-linearly compresses the dynamic range has
been proposed [LKYU12, SJR18]. While the visualizations of log-
based BRDF fits have improved, it is not universally the case (Fig-
ure 1). Based on these observations, we can draw two conclusions:
First, the visual appearance of the BRDF is not taken into account
in existing BRDF fitting cost functions, yet it is one of the primary
ways we evaluate the quality of the BRDF fit. Second, the approxi-
mation error is not uniformly distributed, and highly dependent on
the analytical BRDF model, BRDF parameters, and measured sur-
face reflectance. Yet, existing cost functions assume a fixed error
distribution independent of these factors.

In this paper we propose an easy to implement and novel fitting
metric for isotropic BRDFs that adapts to the underlying material
as well as the analytical BRDF model, and that takes into account
the fidelity of the visual appearance of the material. To achieve
this, we reformulate isotropic BRDF fitting as a two stage opti-
mization. In a first stage we generate a set of candidate BRDF fits
based on a novel family of cost functions characterized by a sin-
gle free parameter that (de)emphasizes low versus high reflectance
values. In the second stage, we render a sphere under the Euca-
lyptus Grove [Deb98] light probe for each candidate BRDF fit and
select the fit that is visually most similar to a rendering of the refer-
ence measured isotropic BRDF using a perceptually-based image
similarity metric. In contrast to a weighted sum of both costs, a
two stage approach avoids the need for delicate balancing of both
terms. Our two stage approach can be viewed as optimizing data fi-
delity in the first stage, and optimizing visual fidelity in the second
stage (constrained to the subspace of high data fidelity BRDFs).
While our method is easy to implement, and greatly improves vi-
sual accuracy as well as robustness of the isotropic BRDF fitting
process, it is computationally more expensive compared to clas-
sic BRDF fitting methods. Therefore, we additionally introduce a
light-weight alternative in which the optimal free-parameter of the
BRDF fitting metric is precomputed (i.e., averaged over many ma-
terials) for each BRDF model, and which can be implemented with
only minimal adjustments to any existing cosine-weighted BRDF
fitting framework.

We thoroughly analyze various aspects of our fitting method,
and show that it consistently outperforms existing cosine weighted
and log-based fitting metrics on the isotropic MERL-MIT BRDF
database [MPBM03] in terms of visual fidelity, and validate our
numerical conclusions through a user-study. In addition, we inves-
tigate two different perceptual image metrics [LPU∗13,ZIE∗18] for
selecting the best BRDF fit. Whereas, both perform similarly on av-
erage, the former places greater emphasis on color fidelity and the
latter on accuracy of the specular sharpness.

In summary, our contributions are:

1. A novel two stage image-driven isotropic BRDF fitting method
that outperforms existing BRDF fitting metrics in terms of visual
appearance fidelity;

2. A light-weight BRDF fitting strategy that outperforms existing
BRDF fitting metrics at the same computational cost;

3. Fitted BRDF parameters for the Cook-Torrance and GGX

microfacet BRDF models for all materials in the MERL-
MIT BRDF database [MPBM03] using our novel image-driven
BRDF fitting metric.

2. Related Work

The bidirectional reflectance distribution function (BRDF) de-
scribes the scattering of incident lighting on an opaque sur-
face [NRH∗77]. The BRDF is a 4D function that relates in-
cident irradiance at a surface point to outgoing radiance, and
thus it is an essential component in any global illumination ren-
dering system. Over the past decades, numerous BRDF models
(e.g., [AS00, CT82, WMLT07, Bli77, HHP∗92, HTSG91, LFTG97,
War92, HHdD16, HP17]) have been proposed that are increasingly
more accurate or more efficient to evaluate.

The availability of high-resolution measured surface reflectance
datasets [MPBM03] has enabled experimental validation of exist-
ing BRDF models [NDM05], and stimulated the development of
new BRDF models that are partially physically based (e.g., based
on microfacet theory) augmented with empirical components to
obtain better matches to measured data (e.g., [LKYU12, BSH12])
and even automated methods for searching the space of analytical
BRDF models [BLPW14]. A key component in such an empirical
data-driven BRDF analysis and development process is the ability
to fit analytical BRDF models to measured data, i.e., finding the
optimal BRDF parameters such that the evaluation of the BRDF
model best matches the measured data.

BRDF Fitting Ward [War92] and He et al. [HHP∗92] validate
their BRDF model by fitting it to a few measured materials. How-
ever, they do not specify the exact fitting metric or fitting strat-
egy. Lafortune et al. [LFTG97] employ a squared error of the
BRDF times the cosine of both the incident and outgoing direc-
tion. Westin et al. [WLT04] compare the accuracy of four analyt-
ical BRDF models [Pho75, LFTG97, War92, HTSG91] by fitting
them to five measured materials using a similar metric as Lafor-
tune et al. , but without the weighting by the cosine of the outgoing
direction. Similarly, Ngan et al. [NDM05] compare seven BRDF
models [AS00, CT82, War92, Bli77, HTSG91, D0̈5, LFTG97] to a
large set of measured materials [MPBM03], limiting incident an-
gles to 80◦ to avoid unreliable measurements at grazing angles,
and using a similar fitting metric as Westin et al. : a squared dif-
ference of the BRDF weighted by the cosine of the incident direc-
tion. Furthermore, they also experimented with a cubic and loga-
rithmic error metric, but conclude that these metrics produce too
“blurry” fits for the former, and numerical instabilities around zero
with the latter. Recently, Holzschuch and Pacanowski [HP17] pro-
posed a novel highly accurate two-scale microfacet BRDF model.
To fit their BRDF model, Holzschuch and Pacanowksi use a vari-
ant of the square of the cosine weighted BRDF metric, and include
a compressive weighting function [BSN16] and account for errors
introduced at grazing angles in the MERL dataset.

Ashikhmin and Premoze [AP07] propose a novel data-driven
microfacet BRDF model, and fit the microfacet distribution di-
rectly from dense backscatter observations. A similar strategy is
employed by Bagher et al. [BSH12] to fit the normal facet distribu-
tion from the data slice at θh = 0, and estimate Fresnel reflectance
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from the data slice at θd = 0. Bagher et al. perform: 1) a visual com-
parison on rendered images similar to Ngan et al. [NDM05], but
provide false color difference images, and 2) a quantitative compar-
ison of the squared difference of the BRDF times the cosine of the
incident and excitant directions. Both Ashikhmin and Premoze as
well as Bagher et al. assume that the BRDF model accurately char-
acterizes the relation between backscatter and non-backscatter re-
flections. Consequently, when this assumption is not met, the fitted
BRDF parameters are suboptimal for non-backscatter directions.
In contrast, the proposed image-driven fitting method takes into
account all measurements and does not make assumptions on the
predictive nature of the underlying BRDF model.

Löw et al. [LKYU12] propose two novel BRDF models and val-
idate their accuracy by fitting to measured data [MPBM03] using
two different fitting metrics E1 and E2. The E1 fitting metric is
identical to the cosine weighted fitting metric used in prior work,
and the E2 metric is the squared error on the logarithm of the co-
sine weighted BRDF (plus one to avoid numerical issues around
zero). Löw et al. report that the logarithmic fitting metric empha-
sizes wide-angle scattering errors better, and that it produces visu-
ally superior results. Clausen et al. [CMF18] extend Löw et al. ’s
logarithmic metric by raising the foreshortening cosine to a hand-
tuned exponent to further reduce the impact of samples at grazing
angles. Sun et al. [SJR18] propose a data-driven diffuse-specular
separation method (that partially relies on an image-driven metric
for computing the diffuse and specular color of the separated mea-
sured BRDF), and fit one and two-lobe analytical BRDF models
to the specular lobe. For the one-lobe case, the authors note that it
is essentially similar to fitting with the logarithmic metric. In this
paper we only consider single-lobe models, and based on Sun et
al. ’s observation will assume that a logarithmic fitting matches the
results of Sun et al. in visual quality.

Comparing Visual Material Appearance Ngan et al. [NDM05]
argue that the visual quality of the BRDF fits is important, and in
addition to comparisons based on numerical error, they also supply
visualizations of the different fitted BRDFs on a canonical spherical
object under the Grace Cathedral light probe [Deb98]. Havran et
al. [HFM16] propose a BRDF similarity metric that uses a percep-
tual image similarity metric (i.e., CSSIM [LPU∗13]) to compare vi-
sualizations of anisotropic BRDFs applied to a specially crafted ge-
ometry and lit by a directional light source. Similar to Havran et al.,
we will also use CSSIM to judge the visual similarity of BRDFs.

Fores et al. [FFG12] investigate the perceptual qualities of three
different BRDF fitting metrics: the regular squared BRDF differ-
ence, squared difference of cosine weighted BRDFs, and a cube-
root cosine weighted difference of BRDFs. Fores et al. conclude
from a perceptual study on renderings of fitted measurements to
three BRDF models [War92, CT82, AS00] on a blob-shaped ob-
ject [VLD07] under the Eucalyptus Grove light probe [Deb98] that
the cubic metric produces perceptually better fits for all models.
Similarly, Brady et al. [BLPW14] rely on image difference metrics
(i.e., a regular squared difference metric and SSIM [WBSS04]) on
visualizations of fitted BRDF models on a set of measured materi-
als to identify which BRDF model performs best. Our image-driven
method is similar in spirit to Fores et al. and Brady et al. in the sense
that we also select the best visual match from a set of candidates,

but instead of selecting a BRDF model, we select the best BRDF
fit.

In recent concurrent work, Lagunas et al. [LMS∗19] introduce
a learned material appearance similarity metric that maps an im-
age to a feature space that better correlates with the perception of
material appearance. Our BRDF fitting strategy is orthogonal to
this work, and the learned metric, as well as any other perceptually
based metric, can be easily used in our framework.

Inverse Rendering Our method bears some similarity to inverse
rendering [Mar98,RH01,WK15] where the appearance of a scene is
estimated such that visualizations of the scene best match a set of
reference photographs. A key difference is that inverse rendering
typically matches the appearance to a relatively small number of
images, and often leverage priors to guide the appearance estima-
tion to a plausible solution. Furthermore, inverse rendering matches
the appearance in relation to a whole scene, and thus includes shape
variations as well as lighting. In contrast, BRDF fitting starts from
an exhaustive set of measurements, and is independent of the shape
of the material sample as well as lighting. Our adaptive BRDF fit-
ting metric borrows from both, by taking data accuracy into account
as in classic BRDF fitting, as well as visual fidelity as in inverse
rendering.

Recently, combinations of model parameter accuracy and visual
fidelity has been explored for training deep networks for infer-
ring spatially-vary material properties [LSC18,GLD∗19,DAD∗19].
However, these methods fix the BRDF model a-priori. Furthermore,
these learning techniques assume the ground truth BRDF model
parameters are known at training time (and use model parameter
accuracy as a loss function), whereas in BRDF fitting we aim to
recover the model parameters.

3. Image-driven Isotropic BRDF Fitting

We desire a BRDF fitting metric that fulfills the following two
goals: (1) a metric that takes the visual fidelity of the fitted BRDF
compared to the measured BRDF into account, and (2) a metric
on the surface reflectance values that adapts to the characteristics
of the analytical BRDF model and the measured BRDF. Combin-
ing two metrics that quantify each goal in a single cost function
is non-trivial. Both errors will most likely have an incompatible
range, and thus would need appropriate weighting if combined to-
gether. Moreover, the scale of both metrics might also be dependent
on various other factors, resulting in a potentially different weight
for each measured material. Finally, optimizing such a combined
metric is likely to be non-trivial as the combined cost function can
result in a complex error landscape with many local minima. In-
stead of jointly optimizing both the visual appearance and surface
reflectance metrics, we propose to perform a two stage optimiza-
tion. In a first step, we generate a number of candidate BRDF fits
based on an adaptive BRDF metric (subsection 3.2). Next, from the
set of candidate fits, we select the one most optimal according to a
visual appearance similarity metric (subsection 3.1).

3.1. Visual Appearance Metric

The visual appearance of a material depends on the shape and light-
ing under which the material is viewed. We desire an estimate of vi-
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sual similarity of material appearance that generalizes well to any
shape and natural lighting condition. Hence, we need to establish
a reference geometry, reference lighting, and an image similarity
metric to compare visualizations of the reference scene with the
fitted and measured BRDF.

Image Similarity Our goal is to obtain BRDF fits that produce a
similar appearance as the measured material. While simple image
metrics such as Mean Square Root Error (MSRE) or Peak Signal to
Noise Ratio (PSNR) are easy to implement and quick to evaluate,
such metrics fail to characterize our perception of the differences
and similarities. Instead, we opt to rely on a perceptually-based im-
age similarity metric. In particular, we will consider two such met-
rics: CSSIM [LPU∗13] and the Learned Perceptual Image Patch
Similarity (LPIPS) [ZIE∗18]. CSSIM has been successfully used
before to characterize appearance similarity of BRDFs [HFM16].
LPIPS has not been used in the context of characterizing appear-
ance similarity. Both CSSIM and LPIPS operate on “low” dynamic
range images. We therefore tonemap all rendered images using a
gamma 2.2 correction.

Reference Lighting Perceptual studies have shown that humans
can best judge material appearance under natural lighting [FDA03,
FFG12]. Empirically, we observe that perceptually-based metrics
like LPIPS and CSSIM also work more consistently under natural
lighting. We therefore follow Fleming et al. ’s recommendation of
natural lighting for appearance evaluation, and use the Eucalyptus
Grove light probe [Deb98] to illuminate the reference scene.

Reference Shape Prior research has indicated that a blob aids
human viewer in the perception of material reflectance [VLD07].
However, in our case, we do not rely on a human viewer to judge
similarity. This allows us more freedom in the choice of shape. This
was also recognized by Harvan et al. who optimized a shape for
judging reflectance similarity under directional lighting. In contrast
to Havran et al. we have opted to measure appearance similarity un-
der natural lighting. In such a case, the appearance at each surface
point is the integral of the lighting times the BRDF over the visible
hemisphere. We therefore desire a shape that offers an unoccluded
view of the sphere of incident directions for a wide sampling of sur-
face normal directions. Following Occam’s razor, we opt for using
a sphere as it (1) meets all the requirements, (2) is easier to render,
and (3) is rotationally invariant.

3.2. Adaptive BRDF Metric

Inspired by the dynamic range compression behavior of the log-
based metric, we introduce a compression function Λ over the co-
sine weighted BRDF and that takes an additional parameter γ as
input that determines the degree of compression:

εγ = ∑
θi,θo,φo

|Λ( fr(ωi,ωo; p)cosθi,γ)−Λ( f̂r(ωi,ωo)cosθi,γ)|2

sinθi sinθo cosθo, (1)

where fr(ωi,ωo; p) is the analytical BRDF model characterized by
the BRDF parameters p and defined over incident and outgoing
directions ωi and ωo respectively. f̂r is the measured BRDF. The
above metric is similar to the classic cosine-weighted BRDF fitting

metrics [LFTG97, NDM05, WLT04], with exception of the inclu-
sion of the compression function Λ.

We follow Löw et al. [LKYU12] and sample φo and θo in 1 de-
gree increments, and θi in 10 degree increments. Unlike Löw et al.,
we sample the full 90◦ for φo.

When rendering the reference scene, we also observe that the
distribution of evaluated incident and outgoing directions differs.
Incident directions are typically integrated over the sphere of di-
rections, and hence its Jacobian for solid angle to spherical coor-
dinates is sinθi. However, the proportion of outgoing directions is
closely related to the occurrence of visible surface normals. Surface
normals at grazing angle occupy relatively less pixels due to view-
foreshortening. In case of our spherical geometry, this corresponds
to a projection of the visible hemisphere of direction to a disc, and
the corresponding Jacobian is sinθo cosθo.

Finally, we need to define the compression function Λ(·,γ),
where the parameter γ controls the degree of compression. A simple
function that fulfills this goal is the power function:

Λ(r,γ) = r
1
γ . (2)

We have opted to make the power inversely proportional to γ as
this yields a more uniform change in visual qualities of the fitted
BRDFs when sampling the parameter γ uniformly. Note that when
γ = 1, the metric is equivalent to the classic cosine weighted metric.

While our BRDF distance metric shares high-level similarities
with the cosine-weighted p-norm used in prior work [PR12], it dif-
fers conceptually significantly. Whereas the p-norm compresses the
error, we compress the range of the BRDFs as we desire the metric
to adapt to the properties of the BRDF, not to the distribution of the
error.

3.3. Implementation

To facilitate ease of implementation, we have designed our fitting
strategy to leverage existing components (e.g., numerical optimiza-
tion frameworks, render systems, etc...) as much as possible. We
therefore, separate the optimization in two stages: (1) fitting the
BRDF solely based on measured reflectance, and (2) fitting based
on visual similarity.

In the first stage of our two stage image-driven BRDF fitting
method, we generate 21 candidate BRDF fits, for γ uniformly sam-
pled in [1,3]. We minimize the adaptive cost function using a ro-
bust direct search method (patternsearch in Matlab). However, our
method is not married to this particular non-linear optimization
method. Since the adaptive metric (Equation 1) is differentiable,
faster gradient based method can also be used. To accelerate the fit-
ting process, we observe that a small change in γ only yields modest
changes in the fitted BRDF parameters. Hence, we can use the so-
lution of a nearby γ as the starting point for the optimization. In our
implementation we first do a full optimization from a neutral start-
ing point for γ = 1 (i.e., classic least squares BRDF fitting). We
then use this solution as the starting point for the next γ value, and
iteratively work our way out to γ = 3. Empirically, we found that
a full optimization requires on average 1,000 iterations, whereas
using a neighboring solution as a start point requires on average

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Bieron and Peers / An Adaptive BRDF Fitting Metric

γ = 1.1 γ = 1.5 γ = 1.9

γ = 2.3 γ = 2.7 Reference

Red Metallic Paint

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1  1.5  2  2.5  3

E
rr

or

γ

CSSIM
LPIPS

Figure 2: The effect of different values of γ on the BRDF fits illustrated on Red Metallic Paint. Left: Low γ values produce sharper BRDF fits,
and conversely, high γ values produce more blurry BRDF fits. Right: The CSSIM and LPIPS errors plotted (with respect to a visualization of
the reference measured material) for each γ value; a minimum is reached at γ = 1.9 for both CSSIM and LPIPS.

250 iterations. Hence, compared to a classic BRDF fitting metric,
the computational overhead is approximately a factor 6 (1000 iter-
ations versus 1000+ 20× 250 = 6000 iterations). Figure 2 shows
BRDF fits for a selection of different γ values for the Red Metallic
Paint material. High γ values tend to produce more diffuse fits, and
conversely low γ values place more emphasis on the specular com-
ponent. We do not explore γ values below 1, as the BRDF fits ob-
tained with a regular cosine weighted L2 are already overly sharp.
We also do not explore γ values over 3, as the resulting BRDF fits
are very blurred and the minimal visual improvement does not jus-
tify the additional computational expense. Note however that using
a larger range for γ can only improve the quality of the results, al-
beit at significant additional computational costs.

In the second stage, we render the BRDF fits obtained for the
different γ values for the reference scene, and compute and find
the rendering, and thus corresponding BRDF fit, with the low-
est CSSIM or LPIPS error. In our implementation we use Mit-
suba [Jak10] to render the BRDF fits. However, any other rendering
system capable of correctly integrating light probe lighting over the
BRDF can be used instead.

4. Results

Figure 3 and Figure 4 show selections of 4 materials from
the MERL-MIT BRDF database [MPBM03], fit to the Cook-
Torrance [CT82] and GGX [WMLT07] BRDF models respec-
tively. The 1st column shows a reference rendering of the mate-
rial under the Uffizi Gallery (odd rows) and the St. Peter’s Basilica
(even rows) light probes [Deb98]. Note that these lighting con-
ditions are different from the lighting condition used for selec-
tion in the second stage of our image-driven fitting method (i.e.,
Eucalyptus Grove). For each analytical BRDF model we show a
cosine-weighted L2 fit (2nd column), Löw et al.’s log-based fit
(3rd column), and our image-driven BRDF fit with the CSSIM

and LPIPS metrics (4th and 5th column respectively), and a di-
rect CSSIM fit (6th column); we used the same Jacobian and sam-
pling pattern for all BRDF fitting metrics. We have empirically ver-
ified that our L2 and log-based fits for the Cook-Torrance BRDF
model are visually similar to or better than the BRDF fits in prior
work [NDM05,LKYU12]. The direct CSSIM fit is obtained by op-
timizing the BRDF parameters such that the CSSIM error on the
rendering of the BRDF model under the target illumination (i.e.,
Uffizi Gallery, or St. Peter’s Basilica) is minimized; the cost func-
tion does not rely on surface reflectance measurements, and directly
optimizes the image error. SSIM (and thus CSSIM) has been shown
to be ill-suited for optimization [BVW12], requiring us to use a
robust, but time-consuming, direct-search non-linear optimization
with a well-chosen starting point; we use the L2 BRDF fit as the
starting point. This direct CSSIM BRDF fit is the best possible
BRDF fit that approximates the visual appearance under the tar-
get lighting. Hence it presents a lower bound on the capabilities of
how well the BRDF model can mimic the appearance of the mea-
sured material according to CSSIM similarity. Due to the many lo-
cal minima, we were not able to obtain a robust direct LPIPS fit.
We list the CSSIM and LPIPS errors between the rendering and the
reference image for each BRDF fit.

From these results (over all MERL-MIT materials) we can draw
the following conclusions:

1. The cosine weighted BRDF fits are visually the most dissimilar.
This is confirmed by the CSSIM and LPIPS errors which are
significantly larger than for the other BRDF fits.

2. The log-based BRDF fits are visually a better match than the
L2 BRDF fits for these materials. Nevertheless, in general we
observe a mismatch in brightness for both the specular (i.e., too
dark) and diffuse (i.e., too bright) components.

3. In 50% (according to CSSIM) or 47% (according to LPIPS) of
the materials in the MERL-MIT BRDF database evaluated un-
der four light probes (Grace Cathedral, Uffizi Gallery, St. Pe-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Bieron and Peers / An Adaptive BRDF Fitting Metric

Reference Cos. L2 Log-based Image-driven (CSSIM) Image-driven (LPIPS) Direct CSSIM

al
um

in
iu

m

CSSIM / LPIPS 0.2136 / 0.1265 0.0911 / 0.0987 0.0492 / 0.0397 0.0549 / 0.0413 0.0426 / 0.0410

CSSIM / LPIPS 0.1043 / 0.0666 0.0549 / 0.0731 0.0431 / 0.0351 0.0475 / 0.0363 0.0400 / 0.0391

re
d-

m
et

al
lic

-p
ai

nt

CSSIM / LPIPS 0.1867 / 0.1454 0.0807 / 0.0821 0.0680 / 0.0679 0.0680 / 0.0679 0.0388 / 0.0400

CSSIM / LPIPS 0.0825 / 0.0941 0.0567 / 0.0711 0.0505 / 0.0437 0.0505 / 0.0437 0.0442 / 0.0528

co
lo

r-
ch

an
gi

ng
-p

ai
nt

1

CSSIM / LPIPS 0.1607 / 0.1415 0.0618 / 0.0476 0.0288 / 0.0237 0.0343 / 0.0289 0.0201 / 0.0208

CSSIM / LPIPS 0.0749 / 0.1146 0.0399 / 0.0455 0.0308 / 0.0485 0.0324 / 0.0468 0.0301 / 0.0505
Figure 3: Image-driven BRDF fitting on three selected materials with the Cook-Torrance microfacet BRDF model compared to the classic
cosine weighted L2 BRDF fitting metric and Löw et al.’s log-based fitting metric. The CSSIM and LPIPS error is shown below each BRDF fit
visualization. Note that the “Direct CSSIM” results are optimized to produce an as low as possible CSSIM error under the lighting shown.
Hence is represents a lower bound on the CSSIM error for each material under the shown lighting.
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Reference Cos. L2 Log-based Image-driven (CSSIM) Image-driven (LPIPS) Direct CSSIM

tu
ng

st
en

-c
ar

bi
de

CSSIM / LPIPS 0.1746 / 0.1241 0.0745 / 0.0592 0.0192 / 0.0117 0.0192 / 0.0117 0.0169 / 0.0108

CSSIM / LPIPS 0.0758 / 0.0519 0.0785 / 0.0405 0.0165 / 0.0079 0.0165 / 0.0079 0.0134 / 0.0062

bl
ue

-m
et

al
lic

-p
ai

nt
2

CSSIM / LPIPS 0.1643 / 0.1090 0.0531 / 0.0352 0.0220 / 0.0186 0.0266 / 0.0190 0.0166 / 0.0188

CSSIM / LPIPS 0.0623 / 0.0430 0.0275 / 0.0235 0.0207 / 0.0224 0.0217 / 0.0180 0.0203 / 0.0250

gr
ee

n-
ac

ry
lic

CSSIM / LPIPS 0.0376 / 0.0368 0.0325 / 0.0385 0.0238 / 0.0270 0.0234 / 0.0276 0.0217 / 0.0257

CSSIM / LPIPS 0.0276 / 0.0349 0.0282 / 0.0292 0.0150 / 0.0164 0.0149 / 0.0165 0.0125 / 0.0146
Figure 4: Image-driven BRDF fitting on three selected materials with the GGX microfacet BRDF model compared to the classic cosine
weighted L2 BRDF fitting metric and Löw et al.’s log-based fitting metric. The CSSIM and LPIPS error is shown below each BRDF fit
visualization. Note that the “Direct CSSIM” results are optimized to produce an as low as possible CSSIM error under the lighting shown.
Hence is represents a lower bound on the CSSIM error for each material under the shown lighting.
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Figure 5: A comparison of our image-driven Cook-Torrance BRDF
fits to log-based GGX BRDF fits for the Tungsten Carbide and Blue
Metallic Paint 2.

ter’s Basilica, Beach), the visual fidelity of the image-driven
Cook-Torrance BRDF fits is equal to or better than the log-based
GGX microfacet BRDF fits. This illustrates that a good BRDF
fitting metric on a suboptimal BRDF can outperform a subopti-
mal BRDF fitting metric on a superior BRDF model. Examples
of this are shown in Figure 5.

4. The results for our image-driven BRDF fitting metric exhibit a
CSSIM error close to the optimal direct CSSIM fits. Note that
our image-driven BRDF fitting metric is disadvantaged com-
pared to the direct CSSIM fit as it performs the second stage (i.e.,
selection of the best candidate) under a different lighting, while
the direct CSSIM fit is optimized against the target lighting.

Our image-driven BRDF fitting method is particularly effective
when the underlying analytical BRDF is unable to characterize the
measured surface reflectance exactly. In such as case, measured
reflectance reproduction is mostly irrelevant and the visually best
match is selected.

Finally, the supplemental materials include a complete listing of
the fitted BRDF parameters for the Cook-Torrance and GGX mi-
crofacet BRDF models for all MERL-MIT materials fitted with the
different metrics, as well as visualizations and CSSIM/LPIPS er-
rors of the fitted BRDFs under four different light probes. From
these supplemental results, one can observe that our image-driven
metric does not necessarily produce the most visually accurate re-
sults under all lighting conditions for a single material. This suggest
that there might not exist a single unique BRDF fit that produces the
visually most accurate material appearance uniformly. However, as
we will show in section 5, our image-driven fitting metric performs
best on average over all tested materials and lighting conditions.

5. Analysis & Discussion

5.1. Analysis

The results in section 4 qualitatively indicate that our image-driven
metric is able to produce visually more accurate BRDF fits. This is
further qualitatively backed up by Table 1 that lists the percentage

of the MERL-MIT materials for which each BRDF fitting metric
produces the lowest CSSIM/LPIPS error on a sphere rendered un-
der four different lighting conditions (i.e., two indoor light probes
(Grace Cathedral and St. Peter’s Basilica) and two outdoor light
probes (Uffizi Gallery and Beach)); we use the same image similar-
ity metric for error comparison as for selection in the second stage
of the image-based fitting process. If the optimal γ value equals
1, then the cosine weighted L2 metric and our image-driven met-
ric are identical; we assign half a win to each metric in case that
such a BRDF fit produces the lowest error. As can be seen, our
image-driven BRDF fitting metric produces visually more accurate
fits than the competing BRDF fitting metrics, and that both CSSIM
and LPIPS perform comparable. Furthermore, as illustrated in Fig-
ure 6 in cases where other BRDF metrics provide a visually better
fit, the differences in CSSIM/LPIPS errors are small. In contrast,
when our image-driven metric provides the best result, the differ-
ences can be significant. This is further corroborated by looking at
the total CSSIM and LPIPS error under different light probes over
the MERL-MIT BRDF database (Table 2; columns 2 & 3 vs. 5 for
the Cook-Torrance BRDF model, and columns 7 & 8 vs. 10 for the
GGX microfacet BRDF model) where our image-driven BRDF fit-
ting metric achieves the overall lowest cumulative visual error. We
also observe that as the analytical BRDF model becomes more ex-
pressive (i.e., GGX vs. Cook-Torrance), that classic BRDF fitting
metrics produce visually more accurate results; when the BRDF
model can better explain the measurements, visual accuracy fol-
lows from data fidelity. However, even in the case of GGX, our
image-driven fitting method still offers a significant advantage.

5.2. Ablation Study

Image-driven vs. Direct CSSIM Table 2 (columns 6 and 11) also
lists the cumulative error for the direct CSSIM BRDF fit over differ-
ent light probes. Unlike previous experiments, these are the BRDF
fits obtained under a single fixed lighting conditions (i.e., Eucalyp-
tus Grove) and then visualized under the other light probes. Inter-
estingly, the cumulative errors for the direct CSSIM fits are larger
than the cumulative CSSIM and LPIPS errors for our image-driven
metric. This indicates that the direct CSSIM BRDF fits are poten-
tially overfitted to the lighting condition. Our image-driven BRDF
fitting method short-circuits this issue by creating a set of candi-
date fits solely based on their sampled reflectance values indepen-
dently of their visual accuracy, reducing the likelihood of overfit-
ting. Empirically, we found that overfitting to the lighting occurs
more often for advanced BRDF models such as GGX. Potentially,
lighting overfitting could be combatted by directly optimizing over
an ensemble of light probes. However, this would pose a number of
significant problems. First, to avoid biasing, the ensemble of light
probes would need to be representative of the distribution of real
world light probes. Second, the computational costs would be or-
ders of magnitude higher without additional optimizations. Recent
advances in differential rendering systems could reduce the com-
putational burden. Finally, optimizing in the image domain is more
complex and would likely result in a less robust optimization. For
example, multiple restarts where needed for stable direct CSSIM
BRDF fitting (with a single light probe) whereas our image-driven
BRDF fitting did not require a restart.
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Table 1: Percentage of MERL-MIT materials for which the Cook-Torrance/GGX BRDF fit computed with the respective fitting metric has a
lower CSSIM/LPIPS error than all other metrics (for the same BRDF model) for four different lighting conditions.

CSSIM
Model: Cook-Torrance GGX
Metric: Cos. Log- Image- Cos. Log- Image-

L2 based driven L2 based driven
Grace 6.50% 35.00% 58.50% 21.50% 29.00% 49.50%
Uffizi 5.00% 11.00% 84.00% 8.00% 12.00% 80.00%

St. Peters 9.00% 24.00% 67.00% 21.50% 15.00% 63.50%
Beach 4.50% 16.00% 79.50% 22.50% 14.00% 63.50%
Total 6.25% 21.50% 72.25% 18.38% 17.50% 64.12%

LPIPS
Model: Cook-Torrance GGX
Metric: Cos. Log- Image- Cos. Log- Image-

L2 based driven L2 based driven
Grace 4.00% 29.00% 67.00% 19.50% 23.00% 57.50%
Uffizi 8.00% 22.00% 70.00% 13.00% 16.00% 71.00%

St. Peters 4.50% 32.00% 63.50% 16.50% 24.00% 59.50%
Beach 5.00% 23.00% 72.00% 17.00% 20.00% 63.00%
Total 5.38% 26.50% 68.12% 16.50% 20.75% 62.75%

Table 2: Comparison of the cumulative CSSIM and LPIPS errors over all materials in the MERL-MIT BRDF database for four different
light probes and for both the Cook-Torrance and GGX microfacet BRDF models. The optimal γ parameter selection, the image-driven BRDF
fitting, as well as the Direct CSSIM fit are performed under the Eucalyptus Grove light probe.

CSSIM Average Errors over All Materials
Model: Cook-Torrance GGX

Metric:
Cos. Log- Optimal Image- Direct Cos. Log- Optimal Image- Direct
L2 based γ = 2.1 driven CSSIM L2 based γ = 2.5 driven CSSIM

Grace Cathedral 0.04215 0.02355 0.02271 0.02216 0.02671 0.03593 0.01866 0.01596 0.01747 0.02594
Uffizi Gallery 0.05779 0.03160 0.02098 0.02081 0.01989 0.05201 0.02532 0.01722 0.01688 0.02073

St. Peters 0.03105 0.02221 0.01938 0.01775 0.01954 0.02744 0.01994 0.01563 0.01507 0.01690
Beach 0.02310 0.01679 0.01326 0.01266 0.01233 0.02060 0.01515 0.01114 0.01118 0.01294

All Lightings 0.03852 0.02354 0.01908 0.01834 0.01962 0.03399 0.01977 0.01499 0.01515 0.01913

LPIPS Average Errors over All Materials
Model: Cook-Torrance GGX

Metric:
Cos. Log- Optimal Image- Direct Cos. Log- Optimal Image- Direct
L2 based γ = 1.9 driven CSSIM L2 based γ = 2.0 driven CSSIM

Grace Cathedral 0.05086 0.03094 0.03325 0.02845 0.03518 0.04224 0.02412 0.02442 0.02167 0.04158
Uffizi Gallery 0.05440 0.03413 0.02733 0.02664 0.02483 0.04812 0.02923 0.02381 0.02333 0.02596

St. Peters 0.03474 0.02627 0.02661 0.02184 0.02712 0.03021 0.02212 0.02072 0.01923 0.02669
Beach 0.03772 0.02461 0.02081 0.01947 0.01777 0.03226 0.02330 0.01864 0.01805 0.02117

All Lightings 0.04443 0.02899 0.02687 0.02410 0.02622 0.03821 0.02469 0.02190 0.02057 0.02885

Table 3: Cumulative error over 7 rotations of the blob lit by the Eucalyptus Grove light probe for image-driven BRDF fits selected on a
sphere, a different rotation of the blob, Havran et al. [HFM16]’s shape lit by the aformentioned light probe, plus Havran et al. ’s scene as
designed (point lighting).

CSSIM Metric LPIPS Metric
Model Sphere Blob Havran shape Havran scene Sphere Blob Havran shape Havran scene

Cook-Torrance 14.95872 15.04680 15.54202 24.87558 15.56582 15.42327 15.88830 30.99339
GGX Microfacet 11.84850 11.90496 12.44426 14.19923 14.17241 14.06424 14.25998 17.37047
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Figure 6: Histogram of relative error for the Cook-Torrance BRDF model and the GGX microfacet BRDF model. The relative errors are
accumulated under four different lighting conditions (Grace Cathedral, Uffizi Gallery, St. Peter’s Basilica, and Beach light probes), and
does not include the light probe under which the BRDF fit was selected. The purple histogram includes the materials where our image-
driven metric outperforms the log-based metric. The green histogram includes the materials for which the log-based metric outperforms our
image-driven metric.

Cook-Torrance Model GGX Microfacet Model

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

#
M

a
te

ri
a
ls

γ

CSSIM
LPIPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

#
M

a
te

ri
a
ls

γ

CSSIM
LPIPS

Figure 7: Histogram of the number of MERL-MIT materials per selected γ value by CSSIM and LPIPS, for both the Cook-Torrance BRDF
model and the GGX Microfacet BRDF model.
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Figure 8: Cumulative CSSIM and LPIPS errors over all MERL-
MIT materials visualized under the Eucalyptus Grove lighting for
varying γ values. The cumulative CSSIM errors reach a minimum
for γ = 2.1 and γ = 2.5 for the Cook-Torrance and GGX microfacet
BRDF model respectively. For the LPIPS metric, the minimum is
found at γ = 1.9 for Cook-Torrance and γ = 2.0 for the GGX mi-
crofacet model. Note that the CSSIM and LPIPS error values are
not compatible and their relative order does not indicate that one
is better than the other.

Adaptive γ vs. Fixed γ The previous experiment indicates BRDF
fitting based solely on visual similarity is not ideal. However, it
does not show the necessity of an adaptive metric. Indeed, it is a
valid question whether there exists a single optimal γ value. Fig-
ure 7 plots the histogram of number of MERl-MIT materials per
selected γ value. From this we can draw two conclusions:

1. There does not exist a single “optimal” γ value, and the distribu-
tion is fairly uniform.

2. The last histogram bin contains a significantly larger number of
materials. This is an artifact of the fact that we do not consider
γ values larger than 3 because of the minimal improvement in
visual BRDF appearance outside this range.

While modest, the adaptive two stage optimization incurs a com-
putational overhead (6×) compared to a classic cosine-weighted
or log-based BRDF fitting metrics. BRDF fitting is typically per-
formed once in a precomputation step, and thus computational cost
is not a significant concern for most applications. However, to ac-
commodate applications for which fitting cost is of importance, we
propose a light weight alternative, by precomputing the optimal
fixed γ value that produces the overall best BRDF fits. Once this
γ value is precomputed, it can then be used, at the same computa-
tional cost as classic fitting metrics, to fit isotropic BRDF models.
Figure 8 plots the total CSSIM and LPIPS error over the MERL-
MIT BRDF database for the Cook-Torrance and GGX microfacet
BRDF models. Each of the plots follow a slightly different tra-
jectory, and reach a minimum at a different γ value: when using
CSSIM as the selection metric, the optimal fixed γ values are 2.1
for the Cook-Torrance BRDF model and 2.5 for the GGX BRDF
model, and when using LPIPS as selection metric, the optimal γ

value is 1.9 for the Cook-Torrance model and 2.0 for the GGX mi-
crofacet model. Table 2 (4th and 9th column) shows the cumulative
CSSIM/LPIPS errors for the fixed γ BRDF fitting (with γ = 2.1/1.9
and γ = 2.5/2.0 for the Cook-Torrance and GGX BRDF models
respectively). For both BRDF models, the optimal fixed γ solution

Table 4: The mean standard deviation of each model’s parameters
over the MERL-MIT BRDF database for 5 random starting points
for the first stage of our BRDF fitting process with γ = 1. All BRDF
parameters are in the 0 to 1 range. For the Cook-Torrance BRDF
model, Fresnel reflectance is determined by the reflectance at nor-
mal incidence. For the GGX microfacet BRDF model, Fresnel is
parameterized by the index of refraction (η) which was rescaled to
[0..1] via η−1

4 .

Parameter Cook-Torrance GGX
Diffuse 0.000428 0.003035

Specular 0.003230 0.013166
Roughness 0.002168 0.010775

Fresnel 0.005846 0.077113

outperforms prior fitting metrics in terms of CSSIM and LPIPS er-
ror. Hence, it offers an attractive alternative when reduced com-
putational cost is essential. Interestingly, the fixed γ = 2.5 metric
marginally outperforms, in terms of total CSSIM error, the image-
driven metric for the GGX model. This is mainly due to the signif-
icantly better performance under the Grace Cathedral light probe.
When the target lighting (i.e., Grace Cathedral) deviates signifi-
cantly from the selection lighting (i.e., Eucalyptus Grove) then it
is possible, as is the case here, that a fixed γ can outperform, on
average over the MERL-MIT BRDF database, the adaptive image-
driven metric.

Impact of Reference Shape In subsection 3.1 we opted for using
sphere as the reference shape by virtue of its simplicity. To better
understand the implications of this choice, we compute (Table 3)
the cumulative CSSIM and LPIPS errors for the sphere, blob, and
Havran et al. [HFM16]’s shape as the reference shape under the
Eucalyptus Grove light probe, computed over visualization of the
blob under 7 different rotations (excluding the selection orienta-
tion) for different lighting conditions over all MERL-MIT materi-
als. For completeness, we also include Havran et al. [HFM16]’s
metric with directional lighting as the selection metric (instead of
the reference shape under natural lighting).

From this can can draw the following conclusions:

1. The sphere and the blob reference shape perform very similar
under both image similarity metrics; the blob slightly outper-
forming the sphere for LPIPS, and the sphere outperforming the
blob for CSSIM.

2. Havran et al. ’s shape performs well, albeit slightly less than
the sphere and the blob. We believe this is mainly due to the
self-occlusion of the ground plane cutting of some of the impor-
tant grazing angle cues. In general, most reasonable convex (i.e.,
sphere-like) shapes are acceptable as the reference shape.

3. Havran et al.’s shape under directional lighting does not perform
well under either perceptual image similarity metric for isotropic
BRDFs. However, it should be noted that Havran et al. ’s BRDF
similarity metric is designed for anisotropic BRDFs instead of
isotropic BRDF as in our case.

Repeatability of Fitting The repeatability of our fitting strategy is
in most part determined by the stability of the non-linear parame-
ter optimization for γ = 1 (i.e., classic least squares BRDF fitting),
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Figure 9: Two materials that cannot be well expressed by the Cook-
Torrance BRDF model. Without a more expressive model, some as-
pect of the analytical fit will be visibly wrong (i.e. specular sharp-
ness or diffuse color/intensity).

since subsequent optimizations start from the solution of the previ-
ous fits and the second stage is deterministic given the outcome of
the first stage. The stability of this γ = 1 optimization depends on
two factors: the choice of optimization algorithm, and the complex-
ity of the BRDF model. We opted for the patternsearch non-linear
optimization algorithm which is robust to the choice of the starting
point. To validate, we compute the standard deviation over 5 BRDF
fits with random starting point for the Cook-Torrance and GGX mi-
crofacet BRDF models over the MERL-MIT BRDF database. The
results (Table 4) show, indeed, that for these BRDF models and
using patternsearch, the fitting is stable and repeatable. It is advis-
able to validate the stability of the BRDF fitting when changing the
BRDF model or non-linear optimization algorithm, and if needed
improve the stability by taking the best BRDF fit from multiple
attempts with random starting points for γ = 1.

CSSIM vs. LPIPS In this paper, we have used two different image
similarity metrics: CSSIM [LPU∗13] and LPIPS [ZIE∗18]. Both
image similarity metrics capture perceptual appearance similarity
well. However, both have slightly different ’preferences’. CSSIM
tends to prioritize color fidelity over sharpness, and hence tends to
selected slightly more blurred BRDFs. LPIPS gives more weight
to sharpness, and tends to produce images with better matching
highlight shapes. While often subtle, the difference in preference is
most obvious when the analytical BRDF cannot fit the measured re-
flectance well (e.g., as exemplified in Figure 9 for the Violet-Acrylic
and Alum-Bronze material).

We note that our image-driven BRDF fitting metric is not mar-
ried to CSSIM or LPIPS, and any other image and/or appear-
ance similarity metrics such as the learned metric of Lagunas et
al. [LMS∗19] can be used. Conversely, regular image difference
metrics can also be used. For example, we found that a squared im-
age difference on tone-mapped images performs reasonably well in
many cases, albeit not as robustly (with respect to perceptual simi-
larity) as CSSIM or LPIPS.

Complex Shapes and Advanced BRDFs In the above in-depth
analyses, we have focused on a limited number of BRDF models
(i.e., the Cook-Torrance and GGX microfacet BRDF models) and
relatively simple shapes. For completeness, we empirically investi-

gate whether our BRDF fits perform well on more complex shapes
with indirect light transport and advanced BRDF models.

In Figure 10 we show visualizations of the tungsten-carbide ma-
terial fitted to the GGX microfacet BRDF model using both the
log-based and our image-driven metric on the Buddha geometry
model which exhibits some modest amounts of indirect lighting and
high frequency surface normal variations under two different light
probes (i.e., Uffizi Gallery and St. Peter’s Cathedral). While differ-
ences in highlights are less visible due to the high-frequency normal
variations, the overall appearance of the image-driven BRDF fit is
visually closer to the reference visualization.

More advanced BRDF models are capable of more accurately
modeling surface reflectance, and thus better fit reflectance mea-
surements, thereby implicitly guaranteeing good visual fidelity.
Yet, such advanced BRDF models can also benefit from our adap-
tive BRDF fitting metric. Figure 11 shows BRDF fits of four se-
lected materials from the MERL-MIT BRDF dataset using the
advanced two-scale microfacet BRDF model of Holzschuch and
Pacanowski [HP17]. We compare, using the author’s BRDF imple-
mentation, the fitted BRDF parameters reported by Holzschuch and
Pacanowski with image-driven BRDF fits under two different light
probes: the light probe used by Holzschuch and Pacanowski (at a
slightly lower exposure to reduce oversaturation of specular high-
lights) and the Uffizi Gallery light probe. These results show that
even on such a complex BRDF model, our adaptive image-driven
BRDF fitting metric can produce visually more accurate BRDF fits.

5.3. User-study

In the above analyses we have taken the error values of the percep-
tual metrics (i.e., CSSIM and LPIPS) at face value. However, we
do notice that for some materials (e.g., such as Violet-Acrylic and
Alum-Bronze shown in Figure 9), each metric picks a suboptimal
γ value. Hence, neither metric fully captures the human perception
of material appearance. To validate the quality of our BRDF fits we
perform an additional large-scale user study on Amazon’s Mechan-
ical Turk.

Experiment Description & Setup Our user-study takes the form
of a 2 alternative forced choice (2AFC) experiment where the user
is presented with a reference image and two different BRDF fits.
The user then has to select the visualization that “best matches the
material appearance of the reference visualization”. In our user-
study we compare our image-driven BRDF fitting result with a
log-based BRDF fit; we randomly change the order of which fit
is shown on which side of the reference rendering. We ran our user
study for both BRDF models (Cook-Torrance and GGX), and for
both selection metrics (CSSIM and LPIPS), as well as the light-
weight fixed γ version computed with CSSIM and LPIPS. Hence,
we ran 8 different user-studies that share all experiment parameters;
we did not mix the different image-driven fits in the same study.

For a number of materials in the MERL-MIT database, the
BRDF fits of both image-driven and log-based BRDF fits are very
similar. Showing such scenes to the user will be counterproductive
as the user might get frustrated and loose concentration. We there-
fore select a subset of 50 materials that are more likely to show
differences. To select this subset, we sort the materials according to
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Log-based Reference Image-driven Log-based Reference Image-driven

Figure 10: Comparison of log-based and image-driven BRDF fits for tungsten-carbide with the GGX microfacet BRDF model visualized on
the Buddha model under the Uffizi Gallery and St. Peter’s Cathedral light probes.
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Figure 11: Comparison of previously published fits to image-driven fits with an advanced BRDF Model [HP17] for four materials under two
different lighting conditions.

the LPIPS ’error’ (image difference) between the log-based Cook-
Torrance BRDF fit and our image-driven BRDF fit, and retain the
50 with the highest error. To compare the results from the differ-
ent user-studies, we use the same subset for each study, including
the studies that feature the GGX BRDF model. Note that this is
a very conservative threshold. Figure 12 shows the last included
BRDF from this list; both BRDF fits are visually very similar. Us-

ing CSSIM instead of LPIPS to sort the materials yielded a similar
subset of 50 materials despite slight differences in the sort.

To avoid bias in the reference shape or lighting in the visualiza-
tions presented to the user, we use a different set of conditions than
we use in the image-driven selection step. Following Fleming et
al. [FDA03] we present a scene under natural lighting. We opt for
the Uffizi Gallery light probe because it is color neutral which helps

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



Bieron and Peers / An Adaptive BRDF Fitting Metric

Log-based Reference Image-driven (LPIPS)

G
re

en
-f

ab
ri

c

Figure 12: Cook-Torrance BRDF fits for the last material in-
cluded in our user study. This was the fiftieth material as sorted
by LPIPS difference between log-based and the corresponding
(LPIPS) image-driven BRDF fits on our reference scene.

Figure 13: Reference images for Aluminium shown for the five ori-
entations of the blob used in the user study.

the users in detecting material color differences. Furthermore, we
follow Vangorp et al. [VLD07] and use a blob shape. To avoid
conditioning of the observer to the scene, we randomly show 5 dif-
ferent orientations of the blob (Figure 13). These 5 orientations are
a subset from the 8 uniformly sampled rotations along the up axis
of the object, and which exhibit sufficient specular cues for the user
to judge.

For each of the 5 shapes and 50 materials, we obtained 5 judg-
ments, yielding 25 judgments per material over 8 experiments. In
total we collected 10,000 user judgments.

Results Table 5 summarizes the result from the user study. We
report the number of ’wins’ for each tested MERL-MIT material,
where a ’win’ is counted as obtaining more than a certain percent-
age of the votes (i.e., 50%, 66%, and 75%, corresponding to re-
ceiving at least 13, 17, and 19 votes out of 25 respectively). For all
models, thresholds, and similarity metrics our image-driven BRDF
fit scores more wins than a log-based BRDF fit. On average, image-
driven BRDF fitting results are preferred in 74% of the tested mate-
rials for a threshold of 50% (a simply majority of user judgments).
Increasing the threshold to 66%, image-driven BRDF fitting results
are preferred in 36% of the tested materials (∼ 18% of the MERL-
MIT database). Note that this does not imply that the users pre-
ferred the log-based fit for 82% of the MERL-MIT BRDFs; log-
based BRDF fits were preferred only in ∼ 2% of the MERL-MIT
materials, and they were unable to decide in 80% of the materials
(including the majority of very diffuse materials) at this threshold.
For the threshold of 75%, users preferred image-driven BRDF fits
were preferred for 21% of tested materials, corresponding to 10%
of the MIT-MERL database, while no log-based fits were preferred
(all other materials were undecided).

We observe there are slightly more ’undecided’ materials for the
GGX BRDF fits than for the Cook-Torrance BRDF fits. This is not
an unexpected results as the GGX model can better fit the measured
materials. We expect that the better the analytical BRDF model

Table 5: Summary of the user-study results on image-driven BRDF
fitting (using CSSIM and LPIPS as selection metric) compared to
log-based fitting for the Cook-Torrance BRDF model and the GGX
microfacet BRDF model. Each column lists the number of tested
material (out of 50) preferred by a certain minimum percentage
(i.e., threshold) of users.

Threshold: 50% 66% 75%
Winner: Us Log Us Log Us Log

CT with CSSIM 39 11 18 0 11 0
CT with LPIPS 39 11 22 0 13 0

GGX with CSSIM 36 14 18 4 9 0
GGX with LPIPS 34 15 17 6 8 0
Total with CSSIM 75 25 36 4 20 0
Total with LPIPS 73 26 39 6 21 0

can replicate the measured reflectance, the more similar the BRDF
fits for the different γ values will be. In the limit, if the analytical
BRDF model can perfectly fit the measurements, then any BRDF
fitting metric will produce the same result. However, as demon-
strated in Figure 11, fitting current state-of-the-art models still ben-
efits from our adaptive BRDF metric.

We also ran the user-study for the lightweight fixed γ value
BRDF fits. For a 66% threshold, we found that for the Cook-
Torrance BRDF model with γ= 2.1 (CSSIM computed) the number
of “wins” are 16−0 (image-driven fit versus log-based fit, respec-
tively), and for γ = 1.9 (LPIPS computed) 18− 1. For the GGX
BRDF model we counted 11− 1 for γ = 2.5 (CSSIM computed),
and 17−6 for γ = 2.0 (LPIPS computed). For the lightweight fixed
γ value BRDF fits we observe that the CSSIM computed γ values
perform better in general. We posit that this is related to the fact that
CSSIM tends to prefer BRDF fits which, while more blurry (as evi-
denced by the higher average γ value), exhibit higher color fidelity.
An interesting avenue for future research would be to investigate
the relative weight users give to color fidelity versus specular high-
light appearance.

Material Class Analysis To better understand the results from
the user-study, we manually categorize the 50 materials in differ-
ent material classes: metals (13 materials), phenolics (9 materials),
paints (11 materials), plastics (8 material), and others (9 materials).
Table 6 summarizes the results. Image-driven BRDF fitting signif-
icantly outperforms log-based fitting for metals, and performs well
for paints and plastics. For the other materials classes its perfor-
mance is on par with log-based fitting. We argue that, in particular
for phenolics, that both BRDF models can accurately model such
types of materials, and thus the fitting metric matters less.

6. Conclusions

We presented a novel BRDF fitting method that takes both the ac-
curacy of the surface reflectance as well as the fidelity of the vi-
sual appearance into account. A key advantage of our method is
that it is straightforward to implement, thereby allowing for easy
adaption in existing frameworks. We demonstrated that our image-
driven method produces BRDF fits of better visual quality than ex-
isting cosine-weighted or log-based fitting metrics. For roughly half
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Table 6: Summary of user-study results per material class for a win-threshold of 50% and 66%.

Threshold of 50%
Class: Metals Phenolics Paints Plastics Other

Winner: Us Log Us Log Us Log Us Log Us Log
CT with CSSIM 11 2 4 5 9 2 7 1 8 1
CT with LPIPS 11 2 6 2 9 2 6 2 7 2

GGX with CSSIM 10 3 3 6 10 1 6 2 7 2
GGX with LPIPS 12 1 3 6 8 2 5 3 6 3
Total with CSSIM 21 5 7 11 19 3 13 3 15 3
Total with LPIPS 23 3 9 8 17 4 11 5 13 5

Threshold of 66%
Class: Metals Phenolics Paints Plastics Other

Winner: Us Log Us Log Us Log Us Log Us Log
CT with CSSIM 7 0 0 0 5 0 2 0 4 0
CT with LPIPS 10 0 1 0 4 0 2 0 5 0

GGX with CSSIM 8 0 0 3 5 0 3 0 2 1
GGX with LPIPS 8 0 0 2 2 0 1 0 2 0
Total with CSSIM 15 0 0 3 10 0 5 0 6 1
Total with LPIPS 18 0 1 2 6 0 3 0 7 0

of the MERL-MIT materials, image-driven Cook-Torrance BRDF
fits outperform classic cosine-weighted and log-based BRDF fits
on the superior GGX microfacet BRDF model. In addition, we also
proposed a light-weight alternative with fixed γ parameter that out-
performs existing metrics with the same computational cost.

Currently, our method relies on the CSSIM or LPIPS image sim-
ilarity metrics to determine visual appearance similarity. However,
neither CSSIM or LPIPS were designed to assess appearance sim-
ilarity, and a dedicated appearance similarity metric could further
improve our results. Finally, we only consider isotropic BRDFs;
extensions to anisotropic materials would be an interesting avenue
for future research.
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