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Abstract

In this paper we demonstrate robust estimation of the model parameters of a fully-linear data-driven BRDF model
from a reflectance map under known natural lighting. To regularize the estimation of the model parameters, we
leverage the reflectance similarities within a material class. We approximate the space of homogeneous BRDFs
using a Gaussian mixture model, and assign a material class to each Gaussian in the mixture model. Next, we
compute a linear solution per material class. Finally, we select the best candidate as the final estimate. We demon-
strate the efficacy and robustness of our method using the MERL BRDF database under a variety of natural

lighting conditions.

1. Introduction

Data-driven appearance models [MPBMO03a] express the
Bidirectional Reflectance Distribution Function (BRDF) of
a homogeneous material as a linear combination of a large
set of measured “basis” BRDFs. The key assumption is that
this large set of basis BRDFs covers the full space of BRDFs,
and any BRDF in this space can be represented as convex
combination of these basis BRDFs, thereby inheriting all
the intricate reflectance details present in the measured basis
BRDFs that can be difficult to model with analytical BRDF
models. Recent advances have shown great promise in re-
constructing a data-driven BRDF from very few measure-
ments [NJR15, XNY*16]. However, these methods rely on
controlled directional or point lighting.

In this paper we aim to narrow the gap between inverse ren-
dering with data-driven BRDF models and analytical BRDF
models under natural lighting while retaining the robustness
and simplicity of linear parameter estimation for data-driven
models. To focus our exploration, we will a-priori assume
that the natural lighting is known and that we have a full
characterization of the material reflectance under this light-
ing condition in the form of a reflectance map [RRF*16].

We desire to retain the advantages of a linear parameter
estimation process, and therefore avoid non-linear encoded
basis BRDFs, and directly estimate the data-driven BRDF
model parameters from unmodified basis BRDFs. To reg-
ularize the estimation of the model parameters from a re-
flectance map under natural lighting, we leverage the re-
flectance similarities between BRDFs in a material class. In-
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tuitively, we expect that it is easier to express the BRDF as
a combination of a small set of similar materials than from
a large set of BRDFs that span a larger spectrum of more
varied materials. We therefore, first approximate the space
of homogeneous BRDFs with a Gaussian mixture model.
Each normal distribution in the Gaussian mixture model rep-
resents a material class, and we assign each basis material to
the class with the highest likelihood. We formulate the esti-
mation of the model parameters as a maximum a-posteriori
optimization that maximizes the likelihood that the model
parameters explain the observations, as well as the likelihood
that the model belongs to the material class. However, this
formulation is highly non-linear and difficult to minimize.
We therefore exploit the additional observation that in high
dimensional spaces everything is distant, and approximate
the maximum a-posteriori optimization by an efficient lin-
ear least squares approximation per material class. Finally,
we select the most likely provisional least squares solution
based on the maximum a-posteriori error.

2. Related Work

We focus this discussion of prior work on: reflectance mod-
eling under natural lighting, and appearance modeling with
a data-driven reflectance model. We refer to the surveys of
Dorsey et al. [DRS08], and Weinmann and Klein [WK15]
for an in-depth general overview of appearance modeling.

Reflectance Modeling under Natural Lighting A first
subset of methods models surface reflectance from mul-
tiple photographs under natural lighting [ON16, PCDS12,
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DCP*14,ZCD*16,XDPT16]. These methods all rely on non-
linear reflectance models and estimation processes. In con-
trast, we employ a linear data-driven BRDF model and rely
on a linear estimation process, albeit limited to a homoge-
neous material and under known natural lighting.

A second subset models surface reflectance from just
a single photograph under natural lighting, using deep
learning [LDPT17, YLD*18, LSC18, LXR*18], or without
deep learning [RHO1, RVZ08, RZ10, LN16, BM15]. Our
method espouses the same goal as this second subset.
However, we explicitely desire to recover a data-driven
model [MPBMO3a].

Data-driven Reflectance Model In seminal work, Matusik
et al. [MPBMO03a] presented a data-driven BRDF model that
expresses the surface reflectance as a weighted combination
of a large set of measured BRDFs. To handle the large dy-
namic range between the specular peaks and the diffuse re-
flectance, a log-encoding is first applied to the measured ba-
sis BRDFs. Nielsen et al. [NJR15] and Xu et al. [XNY*16]
show that with appropriate regularization a good data-driven
BRDF can be reconstructed from very few observations. All
of the above methods estimate a data-driven BRDF from ob-
servations under directional lighting, and regularize the esti-
mation using a non-linear encoding of the measured BRDFs.
In contrast, our method uses a fully linear model and recon-
structs the data-driven BRDF model from a reflectance map
under uncontrolled known natural lighting.

3. Overview

Data-driven BRDF In this paper, we follow the data-driven
BRDF model of Matusik et al. [MPBMO3Db] that character-
izes the BRDF p as a linear combination of n measured ma-
terials b;,i € [1,n]: p = Bw, where we stack the BRDF p and
basis BRDFs b; in a vector of length p, and form the matrix
B by stacking each basis vector in a column: B = [by, ..., by].
The model parameters are stacked in a vector w of n scalar
weights. We directly use the parameterization of the MERL
BRDF database [MPBMO3a], and p =90 x 90 x 180. We do
not apply any logarithmic compression as in prior work. Fur-
thermore, we consider each color channel of the 100 MERL
BRDFs as a basis BRDF (i.e., n = 300).

Natural Lighting In this paper we aim to estimate the
weights w from an observation under natural lighting. As-
suming the lighting L is distant (i.e., it only depends on
the incident direction @; = (¢;, 6;)), and ignoring interreflec-
tions, we can formulate the observed radiance y as:

ep) = /Q p(;, @) cos(6)L(@)dw, (1)

where cos(6;) is the foreshortening, and Q is the upper hemi-
sphere of incident directions. Due to linearity of light trans-
port, we can express Equation 1 in terms of corresponding
basis observations y = Yw, where the weights w are the same

as before, and thus can be used to reconstruct p. The basis
images Y = [yo, ..., y»] are the observations of the measured
basis BRDFs b; under the same conditions.

Problem Statement Prior work relied on a dynamic range
compression function to obtain good data-driven BRDF re-
constructions. However, this compression function cannot be
used when linearly estimating the weights w from observa-
tions under natural lighting. Consequently, the key problem
we aim to address in this paper is to find the data-driven
weights w from the observation y without relying on a non-
linear compression function and/or a non-linear optimization
procedure for estimating the weights w. We will assume that
the observations are in the form of a high dynamic range re-
flectance map provided as a visualization of a sphere under
the target illumination.

Maximum a-posteriori Optimization Our goal is to find
the most likely weights w, relying on a linear estimation
process. Using Bayes’ theorem, we can formulate the log-
likelihood maximum a-posteriori estimation of w as:

argmin (log P(y|p) + log P(p)). )

In order to solve this minimization, we need a model of the
likelihood of the BRDF estimation p, a model for the con-
ditional probability of the observation y given the estimated
BRDF p.

4. BRDF Likelihood Modeling

Gaussian Mixture Model We propose to model the likeli-
hood of BRDFs by a Gaussian mixture model (GMM):

K
P(p) =Y N (p|uj, %)), 3)
=1

where 7; are the mixing coefficients of the j-th normal dis-
tribution .#” with mean u; and covariance matrix X ;.

Due to the limited number of basis BRDFs (i.e., 300), we
cannot directly perform Expectation-Maximization (EM) to
compute the mixture model. To resolve this issue, we per-
form EM in a reduced space, and only keep the N largest
singular values.

We found that N = 4 offers a good balance between accuracy
and numerical stability. Furthermore, we set the number of
Gaussian mixtures to K = 4, which offers a good approxi-
mation that nicely categorizes the materials in four recogniz-
able distinct material classes: “diffuse and glossy” materials
(137 materials), “plastics/phenolics” (99 materials), “met-
als” (24), and “specular plastics/paints” (40 materials).

5. Data-driven Model Estimation

MAP Estimation We express the likelihood of the observa-
tion given an estimate of the BRDF as:

P(ylp) = A (Yw—ylu,0), “)
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where (1t and X is the expected mean error and standard de-
viation on the reconstructions, and Yw is the rendering of
the estimated BRDF under the target natural lighting. We
assume that the mean error is close to zero (1 = 0), and o is
proportional to the expected camera noise.

Directly solving the MAP estimation poses two problems:
(1) the resulting equation (Equation 2) is highly non-linear
and difficult to solve, and (2) P(p) only linearly constrains 4
coefficients of w due to the dimension reduction.

Linear MAP Approximation To alleviate the above two
practical issues, we exploit the observation that that the over-
lap between the Gaussians in the Gaussian mixture model is
limited. We therefore propose to compute a candidate BRDF
for each material class j € [1,4]:

o [w) —
arg{r_)un<|Y<-’>w<-’>y|2+?u o ®
wl/ i

with u} and X; the mean and standard deviations of the j-
th material class. Given the set of candidate solutions w' =
{w(l)7 ..,w(k>}, we then rely on Equation 4 to pick the best
candidate from w’'.

Algorithm Summary In summary, given a reflectance map
y under known natural lighting L, and given a user provided
balance parameter A, we compute the data-driven BRDF
p =Bw as:

1. We precompute the Gaussian mixture model using the
EM algorithm detailed in section 4. Note, this precom-
putation only needs to happen once for the MERL BRDF
database, and is independent of the lighting.

2. We precompute Y by rendering a sphere with each basis
BRDF b; under the natural lighting (Equation 1). This pre-
computation needs to happen for every lighting condition.

3. We compute the candidate solutions w{{r.g b} for each ma-
terial class by solving the linear least squares in Equa-
tion 5 per color channel.

4. We combine the monochrome BRDFs to a 3-channel
BRDF: w' = {(W), 1, W, 1. W) 1 )5 ooy (W) s W W 1)}

5. Finally, we select the candidate solution from w’ that min-
imizes Equation 4.

6. Results

Experiment Setup We demonstrate our method on simu-
lated reflectance maps in order to fully control all parame-
ters. We generate the reflectance maps under natural light-
ing, by rendering a sphere lit by a light probe [Deb98] us-
ing Mitsuba [Jak10]; as noted in section 3, we will directly
use this rendered image as a representation of the reflectance
map. We use the BRDFs in the MERL database [MPBMO03a]
for generating reflectance maps. For each MERL BRDF, we
compute a novel Gaussian mixture model on the 297 remain-
ing MERL BRDFs (i.e., we exclude the basis BRDF corre-
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sponding to any of the three color channels of the BRDF),
and only use these 297 MERL BRDFs for reconstruction.

Reconstruction Results Figure 1 shows reconstructions of
4 selected materials under two different light probes (i.e.,
Eucalyptus Grove and Galileo’s Tomb). For each reconstruc-
tion (and the reference), we show a visualization of the refer-
ence/reconstructed BRDF under natural lighting (i.e., Uffizi
Gallery; different than the lighting condition under which
the BRDF was reconstructed) and a directional light. These
results show that our method is able to reconstruct plausible
BRDFs for a wide range of materials from a reflectance map
under natural lighting.

We refer to the extended report [CBP19] for a greater in
depth analysis and additional reconstructions on real-world
captured reflectance maps.

7. Conclusion

In this paper we presented a novel method for estimating the
parameters of a fully linear data-driven BRDF model from
a reflectance map under uncontrolled, but known, natural
lighting. Our estimation method does not require any non-
linear optimization, and only requires solving 4 linear least
squares problems. Our method requires modest precompu-
tations: a Gaussian mixture model clustering for the basis
BRDFs, and for each natural lighting conditions, renderings
of each basis material.
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