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Abstract

In this paper we demonstrate robust estimation of the
model parameters of a fully-linear data-driven BRDF
model from a reflectance map under known natural lighting.
To regularize the estimation of the model parameters, we
leverage the reflectance similarities within a material class.
We approximate the space of homogeneous BRDFs using
a Gaussian mixture model, and assign a material class to
each Gaussian in the mixture model. We formulate the es-
timation of the model parameters as a non-linear maximum
a-posteriori optimization, and introduce a linear approx-
imation that estimates a solution per material class from
which the best solution is selected. We demonstrate the effi-
cacy and robustness of our method using the MERL BRDF
database under a variety of natural lighting conditions, and
we provide a proof-of-concept real-world experiment.

1. Introduction

Data-driven appearance models [11, 12] express the
Bidirectional Reflectance Distribution Function (BRDF) of
a homogeneous material as a linear combination of a large
set of measured “basis” BRDFs. The key assumption is
that this large set of basis BRDFs covers the full space of
BRDFs, and any BRDF in this space can be represented
as convex combination of these basis BRDFs, thereby in-
heriting all the intricate reflectance details present in the
measured basis BRDFs that can be difficult to model with
analytical BRDF models. Compared to analytical BRDF
models that require an expensive and fragile non-linear opti-
mization to estimate the model parameters from reflectance
measurements, data-driven BRDF models, by virtue of its
linear nature, only require a linear least squares to estimate
the model parameters. Recent advances have shown great
promise in reconstructing a data-driven BRDF from very
few measurements [13, 25]. However, these methods rely
on controlled directional or point lighting. A key problem

in generalizing prior methods to natural lighting is that these
prior methods require a non-linear encoding (e.g., logarith-
mic) to compress the dynamic range of the the basis BRDFs
in order to regularize the estimation of the model parame-
ters. Such non-linear encoding can only be undone after lin-
ear parameter estimation if the observations consist of direct
BRDF observations (i.e., a single view and a single light
direction per observation). In contrast, observations under
natural lighting are the result of an integration of the BRDF
times lighting over all directions, and only linear transfor-
mations of the BRDF are transparent to this integration.

In this paper we aim to narrow the gap between inverse
rendering with data-driven BRDF models and analytical
BRDF models under natural lighting while retaining the ro-
bustness and simplicity of linear parameter estimation for
data-driven models. We consider our work a first explo-
ration in this direction that demonstrates that robust linear
data-driven BRDF model parameter estimation under nat-
ural lighting is feasible, rather than introducing a practical
and/or competitive method to current advanced inverse ren-
dering methods that use an analytical BRDF models as a
basis. To focus our exploration, we will a-priori assume that
the natural lighting is known and that we have a full char-
acterization of the material reflectance under this lighting
condition in the form of a reflectance map [18].

We desire to retain the advantages of a linear parameter
estimation process, and therefore avoid non-linear encoded
basis BRDFs, and directly estimate the data-driven BRDF
model parameters from unmodified basis BRDFs. To reg-
ularize the estimation of the model parameters from a re-
flectance map under natural lighting, we leverage the re-
flectance similarities between BRDFs in a material class.
Intuitively, we expect that it is easier to express the BRDF as
a combination of a small set of similar materials than from
a large set of BRDFs that span a larger spectrum of more
varied materials. We therefore, first approximate the space
of homogeneous BRDFs with a Gaussian mixture model.
Each normal distribution in the Gaussian mixture model
represents a material class, and we assign each basis ma-
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terial to the class with the highest likelihood. We formulate
the estimation of the model parameters as a maximum a-
posteriori optimization that maximizes the likelihood that
the model parameters explain the observations, as well as
the likelihood that the model belongs to the material class.
However, this formulation is highly non-linear and difficult
to minimize. We therefore exploit the additional observa-
tion that in high dimensional spaces everything is distant,
and approximate the maximum a-posteriori optimization by
an efficient linear least squares approximation per material
class. Finally, we select the most likely provisional least
squares solution based on the maximum a-posteriori error.

We demonstrate the efficacy of our solution using the
MERL BRDF database under a variety of natural lighting
conditions. Furthermore, we provide a proof-of-concept
real-world experiment to demonstrate that our results gener-
alize beyond the ideal simulated experiments on the MERL
BRDF database.

2. Related Work
We focus this discussion of prior work on the two key

properties of our method: reflectance modeling under nat-
ural lighting, and appearance modeling with a data-driven
reflectance model. We refer to the surveys of Dorsey et
al. [5], and Weinmann and Klein [23] for an in-depth gen-
eral overview of appearance modeling.
Reflectance Modeling under Natural Lighting A first
subset of methods models surface reflectance from mul-
tiple photographs under natural lighting. Oxholm and
Nishino [15] model shape and homogeneous reflectance
from multiple photographs under known natural lighting.
Palma et al. [16], Dong et al. [4], and Zhou et al. [27] re-
cover spatially-varying surface reflectance under unknown
natural lighting from a dense sampling of multiple views or
multiple rotations of a subject with known shape. Xia et
al. [24] extended the method of Dong et al. [4] to model
spatially-varying reflectance under unknown natural light-
ing and unknown shape. These model all rely on non-linear
reflectance models and estimation processes. In contrast,
we employ a linear data-driven BRDF model and rely on a
linear estimation process.

A second subset of methods models surface reflectance
from just a single photograph of an object under natural
lighting. In seminal work, Ramamoorthi and Hanrahan [17]
lay out a spherical harmonics framework for estimating
general homogeneous reflectance functions modeled by a
spherical harmonics expansion. Romeiro et al. [19, 20]
model the homogeneous surface reflectance using a bivari-
ate data-driven model from an object with known shape un-
der known and unknown natural lighting respectively. Simi-
larly, Lombardi et al. [10] also estimate natural lighting and
homogeneous surface reflectance modeled by the DSBRDF
reflectance model [14]. Finally, Barron and Malik [2] re-

cover shape, lighting and spatially-varying albedo from a
single photograph under unknown natural lighting. How-
ever, Barron and Malik only consider diffuse reflectance.
Our method espouses the same overall goal as this sec-
ond subset of methods. A reflectance map can potentially
be obtained from a single observations of a convex object
of known shape (e.g., sphere) or using the deep learning
method of Rematas et al. [18]. However, we explicitely de-
sire to recover a data-driven model [11] based on real-world
measured reflectance.

A third subclass of methods relies on deep learning to
infer reflectance properties under unknown natural lighting
from a single image. Li et al. [7] and Ye et al. [26] es-
timate the parameters of an analytical BRDF model [22]
for a spatially-varying material. Both Li et al. and Ye et
al. focus on augmenting the training data with unlabeled
photographs in order to reduce the number of required la-
beled training data (i.e., measured SVBRDFs). Li et al. [8]
present a network structure and a novel post-processing step
based on conditional random fields to estimate spatially-
varying reflectance parameters for an analytical micro-facet
BRDF model [21]. Finally, Li et al. [9] propose a cascad-
ing network structure to iteratively estimate and refine the
shape and spatially-varying surface reflectance. All of the
above methods express the surface reflectance using an an-
alytical BRDF model. In contrast, we express the surface
reflectance using a more expressive data-driven model, al-
beit limited to a homogeneous material and under known
natural lighting.

Data-driven Reflectance Model In seminal work, Ma-
tusik et al. [11] presented a data-driven BRDF model that
expresses the surface reflectance as a weighted combina-
tion of a large set of measured BRDFs. To handle the large
dynamic range between the specular peaks and the diffuse
reflectance, a log-encoding is first applied to the measured
basis BRDFs. Matusik et al. propose two models: a PCA
based 45D linear model, and non-linear, charting based,
15D model. In follow up work, Matusik et al. [12] use
the linear PCA model and show that 800 well selected and
controlled view-light direction pairs are sufficient for esti-
mating the BRDF. Nielsen et al. [13] show that by adding
a Tikhonov regularization to the estimation of a log-relative
encoded linear data-driven model, a good BRDF estimate
can be obtained from less than 20 optimized and controlled
view-light direction pairs, and for 5 photographs of a sphere
lit by optimized directional light sources. Xu et al. [25]
build on the method of Nielsen et al., and show that with an
improved error metric, a log-relative encoded linear data-
driven model can be recovered from just 2 near-field ob-
servations (photographs) under controlled directional light-
ing. All of the above methods estimate a data-driven BRDF
from observations under directional lighting, and regularize
the estimation using a non-linear encoding of the measured
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BRDFs. In contrast, our method uses a fully linear model
and reconstructs the data-driven BRDF model from a re-
flectance map under uncontrolled known natural lighting.

3. Overview
Data-driven BRDF The reflectance behavior of a homoge-
neous material is described by the bidirectional reflectance
distribution function (BRDF) ρ(ωi, ωo): a 4D function de-
fined as the ratio of incident irradiance for an incident direc-
tion ωi over the outgoing radiance for an outgoing direction
ωo.

In this paper, we follow the data-driven BRDF model
of Matusik et al. [12] that characterizes the BRDF ρ as a
linear combination of a large set of n measured materials
bi, i ∈ [1, n]. The underlying idea is that the set of mea-
sured BRDFs spans the space of BRDFs, and any material’s
BRDF should lie in this space:

ρ = Bw, (1)

where we stack the BRDF ρ and basis BRDFs bi in a vector
of length p, and form the matrix B by stacking each basis
vector in a column: B = [b1, ..., bn]. The model parame-
ters are stacked in a vector w of n scalar weights. We di-
rectly use the BRDF parameterization of the MERL BRDF
database [11], and p = 90×90×180. Furthermore, similar
as in Nielsen et al. [13], we consider each color channel of
the 100 MERL BRDFs as a basis BRDF, and thus n = 300.

Due to the large dynamic range between specular peaks
versus diffuse reflectance, prior work [11, 13, 25] has ap-
plied a non-linear compression function ζ to make the esti-
mation of w less sensitive to errors on the (large) specular
peaks:

ρ′ = B′w′, (2)

where B′ = [ζ(b1), ..., ζ(bn)]. An expansion ζ−1 is ap-
plied to the compressed BRDF ρ′ after computation of the
weights. A common compression function is the logarith-
mic function, in which case Equation 2 becomes a homo-
morphic factorization.
Natural Lighting Prior work relied on point sample mea-
surements of ρ for a set of incoming-outgoing direction
pairs to estimate the weights w. In contrast, in this paper
we aim to estimate the weights w from an observation un-
der natural lighting. Assuming the lighting L is distant (i.e.,
it only depends on the incident direction ωi = (φi, θi)), and
ignoring interreflections, we can formulate the observed ra-
diance y as:

y(ωo) =

∫
Ω

ρ(ωi, ωo) cos(θi)L(ωi)dωi, (3)

where cos(θi) is the foreshortening, and Ω is the upper
hemisphere of incident directions. Due to linearity of light

transport, we can express Equation 3 in terms of corre-
sponding basis observations y:

y = Y w, (4)

where the weights w are the same as in Equation 1, and
thus can be used to reconstruct ρ. The basis images
Y = [y0, ..., yn] are the observations of the measured ba-
sis BRDFs bi under the same conditions:

yi =

∫
Ω

bi(ωi, ωo) cos(θi)L(ωi)dωi. (5)

Problem Statement As noted before, the dynamic range
compression function ζ is essential in obtaining good data-
driven BRDF reconstructions, even in the case of a very
dense point sampling of light and view directions [1]. How-
ever, this compression function cannot be used when lin-
early estimating the weightsw from observations under nat-
ural lighting. This can be seen by inserting Equation 2
in Equation 5:

ζ(yi) 6= yζi =

∫
Ω

ζ(bi(ωi, ωo)) cos(θi)L(ωi)dωi. (6)

In other words, the non-linear compression of the obser-
vation is not equivalent to the observation under natural
lighting of the non-linearly compressed BRDFs. While not
a problem for the basis BRDFs bi, since we can generate
the corresponding images yζi with any rendering system di-
rectly from the non-linear encoded basis BRDFs ζ(bi), it is
a problem for ρ, because we can only observe y the result-
ing radiance of ρ under natural lighting, not the reflected
radiance of its non-linear compressed form ζ(ρ), and hence
we do not have access to yζ . Consequently, the key prob-
lem we aim to address in this paper is to find the data-driven
weights w from the observation y without relying on a non-
linear compression function ζ and/or a non-linear optimiza-
tion procedure for estimating the weights w.
Maximum a-posteriori Optimization Formally, our goal
is to find the most likely weights w, relying on a linear esti-
mation process, such that the conditional probability of the
reconstructed data-driven homogeneous BRDF ρ is maxi-
mized given a reflectance map y under known natural light-
ing L:

argmax
w

P (ρ|y). (7)

We will assume that the observations are in the form of a
high dynamic range reflectance map (i.e., a full characteri-
zation of the reflectance radiance of a homogeneous BRDF
for a fixed lighting condition). In the remainder of this pa-
per, we will assume that the reflectance map is provided in
the form of a visualization of a sphere under the target illu-
mination.
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Using Bayes’ theorem, we can formulate the maximum
a-posteriori (MAP) estimation of w as:

argmax
w

P (y|ρ)P (ρ)

P (y)
. (8)

Rewriting in terms of the log-likelihood, and noting that
P (y) is constant (i.e., the observation is given), we obtain:

argmin
w

(logP (y|ρ) + logP (ρ)) . (9)

In order to solve this minimization problem, we need
a model of the likelihood of the BRDF estimation ρ (sec-
tion 4), and a model for the conditional probability of the
observation y given the estimated BRDF ρ, and an efficient
linear strategy for solving this minimization (section 5).

4. BRDF Likelihood Modeling
Gaussian Mixture Model We propose to model the likeli-
hood of BRDFs by a Gaussian mixture model (GMM):

P (ρ) =

k∑
j=1

πjN (ρ|µj ,Σj), (10)

where πj are the mixing coefficients of the j-th normal dis-
tribution N with mean µj and covariance matrix Σj .
Expectation-Maximization An effective method for com-
puting the parameters Θ = (π, µ,Σ) is the Expectation
Maximization algorithm using the MERL BRDFs bi as ob-
servations. For this we define a latent variable γj(bi) that
indicates the likelihood of the j-th Gaussian given a MERL
BRDF bi:

γj(bi) = P (j|bi), (11)

=
P (j)P (bi|j)

P (bi)
, (12)

=
πjN (bi|µj ,Σj)∑k
j=1 πjN (bi|µj ,Σj)

. (13)

Expectation minimization iterates between estimating the
latent variable γj(bi) (E-step, Equation 13), and the model
parameters (M-step):

πj =
1

n

n∑
i

γj(bi), (14)

µj =

∑n
i γj(bi)bi
πj

, (15)

Σj =

∑n
i γj(bi)(bi − µj)(bi − µj)T

πj
. (16)

We iterate until the log-likelihood over the MERL BRDFs
converges:

logP (B|Θ) =

n∑
i

log

k∑
j

πjN (ρ|µj ,Σj). (17)

 Specular Plastics/Paints
Metals

Plastics/Phenolics
Diffuse/Glossy

Figure 1. 2D multi-dimensional scaling of the projected MERL
BRDFs ÛTB and a color-coding of the respective material classes
derived from the 4D approximation of the BRDF likelihood mod-
eled by a Gaussian mixture model.

To bootstrap the EM algorithm, we perform a standard
k-mean clustering, and initialize πj as the ratio of assigned
BRDFs to the j-th cluster over the total number of MERL
BRDFs (i.e., n).
Curse of Dimensionality A practical problem is that the
number of observations n is significantly lower than the di-
mensionality of the space (i.e., p).We therefore apply a sin-
gular value decomposition (SVD) to express the observa-
tions in a n dimensional space U :

B = USV T . (18)

However, this is still a 300 dimensional space. A key issue
is that even for a moderate number of dimensions any dis-
tance is very large, and thus the distance to the means µj
are large too. Consequently, the likelihood of each Gaus-
sian mixture (Equation 13) will always be very low and it
can potentially cause numerical instabilities. To resolve this
issue, we perform expectation maximization in a reduced
space, and only keep the coefficients belonging to the N
largest singular values. In other words, we perform expecta-
tion maximization (i.e., soft clustering) on a projection to an
N dimensional subspace, and approximate the likelihood:
P (ρ) ≈ P (ÛT ρ), where Û is the N dimensional basis (i.e.,
the first N vectors in U ).
Discussion We found thatN = 4 offers a good balance be-
tween accuracy and numerical stability. A second parameter
that needs to be set is the number of Gaussian mixtures K.
If the number of Gaussians is too low, then P (ÛT ρ) only
offers a coarse approximation. However, we also found that
for increasing number of K, the algorithm tends to subdi-
vide the same Gaussian distribution, essentially overfitting
to ’special case’ BRDFs (such as Steel which exhibits ac-
quisition artifacts). In practice we found that K = 4 offers
a good approximation that nicely categorizes the materials
in four recognizable distinct material classes: “diffuse and
glossy” materials (137 materials), “plastics/phenolics” (99
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materials), “metals” (24), and “specular plastics/paints”
(40 materials); we determine membership to a material class
by assigning the material to the material class with the max-
imum γj(bi) likelihood. Figure 1 shows a plot of a 2D
multi-dimensional scaling of the 4D projected coordinates
of the MERL BRDFs, as well as a color-coding to indicate
for which material class the material has the highest affinity.
Note that even though the diffuse-like material class con-
tains 137 materials, the multi-dimensional scaling places
them all close together. Please refer to the supplemental
material for an exhaustive list of which material belongs to
which material class.

5. Data-driven Model Estimation
MAP Estimation We express the likelihood of the obser-
vation given an estimate of the BRDF as:

P (y|ρ) = N (Y w − y|µ, σ), (19)

where µ and Σ is the expected mean error and standard de-
viation on the reconstructions, and Y w is the rendering of
the estimated BRDF under the target natural lighting. We
assume that the mean error is close to zero (µ = 0), and
σ is proportional to the expected measurement error (e.g.,
camera noise).

Given the likelihood P (ÛT ρ) expressed by the Gaussian
mixture model (Equation 10), we can then formulate the
MAP estimation (Equation 9) as:

argmin
w

 ||Y w − y||2
σ2

+ log
∑
j

πjN (ÛTBw|µj ,Σj)

 .

(20)
The first term is the data term that indicates how well (a
visualization of) the BRDF ρ = Bw can explain the ob-
servation y, and the second term indicates how plausible
the reconstructed BRDF ρ (projected in the 4 dimensional
space Û ) is.

However, directly solving for the BRDF weightsw using
Equation 20 is not practical because of two key issues:

1. Non-linear: Equation 20 is highly non-linear and dif-
ficult to optimize due to the sum of the log-likelihoods
in the second term.

2. Gaussian Mixture Model Accuracy for P (ρ) ≈
P (ÛT ρ): We approximated the likelihood of the
BRDF by a 4 dimensional Gaussian mixture model.
This reduction in dimensionality was necessary due to
the curse of dimensionality. However, it also implic-
itly assumes that the BRDF lies not too far from the
space of plausible BRDFs. Since the likelihood is only
determined based on 4 dimensions (and thus only regu-
larizes these four), the other 296 dimensions can be set

to any value (including unreasonable values that result
in an implausible BRDF).

Linear MAP Approximation To alleviate the above two
practical issues, we exploit the observation that the likeli-
hood of a basis BRDF bi belonging to a material class m is
for most basis BRDFs equivalent to an indicator function:

γj(bi) ≈ δi,m. (21)

This implies that the overlap between the Gaussians in the
Gaussian mixture model is limited. Armed with this obser-
vation, we therefore propose to compute a candidate BRDF
for each material class j ∈ [1, k]:

argmin
w(j)

(logP (y|ρ, j) + logP (ρ|j)) . (22)

Given the set of candidate solutions w′ = {w(1), .., w(k)},
we then pick the best candidate that best reconstructs the
BRDF.
Per-Material Class Linear Data Term We define the data-
term similarly as in the general non-linear case, except that
we only use the basis BRDFs that belong to the same mate-
rial class:

logP (y|ρ, j) = ||Y (j)w(j) − y||2, (23)

where Y (j) is the set of observations that correspond to the
basis BRDFs assigned to the j-th material class (i.e., the
materials bi for which γj(bi) is maximal).
Per-Material Class Linear Likelihood Term We ex-
press the per-material class likelihood by a single Gaussian
model. We directly compute this probability on the BRDF
weights w(j):

P (ρ|j) = N (w(j), µ′j ,Σ
′
j), (24)

where: µ′j = ( 1
cj
, ..., 1

cj
)T , and cj is the number of ba-

sis BRDFs in the j-th material class. Note that Y (j)µ′j is
equivalent to the mean BRDF of the material class, and µ′j
the corresponding coordinate in the j-th BRDF subspace.
Linear Least Squares Estimation Both Equation 23 and
(the log likelihood of) Equation 24 are quadratic terms that
define a linear system in terms of w that can be solved us-
ing a regular linear least squares. However, both terms can
have a vastly different magnitude. The magnitude of the
data-term depends on the error on the rendered image of the
estimated BRDF. This image error depends on the resolu-
tion, the overall intensity of the lighting, and the reflectivity
of the material. Similarly, the magnitude of the likelihood
term depends on the number of basis BRDFs per material
class. We therefore add a balancing term:

λj =
λ||y||2

cj
, (25)
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where ||y||2 is the total squared pixel intensities in the ob-
servation. We expect that the overall intensity of the obser-
vation is directly proportional to the lighting intensity and
reflectivity of the BRDF, and hence the overall scale of the
image error. λ is a user set constant that depends on the
qualities of the lighting. An ill-conditioned lighting condi-
tion requires a larger λ value (e.g., a low frequency lighting
environment is ill-conditioned for estimating specular prop-
erties [17]). In practice we found that λ = 0.5 works well
for many lighting environments, and forms a good starting
point for fine-tuning λ.

The final linear least squares is:

argmin
w(j)

(
||Y (j)w(j) − y||2 + λj

||w(j) − µ′j ||2

Σ2
j

)
.(26)

Selection Ideally, we would like to select the best candidate
solution from w′ by evaluating Equation 20. However, by
a-priori assuming that a BRDF belongs to a material class
j, it is possible that there is a significant mismatch between
the target material and the material class. For example, at-
tempting to model a mirror-like specular material using the
diffuse material class is unlikely to produce a satisfactory
result. Consequently, we cannot simply rely on the likeli-
hood P (ÛT ρ) based on the 4 dimensional Gaussian mix-
ture model to select the best solution from w′ (i.e., the other
296 dimensions can be arbitrarily wrong). We will therefore
further exploit the observation of the limited overlap of the
Gaussians in the mixture model, and approximate the solu-
tion per material class by enforcing that it lies in the convex
hull of the subspace spanned by the BRDFs assigned to the
material class, and only rely on Equation 19 to pick the best
candidate from w′. We ignore the standard deviation (i.e.,
σ = 1) in Equation 19 as it only acts as a scale (in the
log-likelihood) that does not affect the selection of the best
reconstruction (i.e., minimum log-likelihood).
Color Our discussion until now only considered mono-
chrome BRDFs; we used all color channels from the MERL
BRDFs as separate basis BRDFs. A straightforward strat-
egy for estimating a non-monochrome BRDF with three
color channels, would be to execute the estimation sepa-
rately for each color channel, and combine the three re-
constructed monochrome BRDF into a single RGB BRDF.
However, it is possible that a solution from a different mate-
rial classes j is selected for each of the three color channels.
Because the set of basis BRDFs for each material class are
disjunct, there can be slight differences in the constructed
BRDF shape for each color channel, which in turn can result
in color artifacts in the combined BRDF. We circumvent
this potential problem by combining the three color chan-
nels after obtaining the candidate BRDFs, and performing
the selection on the RGB BRDF instead of each color chan-
nel separately. Hence, each color channel will be recon-
structed with the same set of basis BRDFs.

Algorithm Summary In summary, given a reflectance map
y under known natural lighting L, and given a user provided
balance parameter λ, we compute the data-driven BRDF
ρ = Bw as:

1. We precompute the Gaussian mixture model using the
EM algorithm detailed in section 4. Note, this pre-
computation only needs to happen once for the MERL
BRDF database, and is independent of the lighting.

2. We precompute Y by rendering a sphere with each ba-
sis BRDF bi under the natural lighting (Equation 5).
This precomputation needs to happen for every light-
ing condition.

3. We compute the candidate solutions w′{r,g,b} for each
material class by solving the linear least squares
in Equation 26 per color channel.

4. We combine the monochrome BRDFs
to a 3-channel BRDF: w′ =
{(w′r,1, w′g,1, w′b,1), ..., (w′r,k, w

′
g,k, w

′
b,k)}.

5. Finally, we select the candidate solution from w′ that
minimizes Equation 19.

6. Results
Experiment Setup We demonstrate our method on simu-
lated reflectance maps in order to fully control all parame-
ters. We generate the reflectance maps under natural light-
ing, by rendering a sphere lit by a light probe [3] using
Mitsuba [6]; as noted in section 3, we will directly use
this rendered image as a representation of the reflectance
map. All generated images are radiometrically linear, and
we only tone map them for display. All results shown in
this paper were tone mapped by a simple gamma 2.2 cor-
rection and a virtual exposure (i.e., scale factor) of 1.0; all
pixel values above 1.0 and below 0.0 are clipped to the re-
spective clipping values. We use the BRDFs in the MERL
database [11] for generating reflectance maps. For each
MERL BRDF, we compute a novel Gaussian mixture model
on the 297 remaining MERL BRDFs (i.e., we exclude the
basis BRDF corresponding to any of the three color chan-
nels of the BRDF), and only use these 297 MERL BRDFs
for reconstruction. Consequently, any reconstruction of a
BRDF from the MERL BRDF database is computed using
a different set of basis BRDFs. As noted in the prior sec-
tions, we compute the Gaussian mixture model on a N = 4
dimensional reduced space, and use K = 4 Gaussians in
the mixture model. All reconstructions are generated with a
fixed balancing factor λ = 0.5.
Reconstruction Results Figure 2 shows reconstructions of
7 selected materials under two different light probes (i.e.,
Eucalyptus Grove and Galileo’s Tomb). For each recon-
struction (and the reference), we show a visualization of the
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Figure 2. Data-driven BRDF reconstructions from a reflectance map under the Eucalyptus Grove and the Galileo’s Tomb light probe. We
visualize the reference and reconstructed BRDFs under the Uffizi Gallery light probe and a directional light.
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Linear Least Material Class
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Figure 3. Reconstructions for each material class for 4 selected materials observed under the Uffizi Gallery light probe, and revisualized
under the Eucalyptus Grove light probe and directional lighting. We list the log-likelihood error on the observations, and mark the best
solution. In addition we provide a comparison against a naive linear least squares reconstruction with the full MERL BRDFs.
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reference/reconstructed BRDF under a natural lighting con-
dition (i.e., Uffizi Gallery; different than the lighting condi-
tion under which the BRDF was reconstructed) and a direc-
tional light (i.e., a slice of the BRDF for a single incident
direction for all outgoing directions). These results show
that our method is able to reconstruct plausible BRDFs for
a wide range of materials from a reflectance map under nat-
ural lighting. We refer to the supplemental material for the
reconstructions under different natural lighting conditions
for all MERL BRDFs.

Per-Material Class Reconstruction Figure 3 illustrates,
for a selection of 4 materials, reconstructed under the Uf-
fizi Gallery light probe, that the reconstructions per mate-
rial class are different, and that depending on the material
a different class’ reconstruction is selected. We show a vi-
sualization of the reference BRDF and the reconstructions
per cluster under a natural lighting condition (i.e., Euca-
lyptus Grove) and a directional light. We also list the log-
likelihood of the observation given the BRDF (Equation 19)
below each cluster, and mark the final selected solution (i.e.,
minimum). For reference, we also show the linear least
squares solution: argminw ||Y w − y||2. As expected this
yields the lowest reconstruction error (since it explicitely
optimizes for this). However, the linear least squares solu-
tion does not always yield a plausible result when visual-
ized under a different lighting condition. This is not only
clearly visible under the directional light source, but also
under other natural lighting conditions other than the orig-
inal observed lighting (e.g., the black spot in the center of
the visualizations under the Eucalyptus Grove light probe
for Steel and Red Metallic Paint). Furthermore, we observe
that not all clusters’ reconstructions appear to be plausible.
However, the selection process tends to pick the most plau-
sible reconstruction.

Comparison: Single Material Class Reconstruction To
gain insight in the importance of reconstructing the BRDF
per material class, we compare the reconstruction quality
of the BRDF from a single material class to our multi-
material class solution (Figure 4). Our results demonstrate
that using a single material class improves on a naive linear
least squares. However, our solution with multiple mate-
rial classes outperforms the single material class case. Note
that we optimized λ for the single cluster case to produce an
as optimal result given the lighting conditions. In this case
we reconstructed the BRDF under Grace Cathedral lighting
using a λ = 0.5 for the single cluster case. Note, that the
single material class reconstruction (Equation 26) is simi-
lar to Nielsen et al.’s [13] method, without applying a non-
linear encoding of the BRDF. Additional minor differences
are that Nielsen et al. subtract the median instead of the
mean before computing the linear least squares and assume
a unit standard deviation. Furthermore, the single class re-
construction is also similar to Romeiro et al.’s [19] method,

using a linear data-driven BRDF model instead of the bi-
variate model. Since we a-priori assume a linear BRDF
model, we want to explore the differences between the re-
construction methods, not the BRDF model representations.

In general, we found that overall our method outper-
forms a single material class reconstruction. The single
material reconstruction tends to work equally well on phe-
nolic and plastic materials as these are similar in BRDF
shape to the mean material. However, the single material
class reconstruction fails for diffuse and metal-like materi-
als. While less strong than for the naive least squares, for
diffuse materials we can observe a central “spike” visible
under the directional lighting. For the metal-like materials,
we typically observe strong ringing artifacts.
Captured Reflectance Map Validation To validate our
method on other materials than the MERL BRDF database,
we performed the following proof-of-concept experiment.
We acquired three spheres with different materials (i.e.,
Dense Orange Foam, Blue Plastic, and Dark Bronze) un-
der two different natural lighting environments shown in
the insets. Next, we estimate data-driven BRDF parameters
under the indoor Chapel lighting, and rerender the sphere
under the outdoor lighting. We mask out any measured
reflectance values that deviate from the expected measure-
ment conditions (e.g., the dimple on the Blue Plastic, and
the near field reflection from the stand). As can be seen
in Figure 5, the rerendered reflectance maps closely resem-
ble the acquired reference maps. Note, the Dark Bronze ma-
terial exhibits anisotropic reflectance which adversely im-
pacts the reconstruction. Nevertheless, the reconstructed
BRDF remains plausible. For reference, we also include a
least squares data-driven BRDF reconstruction. In addition,
we also show visualizations of the reconstructed BRDFs lit
by a directional light source to better demonstrate the plau-
sibility of the reconstructions.
Discussion While our selection criterion does in the ma-
jority of cases select the best reconstruction from the dif-
ferent material classes, we found that in a few cases cases
it does not select the best reconstruction, and a better re-
construction can be observed in another material class. Ide-
ally, the selection criterion should not only include the data
term Equation 19, but evaluate the full non-linear MAP
estimation loss (Equation 20). We observe that for cases
where our current selection criterion prefers a suboptimal
solution, that the accompanying likelihood term P (ÛT ρ) is
relatively large. However, a challenge is that the range of
the data-term and the likelihood cover a different range due
to: (a) the ommission of a standard deviation scale in the
data-term, and (b) the dimension reduction in the likelihood
term. Finding a good balancing term is non-trivial and an
interesting avenue for future research.

We currently used a λ balancing factor of 0.5 for all our
reconstructions. This λ is a compromise to produce the
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Figure 4. Comparison between naive linear least squares data-driven BRDF reconstruction, single material class reconstruction, and our
multiple material class reconstruction. For diffuse-like materials, both the linear least squares and single material class reconstructions
exhibit a central “spike” visible under the directional lighting. For metals, strong ringing artifacts can be observed for both the linear least
squares and single material class solutions.

best result over all materials. Despite the material class and
scene dependent scale factor (Equation 25), we observe that
this lambda terms tends to affect the “diffuse” and “plas-
tics / phenolics” stronger, and the ”metals” and “specular
plastics / paints” less. These latter two material classes ex-
hibit not only a lower number of materials (for which we
compensate), but we can also observe in Figure 1 that they
are also spread out further. Consequently, the density of
these material classes is significantly lower. This lower den-
sity implies that the material class is very diverse in BRDF
types and that the MERL BRDF database does not densely
sample these material types. Taking in account this den-
sity difference is another interesting avenue for future work.
In general, we find that reconstructions from these material
classes are less often selected.

Relation to Prior Work Matusik et al. [11] showed that
the log-encoded BRDF space can be accurately modeled
by a 45D linear subspace and a 15D non-linear manifold.
While a linear model is computationally more convenient, a
non-linear model offers a tighter fit to the space of BRDFs,
and consequently, it contains less implausible BRDFs. Our
Gaussian mixture based model can be seen as a piecewise
linear approximation of the non-linear manifold of BRDFs.
In contrast to Matusik et al., we work directly on the space
spanned by the basis BRDF (i.e., without log-encoding).

However, as shown in Figure 1 this manifold is highly
non-linear too. While less tight than a full 15D non-linear
model, our Gaussian mixture models strikes a balance be-
tween tightness and the ability to robustly identify the piece-
wise linear subspace to which the observations under natu-
ral lighting belong.

An implausible BRDF lies inside the linear subspace
spanned by the linear model, but outside the non-linear
BRDF manifold. Ideally, we would like to bias these im-
plausible solution towards the non-linear manifold to ob-
tain a more plausible solution. Tikhonov regularization
biases the reconstruction towards a mean BRDF, assum-
ing that the solution is more plausible when closer to the
mean. However, such a regularization is only efficient if
the modeled space resembles a hypersphere. Nielsen et
al. [13] model the BRDF space as a hypersphere by scal-
ing the PCA basis BRDFs by the singular values. However,
as noted before, the BRDF space is highly non-linear and
such a hypersphere is not a tight model. Intuitively, biasing
the reconstruction of a diffuse material towards the mean or
median BRDF is suboptimal; the mean or median BRDF
contains a rough specular lobe. Consequently, it is possi-
ble that biasing pushes the solution towards a point away
from the non-linear manifold. Our solution represents the
space of BRDFs as a sum of (rescaled) hyperspheres: the
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Figure 5. Reconstructions for each material class for 3 captured materials observed under indoor natural lighting, and revisualized under
outdoor natural lighting and directional lighting. For each natural lighting condition we also provide a reference photograph. We list the
log-likelihood error, and mark the best solution. In addition we provide a comparison against a naive linear least squares reconstruction.
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per-material class linear likelihood term (Equation 24) bi-
ases the solution to the mean (µ′j) of the local hypersphere
(rescaled by Σ′j). Since each Gaussian subspace is more
tight, biasing towards the mean has a lower likelihood of
ending away from the non-linear manifold.

7. Conclusion

In this paper we presented a novel method for estimating
the parameters of a fully linear data-driven BRDF model
from a reflectance map under uncontrolled, but known, nat-
ural lighting. Our estimation method does not require any
non-linear optimization, and only requires solving 4 linear
least squares problems. Our method requires modest pre-
computations: a Gaussian mixture model clustering for the
basis BRDFs, and for each natural lighting conditions, ren-
derings of each basis material. We demonstrated the ac-
curacy and robustness of our method on the MERL BRDF
database, and validated our method on real-world measure-
ments.

For future work we would like to explore better selection
criteria and a per-material class λj density correction factor.
Acknowledgments This work was supported in part by
NSF grant IIS-1350323 and gifts from Google, Activision,
and Nvidia.

References
[1] M. M. Bagher, J. Snyder, and D. Nowrouzezahrai. A non-

parametric factor microfacet model for isotropic brdfs. ACM
Trans. Graph., 35(5):159:1–159:16, 2016.

[2] J. T. Barron and J. Malik. Shape, illumination, and re-
flectance from shading. IEEE PAMI, 2015.

[3] P. Debevec. Light probe gallery. http://www.
pauldebevec.com/Probes/, 1998.

[4] Y. Dong, G. Chen, P. Peers, J. Zhang, and X. Tong.
Appearance-from-motion: Recovering spatially varying sur-
face reflectance under unknown lighting. ACM Trans.
Graph., 33(6):193:1–193:12, 2014.

[5] J. Dorsey, H. Rushmeier, and F. Sillion. Digital Modeling
of Material Appearance. Morgan Kaufmann Publishers Inc.,
2008.

[6] W. Jakob. Mitsuba: Physically based renderer. https:
//www.mitsuba-renderer.org, 2010.

[7] X. Li, Y. Dong, P. Peers, and X. Tong. Modeling
surface appearance from a single photograph using self-
augmented convolutional neural networks. ACM Trans.
Graph., 36(4):45:1–45:11, July 2017.

[8] Z. Li, K. Sunkavalli, and M. K. Chandraker. Materials for
masses: Svbrdf acquisition with a single mobile phone im-
age. In ECCV, 2018.

[9] Z. Li, Z. Xu, R. Ramamoorthi, K. Sunkavalli, and M. Chan-
draker. Learning to reconstruct shape and spatially-varying
reflectance from a single image. ACM Trans. Graph., 37(6),
Dec. 2018.

[10] S. Lombardi and K. Nishino. Reflectance and illumination
recovery in the wild. IEEE PAMI, 38(1):129–141, 2016.

[11] W. Matusik, H. Pfister, M. Brand, and L. McMillan. A data-
driven reflectance model. ACM Trans. Graph., 22(3):759–
769, July 2003.

[12] W. Matusik, H. Pfister, M. Brand, and L. McMillan. Ef-
ficient isotropic BRDF measurement. In Rendering Tech-
niques, pages 241–248, 2003.

[13] J. B. Nielsen, H. W. Jensen, and R. Ramamoorthi. On opti-
mal, minimal brdf sampling for reflectance acquisition. ACM
Trans. Graph., 34(6), Oct. 2015.

[14] K. Nishino and S. Lombardi. Directional statistics-based re-
flectance model for isotropic bidirectional reflectance distri-
bution functions. J. Opt. Soc. Am. A, 28(1):8–18, Jan 2011.

[15] G. Oxholm and K. Nishino. Shape and reflectance estimation
in the wild. IEEE PAMI, 38(2):376–389, Feb. 2016.

[16] G. Palma, M. Callieri, M. Dellepiane, and R. Scopigno. A
statistical method for svbrdf approximation from video se-
quences in general lighting conditions. Comput. Graph. Fo-
rum, 31(4):1491–1500, 2012.

[17] R. Ramamoorthi and P. Hanrahan. A signal-processing
framework for inverse rendering. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’01, pages 117–128, 2001.

[18] K. Rematas, T. Ritschel, M. Fritz, E. Gavves, and T. Tuyte-
laars. Deep reflectance maps. In CVPR, 2016.

[19] F. Romeiro, Y. Vasilyev, and T. Zickler. Passive reflectome-
try. In ECCV, pages 859–872, 2008.

[20] F. Romeiro and T. Zickler. Blind reflectometry. In ECCV,
pages 45–58, 2010.

[21] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Mi-
crofacet models for refraction through rough surfaces. In
Rendering Techniques, pages 195–206, 2007.

[22] G. J. Ward. Measuring and modeling anisotropic reflection.
SIGGRAPH Comput. Graph., 26(2):265–272, 1992.

[23] M. Weinmann and R. Klein. Advances in geometry and
reflectance acquisition. In ACM SIGGRAPH Asia, Course
Notes, 2015.

[24] R. Xia, Y. Dong, P. Peers, and X. Tong. Recovering shape
and spatially-varying surface reflectance under unknown il-
lumination. ACM Trans. Graph., 35(6), December 2016.

[25] Z. Xu, J. B. Nielsen, J. Yu, H. W. Jensen, and R. Ra-
mamoorthi. Minimal brdf sampling for two-shot near-field
reflectance acquisition. ACM Trans. Graph., 35(6):188:1–
188:12, Nov. 2016.

[26] W. Ye, X. Li, Y. Dong, P. Peers, and X. Tong. Single pho-
tograph surface appearance modeling with self-augmented
CNNs and inexact supervision. Computer Graphics Forum,
37(7), Oct 2018.

[27] Z. Zhou, G. Chen, Y. Dong, D. Wipf, Y. Yu, J. Snyder, and
X. Tong. Sparse-as-possible svbrdf acquisition. ACM Trans.
Graph., 35, November 2016.

12

http://www.pauldebevec.com/Probes/
http://www.pauldebevec.com/Probes/
https://www.mitsuba-renderer.org
https://www.mitsuba-renderer.org

