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ABSTRACT
This paper presents a novel neural material relighting method for
revisualizing a photograph of a planar spatially-varying material
under novel viewing and lighting conditions. Our approach is moti-
vated by the observation that the plausibility of a spatially varying
material is judged purely on the visual appearance, not on the un-
derlying distribution of appearance parameters. Therefore, instead
of using an intermediate parametric representation (e.g., SVBRDF)
that requires a rendering stage to visualize the spatially-varying
material for novel viewing and lighting conditions, neural material
relighting directly generates the target visual appearance. We ex-
plore and evaluate two different use cases where the relit results are
either used directly, or where the relit images are used to enhance
the input in existing multi-image spatially varying reflectance esti-
mation methods. We demonstrate the robustness and efficacy for
both use cases on a wide variety of spatially varying materials.
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1 INTRODUCTION
Recovering the spatially-varying appearance of a material from a
limited number of measurements is a challenging problem in com-
puter graphics that has received significant attention in the past
decade. The application of machine learning to appearance model-
ing [Dong 2019] enabled the recovery of plausible spatially-varying
bidirectional reflectance functions (SVBRDFs) from a planar sam-
ple from as little as a single photograph. These recent advances
in machine learning-driven appearance modeling can be catego-
rized in two classes: direct inference methods and neural inverse
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rendering methods. Direct inference methods rely on a neural net-
work to directly convert the input image in the desired SVBRDF
parameter maps without the need for additional processing steps.
Alternatively, neural inverse rendering methods perform an online
optimization that matches a rendering of the recovered SVBRDF
parameters to the input photograph, with one or more steps in the
optimization process replaced by a learned component (e.g., using
a learned optimization domain).

Estimating the spatially varying appearance from a single photo-
graph is highly underconstrained. Both direct inference and neural
inverse rendering methods learn a non-linear mapping from the
space of visual material appearance to the higher dimensional space
of SVBRDF parameter maps. Typically, specular reflections are not
observed at every surface point, and hence both direct inference and
neural inverse methods must somehow decide how to implement
the non-linear mapping despite incomplete observations. Given
the inherent richness of spatially varying materials, this process is
ambiguous and direct inference and neural inverse rendering meth-
ods therefore aim to recover the most plausible SVBRDF parameter
maps. Once the SVBRDF parameter maps are estimated, new visual-
izations of the material can be generated by effectively performing
another non-linear mapping from the SVBRDF parameter space
back to the visual material appearance space. Our key observation
is that the plausibility of the resulting spatially varying material is
judged purely on its visual appearance, and not on the distribution
of the underlying SVBRDF parameter maps.

In this paper, we take a different approach to appearance model-
ing. Instead of learning a mapping between two different spaces, we
learn how to navigate the visual appearance space directly. This has
two major advantages compared to going through an intermediate
SVBRDF parameter space. First, learning to navigating the visual
appearance space only requires a loss defined in the same space
(namely visual material appearance). In contrast, prior SVBRDF esti-
mation methods need to balance possibly conflicting losses defined
in different spaces: the SVBRDF parameter space and the visual
material appearance space (i.e., parameter loss versus render loss).
Second, when leveraging skip connections, prior SVBRDF methods
need to translate image features to SVBRDF features. While cor-
related, this is not a one-to-one mapping. In contrast, our method
leverages skip connections between two identical domains, avoid-
ing the need for additional translations, resulting in a more effective
propagation of information from the input photograph to the relit
output image. To control the navigation, we specify the destination
by providing the target view direction and point light position,
resulting in a revisualization of the material present in the input
photograph. This process is conceptually akin to relighting, hence
we name our method “neural material relighting”.

https://orcid.org/0000-0002-3973-2124
https://orcid.org/0000-0001-8788-2453
https://orcid.org/0000-0001-7621-9808
https://doi.org/10.1145/3588432.3591515
https://doi.org/10.1145/3588432.3591515


SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Bieron et al.

We show that neural material relighting from a single photo-
graph is able to reproduce equally or more plausible visual mate-
rial appearance and that it generalizes better compared to prior
SVBRDF estimation methods. Our solution builds on a poweful
encoder-decoder architecture with passthrough connections, resid-
ual blocks [He et al. 2016] and highlight aware convolutions [Guo
et al. 2021], as well as a novel multi-resolution injection strategy for
specifying the target lighting during decoding. Our neural material
relighting is trained on the INRIA-SVBRDF dataset [Deschaintre
et al. 2018] using three different losses: an image similarity loss to
ensure visual similarity to reference relit images, a conditional dis-
criminator loss that promotes similarity of the material appearance
between the input and relit image, and a perceptual loss to ensure
that inevitable differences are perceptually plausible.

We present two use cases of our neural material relighting net-
work. First, we demonstrate that neural material relighting can
produce, given a single input photograph, plausible relit images
under a novel view and point light for a wide range of spatially
varying materials. These relit images can then be directly used in
existing rendering systems. Second, we can also use neural material
relighting to produce a set of intermediate synthetic input images
for any existing multi-image SVBRDF parameter map estimation
method, thereby improving reconstruction quality and extending
the capabilities of SVBRDF estimation methods that require multi-
ple input photographs to operate on a single input photograph.

2 RELATEDWORK
We focus our discussion of related work on selected learning based
appearance modeling approaches in relighting and SVBRDF estima-
tion. We refer the reader to the excellent surveys by Dong [2019]
on neural appearance modeling, and by Einabadi et al. [2021] on
relighting.

Relighting. Relighting directly infers changes in an object’s vi-
sual appearance under varying incident lighting from a set of pho-
tographs of a subject under controlled lighting conditions [Debevec
et al. 2000]. Recently, with rise in popularity of machine learning
methods, relighting has seen renewed interest. At a high level, learn-
ing based relighting methods can be categorized based on whether
they are specifically (over)trained for relighting a single object [Be-
mana et al. 2020; Chen et al. 2020; Gao et al. 2020; Guo et al. 2019;
Ren et al. 2015; Srinivasan et al. 2021; Zhang et al. 2021], or whether
they rely on a pretrained model to relight an object from a small
set of photographs, e.g., for face relighting [Meka et al. 2019; Sun
et al. 2019; Yeh et al. 2022; Zhou et al. 2019], human body relight-
ing [Kanamori and Endo 2018], and general outdoor [Griffiths et al.
2022; Philip et al. 2019] and indoor scene relighting [Philip et al.
2021; Xu et al. 2018]. Our method is most similar to the second
class of methods that rely on a pretrained model to relight, in our
case, a planar material sample. However, unlike the majority of the
relighting methods in second class, our method is not limited to a
fixed viewpoint (albeit in texture space) and features more complex
variations in surface normal and surface reflectance.

SVBRDF Estimation. A popular representation of surface appear-
ance is by means of the spatially-varying bidirectional reflectance

function (SVBRDF), a collection of 2D maps that serve as the per-
surface point parameters of an analytical BRDF model such as the
Cook-Torrance BRDF model [1982] or GGX BRDF model [Walter
et al. 2007] and a local shading frame in the form of a local surface
normal. A common strategy for creating an SVBRDF is by an in-
verse rendering process that searches for the 2D property maps
that, when rendered, best matches a series of reference photographs
of a physical material exemplar.

Estimating an SVBRDF from a single photograph is an ill-condi-
tioned problem as it has more unknowns (9 or more BRDF parame-
ters) than knowns (3 observations) per surface point. Before the use
of machine learning, robust estimation of an SVBRDF from a single
photograph was only possible for a restricted class of texture-like
materials [Aittala et al. 2016]. Machine learning, and in particular
convolutional neural networks, made it practical to estimate plau-
sible SVBRDFs from a single photograph. Many variants have been
introduced that estimate SVBRDF-based representations under un-
controlled lighting for planar surfaces [Li et al. 2017; Martin et al.
2022; Ye et al. 2018] and complex indoor scenes [Li et al. 2020], and
from a flash-photograph of a planar sample [Deschaintre et al. 2018;
Guo et al. 2021; Henzler et al. 2021; Li et al. 2018a; Vecchio et al. 2021;
Wen et al. 2022; Zhou and Kalantari 2021] and general objects [Li
et al. 2018b; Sang and Chandraker 2020]. Our neural appearance
relighting also infers surface appearance from a single flash photo-
graph of a planar material exemplar. However, our work differs from
these SVBRDF estimation methods in that we bypass the SVBRDF
estimation step and directly produce a revisualization of the ma-
terial for a new view and light condition. As a consequence, our
training loss does not need to balance differences between property
maps and the visual appearance of the material (expressed in prior
work with an additional rendering loss [Deschaintre et al. 2018]),
and it can better leverage information sharing via skip connections.

Of special note is the work by Sang and Chandraker [2020] who
learn both SVBRDF estimation and (fixed viewpoint) relighting at
the same time. However, unlike our work, Sang and Chandraker’s
relighting network is limited to a single fixed view, for an arbitrary
object, and requires estimated SVBRDF maps (recovered jointly) as
an input, and is therefore more similar to Deep Shading [Nalbach
et al. 2017]. Our neural material relighting network directly operates
on the input photograph and can relight for any viewpoint, albeit
limited to a planar surface.

An alternative strategy to promote visual similarity of a recov-
ered SVBRDF is to provide multiple input photographs of the ma-
terial sample. Following the success of learning-based approaches
in single-image SVBRDF estimation, several multi-image methods
have been introduced ranging from direct inference methods [De-
schaintre et al. 2019] to neural inverse rendering methods where
one or more components in the optimization pipeline are replaced
by a learned component [Fischer and Ritschel 2022; Gao et al. 2019;
Guo et al. 2020; Ye et al. 2021; Zhou et al. 2022; Zhou and Kalantari
2022], to differentiable rendering approaches [Azinović et al. 2019;
Bi et al. 2020]. Neural material relighting is complementary to these
multi-image SVBRDF estimation methods, by allowing us to aug-
ment a single input photograph to a small collection of relit images
that can subsequently be used as synthetic input to a multi-image
method, thereby extending the range (of number of input images)
on which these methods can operate.
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Figure 1: Summary of the neural material relighting network
architecture.

3 METHOD OVERVIEW
Neural material relighting takes as input a single photograph of a
planar material sample viewed from straight above and lit with a
colocated point light (i.e., camera flash). We assume the input photo-
graph is captured by a camera with a FOV of 28◦ and resampled to
a 256× 256 resolution. We deliberately train for such a narrow FOV
so that images captured with a larger FOV can be easily cropped
to mimic the correct FOV before resampling; the reverse (going
from narrow to wide) would be more difficult. We concatenate the
per-pixel corresponding 𝑧 coordinate of the view/light direction
to the captured input photograph (i.e., in total: 3 + 1 input chan-
nels). In addition, a 9 channel decoder-condition ’image’ containing
per-pixel output view, lighting, and halfway vectors is provided
to control the appearance of the output. The resulting output is a
rectified photograph where each pixel’s appearance is relit based on
the corresponding view and light directions in the output condition.
The rectification ensures that each surface point on the material
sample is mapped to the same surface location in the photograph
irrespective of the view direction, thereby alleviating the network
from learning the projective mapping and avoiding foreshortening
issues (i.e., spatial low pass filtering) at grazing view angles. Note
that while we provide a light source direction, we do so per-surface
point, hence we can specify point lighting (i.e., converging direc-
tions) at different distances without actually encoding the distance,
consequently neural material relighting models point lighting but
without the distance-squared fall-off; this can be easily added after-
wards by scaling each pixel appropriately.

4 NETWORK ARCHITECTURE
Our network follows an encoder-decoder architecture with residual
blocks [He et al. 2016] as the core processing units. The encoding
stage consists of a regular 2D convolution layer with a 7 × 7 ker-
nel that expands the 4 channel input image to a 64 channel latent
vector. This latent vector is then processed by two residual blocks
(with ReLU activations and batch normalization) in which the 2D
convolution layers have been replaced with highlight aware con-
volution layers [Guo et al. 2021] to reduce burn-in. This highlight
aware double residual block is repeated 4 times, preceeded by a
downsample layer for all but the first double residual block.

The decoder network also follows a similar structure of four
double residual blocks, but with regular convolutions since highlight
aware convolution are designed for encoding only. We also include
skip connections for efficient information sharing between each
latent vector in the encoder to the corresponding decoder latent
vectors. In addition, we provide the output condition (9 channels
containing the output view, lighting, and halfway vector) to the
decoder by downsampling the output condition to the appropriate
size and concatenating it to each latent vector in the decoder. Finally,
we add a tanh activation to the 2D convolution layer at the end that
reduces the final latent vector from 64 channels to a 3 channel relit
output image.

While each of the components that comprise our network archi-
tecture are known (i.e., residual blocks, highlight aware convolu-
tions, and skip connections), the combination is novel with respect
to appearance modeling, as is the manner in which the output con-
dition is injected in the decoding process. Figure 1 summarizes the
network architecture.

Discussion: Neural description versus SVBRDF parameter maps.
At first glance, one could argue that the encoded neural description
is the equivalent of a neural encoding of the SVBRDF parameter
maps. For classic SVBRDF parameter maps, one could consider
the renderer to be equivalent to a (fixed) decoder. However, our
neural material description is a not a generative description due
to the inclusion of skip connections between the encoder and the
decoder/neural renderer for efficient information sharing. Conse-
quently, unlike an SVBRDF representation, the latent encoding does
not need to contain all the small scale details needed to exactly
reproduce the appearance as these are injected by the skip con-
nections. In addition, an SVBRDF representation is limited by the
expressiveness of the model and the relation between the different
properties can be ambiguous for a given observation (i.e., different
SVBRDF property maps can result in the same appearance for a
given view and light condition). In contrast, our neural description
is agnostic to the underlying physical interpretation and only en-
codes information relevant for producing a relit appearance from
the input photograph.

5 LOSS & TRAINING
We train our neural material relighting network on the INRIA
SVBRDF dataset [Deschaintre et al. 2018]. In order to avoid bias
towards the particularities inherent to the INRIA SVBRDF dataset,
we compose our test set of 40 unique spatially-varying materials as
an even mixture of test materials from the INRIA SVBRDF test set
and SVBRDFs from other sources. Note we only use renderings of
the materials during training, and the network never sees any of
the SVBRDF property maps. We use a combination of three losses: a
data loss L𝑑 , a perceptual loss L𝑝 , and a conditional discriminator
loss L𝑐 . The data loss L𝑑 is the resolution-normalized 𝐿1 error be-
tween the reference and relit image.L𝑑 guides the network training
towards reproducing the appearance of the training set. However,
this loss only considers per-pixel losses, and it tends to bias the
solution towards blurred highlights (a small shift in highlight edge
produces a large error, hence blurring on average minimizes the
error due to misalignments). We address this issue by including
a VGG perceptual loss [Johnson et al. 2016] to drive the solution
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towards a plausible relit image and a discriminator loss L𝑐 condi-
tioned on the input image that judges whether the relit image is
the same material as the input image. The discriminator consists of
a resolution dependent number of 2D convolution layers (kernel
size 4, stride 2, and 8 output channels) with a leaky ReLU activation
function and a batch-norm layer. An adaptive max-pooling followed
by a fully connected layer completes the discriminator network.
We use 5 layers for 128 × 128 and 6 for 256 × 256 resolution inputs.
The condition images are fed together with the input image to the
network. The final loss is then:

L = 𝜆𝑑L𝑑 + 𝜆𝑝L𝑝 + 𝜆𝑐L𝑐 , (1)

with 𝜆𝑑 = 1, 𝜆𝑝 = 0.01, and 𝜆𝑐 = 0.025.
We found that the sampling of the training exemplars in each

training batch is critical for obtaining a well behaved neural relight-
ing network. Unlike SVBRDF-based methods, appearance relight-
ing cannot rely on the extrapolation capabilities of the underlying
model. We use a batch size of 16, and each batch consists of 4
different materials. Each material is relit and viewed from 4 dif-
ferent view/light combinations with none of the directions shared
between the materials. Hence, in each training batch the network
sees 4materials and 16 different view/light combinations. However,
the sampling of view and lighting also matters. A key challenge
for the network is to learn how to ’move’ the highlight. Hence, a
majority of training samples should feature a highlight. However,
the network also needs to learn how to relight diffuse surface re-
flectance, thus some portion of training samples should should be
highlight free. Equally important is that the light source varies in
distance, so that the network learns to take in account the relative
difference in light directions between neighboring surface points.
To address these concerns, we follow the procedure outlined below,
assuming that the material sample forms a square with corners at
−1 and +1 in 𝑥 and 𝑦 coordinates:

(1) We select a camera position 𝑝𝑐𝑎𝑚 by uniformly sampling a
point on a hemisphere with radius 4 surrounding the sample.

(2) Next, we pick where the center of a highlight 𝑝ℎ should
be (if the surface was perfectly flat) by sampling a normal
distribution with a standard deviation of two and centered
at a uniformly sampled position 𝑐𝑑 on the material surface:

𝑐𝑑 = U(−1, +1) (2)
𝑝ℎ = N(𝑐𝑑 , 2) (3)

This ensures that a significant portion of the highlights will
appear on the sample (due to the mean always lying on the
surface) with a non-negligible chance that it falls outside
(due to the standard deviation being the size of the sample).

(3) We compute the main (non-normalized) light direction by
reflecting the vector from the camera to the ideal highlight
center around the 𝑧-axis: 𝑙 = 𝑟𝑒 𝑓 𝑙𝑒𝑐𝑡 (𝑝ℎ − 𝑝𝑐𝑎𝑚, 𝑧). Note:
|𝑙 | = |𝑝ℎ − 𝑝𝑐𝑎𝑚 | ≈ 4.

(4) Finally, we compute the point light source position 𝑝𝑙 by scal-
ing the resulting main lighting vector 𝑙 by 1 plus the absolute
value of a normal distributed random value with mean zero
and standard deviation of two: 𝑝𝑙 = 𝑝ℎ + 𝑙 (1 + |N (0, 2) |).
This ensures that the network generalizes to different light
source distances.

We train the conditional discriminator network, using a regular
mean square loss, simultaneously with the neural material relight-
ing network by providing, for each batch, a positive exemplar (a
relit image from the same material) and a negative exemplar (a
relit image from another material). Including a negative sample is
important as we want the discriminator to learn to decide whether
the relit image depicts the same material as the input. Including
only positive training examples would result in a network that
essentially ignores the input image. In our implementation, we use
the same set of reference relit images as used in the batch for train-
ing the neural material relighting network since it contains both
positive as well as negative exemplars (given a reference material).

We exploit the full convolutional architecture of our network
to improve robustness and to speed up the training process. We
first train our network on 128 × 128 crops from the INRIA SVBRDF
dataset, after which we refine the network weights on 256 × 256
crops. Because our network is fully convolutional, we can use the
same weights when doubling the resolution without needing to
add extra layers. However, the number of convolution layers in the
discriminator varies with resolution, and therefore, when changing
training resolution, we train the discriminator again from scratch.

6 RESULTS
We implemented and trained our network in PyTorch with the
following hyperparameters: learning rate of 10−4, variational beta
of 0.5, and a learning rate decay of 1% every 10,000 batches. We train
for 500,000 batches at 128 × 128 resolution on a single Nvidia RTX
A40, followed by a refinement for an additional 150,000 batches at
256 × 256 resolution distributed over four Nvidia RTX A40. Once
trained, material relighting takes 15ms on an Nvidia RTX 2070ti.
We validate our neural appearance relighting network for two
use cases: direct relighting and as an input augmentation step for
existing SVBRDF estimation methods. All results in this section are
at 256 × 256 resolution.

6.1 Direct Relighting
For the first use-case the output of the neural relighting is directly
used. Hence, the quality of the relit images is of primary concern.
Figure 2 and 3 show visual comparisons with respect to the refer-
ence and with respect to prior single image SVBRDF methods (we
include comparisons to [Zhou and Kalantari 2021] and [Gao et al.
2019] (using [Zhou and Kalantari 2021] as starting point) for both
figures plus [Deschaintre et al. 2018] for Figure 2 and [Guo et al.
2021] for Figure 3) for a selection of materials not used in training.
The results for most prior methods [Deschaintre et al. 2018; Gao
et al. 2019; Zhou and Kalantari 2021] are generated with the authors’
provided trained networks; there does not exist a publicly available
solution for the two-stream highlight aware network [Guo et al.
2021] and the corresponding results in Figure 3 are computed from
the SVBRDF property maps from Gou et al.’s supplemental mate-
rial. Note, all results are rectified (i.e., shown in texture space); the
azimuthal view angle used for relighting is listed in the first column.
Observe how neural appearance relighting is able to reproduce chal-
lenging spatially varying specular reflections (e.g., discontinuous
highlights in the 2nd material, and the specular reflections on ridges
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𝜃𝑣𝑖𝑒𝑤 Reference Relighting Deschaintre et al. Zhou et al. Gao et al. Input

0◦

45◦

0◦

20◦

0◦

20◦

20◦

45◦

Figure 2: Qualitative comparison of neural relit results (at 256 × 256 resolution) against three prior SVBRDF estimation methods
for a variety of materials. The first column list the azimutal angle of the view angle for relighting.
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𝜃𝑣𝑖𝑒𝑤 Reference Relighting Guo et al. Zhou et al. Gao et al. Input

0◦

20◦

0◦

45◦

0◦

20◦

0◦

45◦

Figure 3: Qualitative comparison of neural relit results (at 256 × 256 resolution) against three prior SVBRDF estimation methods
for a variety of materials. The first column list the azimutal angle of the view angle for relighting.
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Table 1: Quantitative comparison of LPIPS errors on render-
ings at 256 × 256 resolution obtained with neural material
relighting and representative prior single-image SVBRDF
estimation methods.

Material Our Deschaintre Zhou et al. Gao et al.
Method Relighting SVBRDF et al. [2018] [2021] [2019]
LPIPS 0.1902 0.1966 0.2713 0.2375 0.2323

in the 3rd example), handle specular reflections for small geomet-
rical details (e.g., the highlights on the “nubs” in the first example
are correctly oriented), and model large scale normal variations
and foreshortening (e.g., the bricks and tiles in the last examples
for both result figures). While there are clear differences with the
reference relit image due to the highly ambiguous nature of single
image relighting, neural material relighting produces overall visu-
ally more plausible results with less artifacts than the four prior
methods. In addition, Table 1 summarizes LPIPS [Zhang et al. 2018]
errors averaged over a test set of 40materials rerendered for 3 view
directions (0◦, 20◦, and 45◦) and 49 light directions chosen such that
for each view the highlights are regularly distributed in the texture
space. These errors also confirm that neural material relighting
produces more plausible relit images than prior work.

Despite not explicitely enforcing similarity between neighboring
views or light directions, neural material relighting produces relit
images that change smoothly with varying view and light. We refer
to the supplementary video for a demonstration.

Finally, the robustness of neural appearance relighting outside
the training set is further demonstrated in Figure 4 on photographs
captured by a cellphone. While no reference photographs under
novel lighting are available, the results show plausible relit images.
To better gauge the generalization capabilities our neural material
relighting outside the training set, we also include a comparison to
the SVBRDF method of Zhou and Kalantari [2021]. Note how ma-
terial relighting is able to produce more plausible results, ranging
from retaining the fine-scale details without over or underestimat-
ing the specular highlight (1st row and 4th row), more plausible
recreating of appearance effects due to normal variations (2nd and
3rd row), and reproducing complex highlights (5th row). We refer
to the supplementary video for a comparison under varying view
and lighting that further reinforces the plausibility differences, as
well as a comparison to deep inverse rendering [Gao et al. 2019].

6.2 Input Augmentation
A second use case of neural material relighting is to augment a sin-
gle input photograph to a set of relit synthetic photographs that are
subsequently used as an input to a multi-image SVBRDF estimation
methods. We demonstrate this use case with deep inverse render-
ing [Gao et al. 2019] (using the estimate of the adversarial SVBRDF
estimation method [Zhou and Kalantari 2021] as starting point)
for which we synthesize 5 new relit input images with varying
light positions ensuring that each images’ highlight is contained
within the camera view from a single captured photograph (Fig-
ure 5). The SVBRDFs recovered from the augmented input shows
more plausible rerenderings with less artifacts than from a single
input photograph. Over all 40 test materials, the augmented results

Relighting Zhou et al. Relighting Zhou et al. Input

Figure 4: Neural material relighting for two light source po-
sitions (1st and 3rd column) on photographs captured with a
handheld camera (last column) and compared to [Zhou and
Kalantari 2021] (2nd and 4th column).

Reference Augmented Single-image Input

Figure 5: Neural material relighting can be used to generate
synthetic inputs to multi image SVBRDF estimation meth-
ods. In this example we generated 5 synthetic input images
for Deep Inverse Rendering [Gao et al. 2019] yielding more
plausible revisualizations than from a single input image.

yield a significantly lower LPIPS error (0.2021) compared to without
augmentation (0.2323).

7 ABLATION STUDY
We perform a number of ablation and sensitivity experiments to
provide further insight and to validate the design of the network
architecture. All ablation experiments are performed on images and
networks trained at 128 × 128 resolution.
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Table 2: Quantitative comparison of LPIPS errors on ren-
derings at 128 × 128 resolution for variations in the model:
residual vs. regular convolution blocks, and highlight aware
(HA) vs. standard convolutions.

Backbone Residual Residual Regular Regular
Convolution HA Standard HA Standard

LPIPS Err. 0.1735 0.1792 0.1774 0.1871

Table 3: Quantitative comparison of LPIPS errors on render-
ings at 128×128 resolution for models trained with variations
in input and out specification.

Our Remove Remove Pass Output
Variant Method Input Z Output H at Encoder

LPIPS Err. 0.1735 0.1785 0.1828 0.1941

Network Architecture. We validate the importance of using both
residual blocks and highlight aware convolutions by comparing
results from a network where the residual blocks are replaced by
regular convolution blocks, with and without highlight aware con-
volutions (Table 2). Numerically, the combined residual blocks and
highlight aware convolutions provide the lowest average LPIPS
error. In general, we find that the residual blocks are able to better
reproduce the shape of the specular highlights, while the highlight
aware convolutions reduce burn-in artifacts.

Loss Terms. Figure 6 shows the impact of each loss term on
the relighting quality. Using only the data loss results in blurred
highlights. Adding the perceptual loss, sharpens the highlights
but it fails to capture the correct highlight details (e.g., the ridge
highlight on the right). Finally, adding the discriminator yields the
highest quality highlights.

Input/output Specification. Our neural material relighting net-
work takes as additional input (besides the photograph) the 𝑧 coor-
dinate of the lighting direction. Since the input lighting is always
the same, one could argue that this extra input is unnecessary. The
errors in Table 3 show that without this information the network
does not perform as well. Inclusion of the 𝑧 component serves a
similar role as the so-called “coord-conv” trick [Liu et al. 2018]
to help the network learn the location and statistics of specular
highlights, due to the strong correlation with the 𝑧 coordinate; only
providing the (𝑥,𝑦) coordinate (cf. coord-conv trick) fails to capture
this correlation.

The output conditions passed to the relighting network do not
only contain the view and lighting directions per surface point,
but also the halfway vector. The corresponding error in Table 2
confirms that including the halfway vector improves the result
quality.

Currently, neural material relighting concatenates the (spatially
scaled) output conditions to each feature vector in the decoder.
However, a more common strategy is to concatenate the conditions
to the input. The corresponding error in Table 3 shows that this
does not yield a good result due to two reasons. First, during train-
ing the encoder might learn erroneous correlations between the
output conditions and the input photograph; injecting the output

Reference L𝑑 L𝑑 + L𝑝 L𝑑 + L𝑝 + L𝑐

Figure 6: Impact of the different loss terms: data lossL𝑑 , VGG
perceptual loss L𝑝 , and the conditional discriminator loss
L𝑐 .
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Figure 7: Neural material relighting is robust to deviations
of the light source position for up to 5◦ from a colocated
configuration.

conditions only in the decoder cleanly separates material encoding
from neural rendering. Second, the network would need to learn
to correctly downsample the output direction images (including
renormalization) for effective use at each level in the decoder.

Input Robustness. The easiest way to obtain a photograph of a
material lit by a colocated light source is by handheld capture with a
cell phone. However, the camera flash light is not exactly colocated
due to physical constraints. Figure 7 shows that ourmethod is robust
for deviations of up to 5◦ between the light source and sensor.While
still plausible, at larger deviations the quality degrades gracefully.

Output Lighting Generalization. While our method is trained
for a limited range of variations in light source distance, neural
material relighting generalizes well to light source positions outside
this range. Figure 8 shows that neural material relighting produces
plausible relit results when placing the light source at 0.5, 2, 10, and
100 units distance from the material sample.

Relighting vs. SVBRDF Estimation. The results in Figure 2 and Ta-
ble 1 show that neural material relighting can produce more plau-
sible relit results than existing single-image SVBRDF estimation
methods. To better understand the difference between neural mate-
rial relighting and SVBRDF estimation, we perform an additional
ablation experiment where we use the same architecture, loss terms,
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Figure 8: Neural material relighting is robust to moving the
point light away from the positions seen during training.

and training procedure, but output SVBRDF property maps instead
of relit images, and include an additional 𝐿1 SVBRDF property
map loss. Figure 9 shows a comparison between both methods
on a variety of synthetic materials, as well as a captured material
(without a reference); the LPIPS errors over the test set are also
listed in Table 1. While the LPIPS errors over the test set are closer
to neural material relighting than those from prior SVBRDF es-
timation methods, we find that the SVBRDF estimation version
of our network is less stable to train due to the conflicting loss
functions, and that it produces an artifact (i.e., ’stuck’ pixels) in the
lower left corner; this artifact is very noticeable but not captured
by LPIPS errors. Furthermore, we observe that for materials from
the INRIA-SVBRDF test set both methods perform well. However,
for challenging materials more dissimilar from the training set, we
observe that material relighting tends to generalize better. This is
also confirmed by comparing the average LPIPS error on the 20
non-INRIA test materials (0.2431 for the SVBRDF estimation versus
0.2248 for neural material relighting).

8 LIMITATIONS
Our neural material relighting is not without limitations. Due to the
convolutional nature of the decoding network, our material relight-
ing network is limited by the view/light combinations seen during
training. Currently, our relighting network is only trained for pla-
nar materials and it cannot handle mapping the material over a
curved surface. Possibly including such cases during training could
help extend the capabilities, although we expect a more powerful
or deeper network architecture might be needed. Alternatively, we
could also subdivide the curved surface in patches and relight the
material for each patch. Similarly, our neural material relighting
network does not support relighting a single selected pixel without
relighting the whole material. This makes our method less suited
for ray tracing based rendering systems. An interesting avenue for
future research would be to replace the decoder by an MLP that
takes a pixel coordinate as additional input, and that outputs the

Reference Relighting SVBRDF Input

N.A.

Figure 9: SVBRDF estimation using a similar architecture
tends to generalize less well to materials that are challenging
or that are from outside the training set.

relit pixel value. Furthermore, our lighting network currently is
only able to relight from a single point light, making relighting with
environmentmaps expensive (cf. classic image-based relighting [De-
bevec et al. 2000]). Extending our method to direct relighting with
environment lighting is another avenue for future research. Finally,
neural material relighting can fail to reproduce correct highlights if
the input does not contain many specular highlights. Furthermore,
despite the highlight aware convolutions, severe oversaturation
can still lead to burn-in (Figure 10). However, existing SVBRDF
methods typically also fail on these challenging materials.

Ground Truth Relighting Zhou et al. Deschaintre et al.

Figure 10: Top: Neural material relighting requires a suffi-
cient number of pixels featuring a specular highlight in the
input photograph to correctly reproduce highlights. Bottom:
Despite the highlight aware convolutions, severe oversatura-
tion still causes burn-in.
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9 CONCLUSION
In this paper we presented neural material relighting, a novel strat-
egy for appearance modeling that from a single photograph pro-
duces a relit image of the material without going through an in-
termediate SVBRDF estimation and rendering step. Our learning
based method features an encoder-decoder network architecture
with residual blocks and highlight aware convolutions trained with
a combination of three loss terms: a data loss, a perceptual loss, and
a conditional loss. Besides directly using the relit materials as is,
neural material relighting can also be used to create synthetic input
images to drive multi-image SVBRDF estimation methods thereby
extending the conditions under which these methods can operate.
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