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Estimating Homogeneous Data-driven BRDF
Parameters from a Reflectance Map under Known

Natural Lighting
Victoria L. Cooper, James C. Bieron, Pieter Peers

Abstract—In this paper we demonstrate robust estimation of
the model parameters of a fully-linear data-driven BRDF model
from a reflectance map under known natural lighting. To regu-
larize the estimation of the model parameters, we leverage the
reflectance similarities within a material class. We approximate
the space of homogeneous BRDFs using a Gaussian mixture
model, and assign a material class to each Gaussian in the mixture
model. We formulate the estimation of the model parameters as a
non-linear maximum a-posteriori optimization, and introduce a
linear approximation that estimates a solution per material class
from which the best solution is selected. We demonstrate the
efficacy and robustness of our method using the MERL BRDF
database under a variety of natural lighting conditions, and we
provide a proof-of-concept real-world experiment.

Index Terms—Homogeneous BRDF, Data-driven, Natural
Lighting.

I. INTRODUCTION

DATA-DRIVEN appearance models [1], [2] express the
Bidirectional Reflectance Distribution Function (BRDF)

of a homogeneous material (i.e., a spatially invariant material)
as a linear combination of a large set of measured “basis”
BRDFs. The key assumption is that this large set of basis
BRDFs covers the full space of BRDFs, and any BRDF in this
space can be represented as convex combination of these basis
BRDFs, thereby inheriting all the intricate reflectance details
present in the measured basis BRDFs that can be difficult to
model with analytical BRDF models. Compared to analytical
BRDF models that require an expensive and fragile non-linear
optimization to estimate the model parameters from reflectance
measurements, data-driven BRDF models, by virtue of its
linear nature, only require a linear least squares to estimate
the model parameters. Recent advances have shown great
promise in reconstructing a data-driven BRDF from very
few measurements [3], [4]. However, these methods rely on
controlled directional or point lighting. A key problem in
generalizing prior methods to natural lighting is that these
prior methods require a non-linear encoding (e.g., logarithmic)
to compress the dynamic range of the basis BRDFs in order to
regularize the estimation of the model parameters. Such non-
linear encoding can only be undone after linear parameter esti-
mation if the observations consist of direct BRDF observations
(i.e., a single view and a single light direction per observation).
In contrast, observations under natural lighting are the result of
an integration of the BRDF times lighting over all directions,
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and only linear transformations of the BRDF are transparent
to this integration.

In this paper we aim to narrow the gap between inverse
rendering with data-driven isotropic BRDF models and an-
alytical BRDF models under natural lighting while retaining
the robustness and simplicity of linear parameter estimation for
data-driven models. We consider our work a first exploration in
this direction that demonstrates that robust linear data-driven
isotropic BRDF model parameter estimation under natural
lighting is feasible, rather than introducing a practical and/or
competitive method to current advanced inverse rendering
methods that use analytical BRDF models as a basis. To
focus our exploration, we will a-priori assume that the natural
lighting is known and that we have a full characterization of
the material reflectance under this lighting condition in the
form of a reflectance map [5] (i.e., a photograph of a spherical
sample), and investigate extensions to other (a-priori known)
shapes in section VIII.

We desire to retain the advantages of a linear parameter esti-
mation process, and therefore avoid non-linear encoded basis
BRDFs, and directly estimate the data-driven BRDF model
parameters from unmodified basis BRDFs. To regularize the
estimation of the model parameters from a reflectance map
under natural lighting, we leverage the reflectance similarities
between BRDFs in a material class. Intuitively, we expect that
it is easier to express the BRDF as a combination of a small set
of similar materials than from a large set of BRDFs that span
a larger spectrum of more varied materials. In other words,
we aim to more accurately reconstruct a data-driven BRDF
by leveraging material class (e.g., metals, paints, diffuse, and
phenolics) specific knowledge. To define the material classes,
we first approximate the space of homogeneous BRDFs with a
Gaussian mixture model. Each normal distribution in the Gaus-
sian mixture model represents a material class, and we assign
each basis material to the class with the highest likelihood.
We formulate the estimation of the data-driven BRDF model
parameters as a maximum a-posteriori optimization that max-
imizes the likelihood that the model parameters explain the
observations, as well as the likelihood that the reconstructed
model belongs to the material class. However, this formulation
is highly non-linear and difficult to minimize. We therefore
exploit the additional observation that in high dimensional
spaces everything is distant, and approximate the maximum
a-posteriori optimization by computing a set of provisional
data-driven BRDF solutions for each material class using an
efficient linear least squares approximation. Finally, we select
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the most likely provisional least squares solution based on the
maximum a-posteriori error.

We demonstrate the efficacy of our solution using the
isotropic MERL BRDF database under a variety of natu-
ral lighting conditions. Furthermore, we provide a proof-of-
concept real-world experiment to demonstrate that our re-
sults generalize beyond the ideal simulated experiments on
the MERL BRDF database. An initial version of this work
was presented at the 7th Annual Eurographics Workshop on
Material Appearance Modeling [6].

II. RELATED WORK

We focus this discussion of prior work on the two key
properties of our method: reflectance modeling under nat-
ural lighting, and appearance modeling with a data-driven
reflectance model. We refer to the surveys of Dorsey et al. [7],
and Weinmann and Klein [8] for an in-depth general overview
of appearance modeling.
Reflectance Modeling under Natural Lighting A first
subset of methods models surface reflectance from multiple
photographs under natural lighting. Oxholm and Nishino [9]
model shape and homogeneous reflectance from multiple
photographs under known natural lighting. Palma et al. [10],
Dong et al. [11], and Zhou et al. [12] recover spatially-varying
surface reflectance under unknown natural lighting from a
dense sampling of multiple views or multiple rotations of a
subject with known shape. Xia et al. [13] extend the method
of Dong et al. [11] to model spatially-varying reflectance under
unknown natural lighting and unknown shape. These model all
rely on non-linear reflectance models and estimation processes.
In contrast, we employ a linear data-driven BRDF model and
rely on a linear estimation process.

A second subset of methods models surface reflectance
from just a single photograph of an object under natural
lighting. In seminal work, Ramamoorthi and Hanrahan [14] lay
out a spherical harmonics framework for estimating general
homogeneous reflectance functions modeled by a spherical
harmonics expansion. Romeiro et al. [15], [16] model the
homogeneous surface reflectance using a bivariate data-driven
model from an object with known shape under known and
unknown natural lighting respectively. Similarly, Lombardi et
al. [17] also estimate natural lighting and homogeneous surface
reflectance modeled by the DSBRDF reflectance model [18].
Lin et al. [19] exploit color statistics to estimate the homo-
geneous reflectance from a single photograph of an object
with unknown shape and known lighting. Finally, Barron and
Malik [20] recover shape, lighting and spatially-varying albedo
from a single photograph under unknown natural lighting.
However, Barron and Malik only consider diffuse reflectance.
Our method espouses the same overall goal as this second
subset of methods. A reflectance map can potentially be
obtained from a single observations of a convex object of
known shape (e.g., sphere) or using the deep learning method
of Rematas et al. [5]. However, we explicitely desire to
recover a data-driven model [1] based on real-world measured
reflectance.

A third subclass of methods relies on deep learning to infer
reflectance properties under unknown natural lighting from a

single image. Li et al. [21] and Ye et al. [22] estimate the
parameters of an analytical BRDF model [23] for a spatially-
varying material. Both Li et al. and Ye et al. focus on aug-
menting the training data with unlabeled photographs in order
to reduce the number of required labeled training data (i.e.,
measured SVBRDFs). Li et al. [24] present a network structure
and a novel post-processing step based on conditional random
fields to estimate spatially-varying reflectance parameters for
an analytical micro-facet BRDF model [25]. Finally, Li et
al. [26] propose a cascading network structure to iteratively
estimate and refine the shape and spatially-varying surface
reflectance. All of the above methods express the surface
reflectance using an analytical BRDF model. In contrast, we
express the surface reflectance using a more expressive data-
driven model, albeit limited to a homogeneous material and
under known natural lighting.
Data-driven Reflectance Model In seminal work, Matusik et
al. [1] presented a data-driven BRDF model that expresses the
surface reflectance as a weighted combination of a large set of
measured BRDFs. To handle the large dynamic range between
the specular peaks and the diffuse reflectance, a log-encoding
is first applied to the measured basis BRDFs. Matusik et al.
propose two models: a PCA based 45D linear model, and
non-linear, charting based, 15D model. In follow up work,
Matusik et al. [2] use the linear PCA model and show that
800 well selected and controlled view-light direction pairs are
sufficient for estimating the BRDF. Nielsen et al. [3] show
that by adding a Tikhonov regularization to the estimation of
a log-relative encoded linear data-driven model, a good BRDF
estimate can be obtained from less than 20 optimized and
controlled view-light direction pairs, and for 5 photographs
of a sphere lit by optimized directional light sources. Xu et
al. [4] build on the method of Nielsen et al., and show
that with an improved error metric, a log-relative encoded
linear data-driven model can be recovered from just 2 near-
field observations (photographs) under controlled directional
lighting. Várva and Filip [27] extend the method of Nielsen et
al. and show that 5 bidirectional samples in combination with
8 rotations is sufficient to faithfully reconstruct anisotropic
materials; an identical log-relative encoding is used to regu-
larize the estimation. All of the above methods estimate a data-
driven BRDF from observations under directional lighting, and
regularize the estimation using a non-linear encoding of the
measured BRDFs. In contrast, our method uses a fully linear
model and reconstructs the data-driven BRDF model from a
reflectance map under uncontrolled known natural lighting.

In addition to Matusik et al.’s data-driven model, other
encodings of the manifold of BRDFs have been proposed.
Serrano et al. [28] design an intuive control space for pre-
dictable editing of captured BRDFs. Key to their method is a
learned mapping from perceptual attributes of the BRDFs to
the underlying PCA coefficients of a log-relative encoding of
the BRDF space. Serrano et al.’s control space is specially
designed for inuitive editing, and is not suited for BRDF
estimation. Soler et al. [29] model the the reflectance manifold
with Gaussian processes, allowing them to interpolate and
extrapolate measured BRDFs, and to directly render from the
latent space. While this model allows Soler et al. to quickly
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map from latent space to BRDF space, the reverse is difficult,
making the mapping unsuitable for reconstructing BRDFs
from measurements.

III. OVERVIEW

Data-driven BRDF The reflectance behavior of a homoge-
neous material is described by the bidirectional reflectance
distribution function (BRDF) ρ(ωi, ωo): a 4D function defined
as the ratio of incident irradiance for an incident direction ωi
over the outgoing radiance for an outgoing direction ωo.

In this paper, we follow the data-driven BRDF model of
Matusik et al. [2] that characterizes the BRDF ρ as a linear
combination of a large set of n measured materials bi, i ∈
[1, n]. The underlying idea is that the set of measured BRDFs
spans the space of BRDFs, and any material’s BRDF should
lie in this space:

ρ = Bw, (1)

where we stack the BRDF ρ and basis BRDFs bi in a vector
of length p, and form the matrix B by stacking each basis
vector in a column: B = [b1, ..., bn]. The model parameters
are stacked in a vector w of n scalar weights. We directly use
the BRDF parameterization of the MERL BRDF database [1],
and p = 90× 90× 180. Furthermore, similar as in Nielsen et
al. [3], we consider each color channel of the 100 MERL
BRDFs as a basis BRDF, and thus n = 300.

Due to the large dynamic range between specular peaks
versus diffuse reflectance, prior work [1], [3], [4] has applied
a non-linear compression function ζ to make the estimation of
w less sensitive to errors on the (large) specular peaks:

ρ′ = B′w′, (2)

where B′ = [ζ(b1), ..., ζ(bn)]. An expansion ζ−1 is applied to
the compressed BRDF ρ′ after computation of the weights. A
common compression function is the logarithmic function, in
which case Equation 2 becomes a homomorphic factorization.
Natural Lighting Prior work relied on point sample mea-
surements of ρ for a set of incoming-outgoing direction pairs
to estimate the weights w. In contrast, in this paper we aim
to estimate the weights w from an observation under natural
lighting. Assuming the lighting L is distant (i.e., it only
depends on the incident direction ωi = (φi, θi)), and ignoring
interreflections, we can formulate the observed radiance y as:

y(ωo) =

∫
Ω

ρ(ωi, ωo) cos(θi)L(ωi)dωi, (3)

where cos(θi) is the foreshortening, and Ω is the upper
hemisphere of incident directions. Due to linearity of light
transport, we can express Equation 3 in terms of corresponding
basis observations y:

y = Y w, (4)

where the weights w are the same as in Equation 1, and thus
can be used to reconstruct ρ. The basis images Y = [y1, ..., yn]
are the observations of the measured basis BRDFs bi under
the same conditions:

yi =

∫
Ω

bi(ωi, ωo) cos(θi)L(ωi)dωi. (5)

Problem Statement As noted before, the dynamic range
compression function ζ is essential in obtaining good data-
driven BRDF reconstructions, even in the case of a very dense
point sampling of light and view directions [30]. However, this
compression function cannot be used when linearly estimating
the weights w from observations under natural lighting. This
can be seen by inserting Equation 2 in Equation 5:

ζ(yi) 6= yζi =

∫
Ω

ζ(bi(ωi, ωo)) cos(θi)L(ωi)dωi. (6)

In other words, the non-linear compression of the observation
is not equivalent to the observation under natural lighting of
the non-linearly compressed BRDFs. While not a problem for
the basis BRDFs bi, since we can generate the corresponding
images yζi with any rendering system directly from the non-
linear encoded basis BRDFs ζ(bi), it is a problem for ρ,
because we can only observe y the resulting radiance of ρ
under natural lighting, not the reflected radiance of its non-
linear compressed form ζ(ρ), and hence we do not have access
to yζ . Consequently, the key problem we aim to address in this
paper is to find the data-driven weights w from the observation
y without relying on a non-linear compression function ζ
and/or a non-linear optimization procedure for estimating the
weights w.
Maximum a-posteriori Optimization Formally, our goal
is to find the most likely weights w, relying on a linear
estimation process, such that the conditional probability of the
reconstructed data-driven homogeneous BRDF ρ is maximized
given a reflectance map y under known natural lighting L:

argmax
w

P (ρ|y). (7)

We will assume that the observations are in the form of a high
dynamic range reflectance map (i.e., a full characterization of
the reflectance radiance of a homogeneous BRDF for a fixed
lighting condition). In the remainder of this paper, we will
assume that the reflectance map is provided in the form of a
visualization of a sphere under the target illumination (refer
to Figure 4, first column of examples of measured reflectance
maps).

Using Bayes’ theorem, we can formulate the maximum a-
posteriori (MAP) estimation of w as:

argmax
w

P (y|ρ)P (ρ)

P (y)
. (8)

Rewriting in terms of the log-likelihood, and noting that P (y)
is constant (i.e., the observation is given), we obtain:

argmin
w

(logP (y|ρ) + logP (ρ)) . (9)

Intuitively, this minimization searches for the data-driven
BRDF parameters (w) such that it best explains the observed
reflectance map y (first term) and that produces a data-driven
BRDF ρ that is plausible (second term). The latter term can
be interpreted as expressing the likelihood that there exists
a real-world material that matches the data-driven BRDF
reconstruction.
Solution Preview In order to solve the minimization problem
in Equation 9, we need (for the second term) a model of
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the likelihood of the BRDF estimation ρ (section IV), and
(for the first term) a model for the conditional probability of
the observation y given the estimated BRDF ρ (section V).
However solving Equation 9 is not trivial as we will show
in section V. We will therefore derive an efficient linear
strategy for approximating this minimization.

In brief, our final solution (which we formally derive in the
next two sections), is to compute the best BRDF reconstruction
assuming the material belong to a material class (which are de-
termined by a Gaussian Mixture Model detailed in section IV).
We will compute such a provisional solution for each class,
and finally select from these provisional solutions, the data-
driven BRDF that produces the most accurate rerendering of
the observation. A formal algorithmic summary can be found
in section VI.

IV. BRDF LIKELIHOOD MODELING

Gaussian Mixture Model We propose to model the likeli-
hood of BRDFs by a Gaussian mixture model (GMM) with
K Gaussians:

P (ρ) =

K∑
j=1

πjN (ρ|µj ,Σj), (10)

where πj are the mixing coefficients of the j-th normal distri-
bution N with mean µj and covariance matrix Σj . Intuitively,
we write the likelihood of the BRDF as the sum of how likely
the BRDF is to belong to any of the K material classes;
each normal distribution models the variations of BRDFs in
a material class. However, we will not assign these classes
manually, but compute the optimal classification based on a
set of representative BRDFs (i.e., MERL BRDF database).
Expectation-Maximization An effective method for com-
puting the parameters Θ = (π, µ,Σ) is the Expectation
Maximization algorithm using the MERL BRDFs bi as ob-
servations. For this we define a latent variable γj(bi) that
indicates the likelihood of the j-th Gaussian given a MERL
BRDF bi:

γj(bi) = P (j|bi), (11)

=
P (j)P (bi|j)

P (bi)
, (12)

=
πjN (bi|µj ,Σj)∑K
j=1 πjN (bi|µj ,Σj)

. (13)

Expectation minimization iterates between estimating the la-
tent variable γj(bi) (E-step, Equation 13), and the model
parameters (M-step):

πj =
1

n

n∑
i

γj(bi), (14)

µj =

∑n
i γj(bi)bi
πj

, (15)

Σj =

∑n
i γj(bi)(bi − µj)(bi − µj)T

πj
. (16)

 Specular Plastics/Paints
Metals

Plastics/Phenolics
Diffuse/Glossy

Fig. 1. 2D multi-dimensional scaling of the projected MERL BRDFs ÛTB
and a color-coding of the respective material classes derived from the 4D
approximation of the BRDF likelihood modeled by a Gaussian mixture model.

We iterate until the log-likelihood over the MERL BRDFs
converges:

logP (B|Θ) =

n∑
i

log

K∑
j

πjN (ρ|µj ,Σj). (17)

To bootstrap the EM algorithm, we perform a standard k-
means clustering, and initialize πj as the ratio of assigned
BRDFs to the j-th cluster over the total number of MERL
BRDFs (i.e., n).
Curse of Dimensionality A practical problem is that the
number of observations n is significantly lower than the
dimensionality of the space (i.e., p). In other words, each
BRDF contains more samples than we have measured BRDFs
in the MERL dataset. Consequently, the above procedure is
not stable. We therefore apply a singular value decomposition
(SVD) to express the observations in an n dimensional space
U :

B = USV T . (18)

However, this is still a 300 dimensional space. A key issue is
that even for a moderate number of dimensions any distance
is very large, and thus the distance to the means µj are large
too. Consequently, the likelihood of each Gaussian mixture
(Equation 13) will always be very low and it can potentially
cause numerical instabilities. To resolve this issue, we perform
expectation maximization in a reduced space, and only keep
the coefficients belonging to the N largest singular values.
In other words, we perform expectation maximization (i.e.,
soft clustering) on a projection to an N dimensional subspace,
and approximate the likelihood: P (ρ) ≈ P (ÛT ρ), where Û
is the N dimensional basis (i.e., the first N vectors in U ; the
most optimal N basis vectors that best describe the space of
BRDFs).
Discussion We found that N = 4 offers a good balance
between accuracy and numerical stability. A second parameter
that needs to be set is the number of Gaussian mixtures K (or
material classes). If the number of Gaussians is too low, then
P (ÛT ρ) only offers a coarse approximation. However, we also
found that for increasing number of K, the algorithm tends
to subdivide the same Gaussian distribution, essentially over-
fitting to ’special case’ BRDFs (such as Steel which exhibits
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acquisition artifacts). In practice we found that K = 4 offers
a good approximation that nicely categorizes the materials
in four recognizable distinct material classes: “diffuse and
glossy” materials (137 materials), “plastics/phenolics” (99
materials), “metals” (24), and “specular plastics/paints” (40
materials); we determine membership to a material class by
assigning the material to the material class with the maximum
γj(bi) likelihood. In section VIII we further analyze our choice
of N and K. Figure 1 shows a plot of a 2D multi-dimensional
scaling of the 4D projected coordinates of the MERL BRDFs,
as well as a color-coding to indicate for which material class
the material has the highest affinity. Note that even though the
diffuse-like material class contains 137 materials, the multi-
dimensional scaling places them all close together. Please refer
to the supplemental material for an exhaustive list of which
material belongs to which material class.

V. DATA-DRIVEN MODEL ESTIMATION

MAP Estimation We express the likelihood of the observa-
tion given an estimate of the BRDF as:

P (y|ρ) = N (Y w − y|µ, σ), (19)

where µ and Σ is the expected mean error and standard
deviation on the reconstructions, and Y w is the rendering
of the estimated BRDF under the target natural lighting. We
assume that the mean error is close to zero (µ = 0), and σ is
proportional to the expected measurement error (e.g., camera
noise).

Given the likelihood P (ÛT ρ) expressed by the Gaussian
mixture model (Equation 10), we can then formulate the MAP
estimation (Equation 9) as:

argmin
w

 ||Y w − y||2
σ2

+ log
∑
j

πjN (ÛTBw|µj ,Σj)

 .

(20)
The first term is the data term that indicates how well (a visu-
alization of) the BRDF ρ = Bw can explain the observation y,
and the second term indicates how plausible the reconstructed
BRDF ρ (projected in the 4 dimensional space Û ) is.

However, directly solving for the BRDF weights w using
Equation 20 is not practical because of two key issues:

1) Non-linear: Equation 20 is highly non-linear and diffi-
cult to optimize due to the log of the Gaussian mixture
model in the second term.

2) Gaussian Mixture Model Accuracy for P (ρ) ≈
P (ÛT ρ): We approximated the likelihood of the BRDF
by a 4 dimensional Gaussian mixture model. This reduc-
tion in dimensionality was necessary due to the curse of
dimensionality. However, it also implicitly assumes that
the BRDF lies not too far from the space of plausible
BRDFs. Since the likelihood is only determined based
on 4 dimensions (and thus only regularizes these four),
the other 296 dimensions can be set to any value (in-
cluding unreasonable values that result in an implausible
BRDF).

Linear MAP Approximation To alleviate the above two
practical issues, we exploit the observation that the likelihood

of a basis BRDF bi belonging to a material class m is for
most basis BRDFs equivalent to an indicator function:

γj(bi) ≈ δj,m. (21)

This implies that the overlap between the Gaussians in the
Gaussian mixture model is limited. In other words, there
is little overlap between the different material classes, and
the classification of the MERL BRDFs to a material class
is unambiguous. Armed with this observation, we therefore
propose to compute a provisional candidate BRDF solution
for each material class j ∈ [1,K]:

argmin
w(j)

(logP (y|ρ, j) + logP (ρ|j)) . (22)

Given the set of candidate solutions w′ = {w(1), .., w(K)}, we
then pick the candidate that best reconstructs the target BRDF.
Per-Material Class Linear Data Term We define the data-
term similarly as in the general non-linear case, except that
we only use the basis BRDFs that belong to the same material
class:

logP (y|ρ, j) = ||Y (j)w(j) − y||2, (23)

where Y (j) is the set of observations that correspond to the
basis BRDFs assigned to the j-th material class (i.e., the
materials bi for which γj(bi) is maximal).
Per-Material Class Linear Likelihood Term We express the
per-material class likelihood by a single Gaussian model. We
directly compute this probability on the BRDF weights w(j):

P (ρ|j) = N (w(j), µ′j ,Σ
′
j), (24)

where: µ′j = ( 1
cj
, ..., 1

cj
)T , and cj is the number of basis

BRDFs in the j-th material class. Note that Y (j)µ′j is equiv-
alent to the mean BRDF of the material class, and µ′j the
corresponding coordinate in the j-th BRDF subspace. Σ′j is
the covariance matrix computed from all the coordinates of
the MERL BRDFs that belong to the j-th material class.
Linear Least Squares Estimation Both Equation 23 and
(the log likelihood of) Equation 24 are quadratic terms that
define a linear system in terms of w that can be solved using
a regular linear least squares. However, both terms can have
a vastly different magnitude. The magnitude of the data-term
depends on the error on the rendered image of the estimated
BRDF. This image error depends on the resolution, the overall
intensity of the lighting, and the reflectivity of the material.
Similarly, the magnitude of the likelihood term depends on the
number of basis BRDFs per material class. We therefore add
a balancing term:

λj =
λ||y||2

cj
, (25)

where ||y||2 is the total squared pixel intensities in the observa-
tion. We expect that the overall intensity of the observation is
directly proportional to the lighting intensity and reflectivity of
the BRDF, and hence the overall scale of the image error. λ is
a user set constant that depends on the qualities of the lighting.
An ill-conditioned lighting condition requires a larger λ value
(e.g., a low frequency lighting environment is ill-conditioned
for estimating specular properties [14]). In practice we found
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that λ = 0.5 works well for many lighting environments, and
forms a good starting point for fine-tuning λ.

The final linear least squares is:

argmin
w(j)

(
||Y (j)w(j) − y||2 + λj

||w(j) − µ′j ||2

Σ′2j

)
.(26)

Selection Ideally, we would like to select the best candidate
solution from w′ by evaluating Equation 20. However, by a-
priori assuming that a BRDF belongs to a material class j, it is
possible that there is a significant mismatch between the target
material and the material class. For example, attempting to
model a mirror-like specular material using the diffuse material
class is unlikely to produce a satisfactory result. Consequently,
we cannot simply rely on the likelihood P (ÛT ρ) based on
the 4 dimensional Gaussian mixture model to select the
best solution from w′ (i.e., the other 296 dimensions can
be arbitrarily wrong). We will therefore further exploit the
observation of the limited overlap of the Gaussians in the
mixture model, and approximate the solution per material class
by enforcing that it lies in the convex hull of the subspace
spanned by the BRDFs assigned to the material class, and
only rely on Equation 19 to pick the best candidate from w′.
We ignore the standard deviation (i.e., σ = 1) in Equation 19
as it only acts as a scale (in the log-likelihood) that does not
affect the selection of the best reconstruction (i.e., minimum
log-likelihood).
Color Our discussion until now only considered monochrome
BRDFs; we used all color channels from the MERL BRDFs
as separate basis BRDFs. A straightforward strategy for esti-
mating a non-monochrome BRDF with three color channels,
would be to execute the estimation separately for each color
channel, and combine the three reconstructed monochrome
BRDF into a single RGB BRDF. However, it is possible that a
solution from a different material classes j is selected for each
of the three color channels. Because the set of basis BRDFs for
each material class are disjunct, there can be slight differences
in the constructed BRDF shape for each color channel, which
in turn can result in color artifacts in the combined BRDF. We
circumvent this potential problem by combining the three color
channels after obtaining the candidate BRDFs, and performing
the selection on the RGB BRDF instead of each color channel
separately. Hence, each color channel will be reconstructed
with the same set of basis BRDFs.

VI. ALGORITHM SUMMARY

In summary, given a reflectance map y under known natural
lighting L, and given a user provided balance parameter λ, we
compute the data-driven BRDF ρ = Bw as:

1) We precompute the Gaussian mixture model using the
EM algorithm detailed in section IV. Note, this precom-
putation only needs to happen once for the MERL BRDF
database, and is independent of the lighting.

2) We precompute Y by rendering a sphere with each basis
BRDF bi under the natural lighting L (Equation 5).
This precomputation needs to happen for every lighting
condition.

3) We compute the candidate solutions w′{r,g,b} for each
material class by solving the linear least squares in Equa-
tion 26 per color channel.

4) We combine the monochrome BRDFs
to a 3-channel BRDF: w′ =
{(w′r,1, w′g,1, w′b,1), ..., (w′r,K , w

′
g,K , w

′
b,K)}.

5) Finally, we select the candidate from w′ that minimizes
Equation 19 (i.e., the solution that produces the most
similar rendering to the given reflectance map y).

VII. RESULTS

Experiment Setup We demonstrate our method on simulated
reflectance maps in order to fully control all parameters.
We generate the reflectance maps under natural lighting, by
rendering a sphere lit by a light probe [31] using Mitsuba [32];
as noted in section III, we will directly use this rendered
image as a representation of the reflectance map. All generated
images are radiometrically linear, and we only tone map them
for display. All results shown in this paper were tone mapped
by a simple gamma 2.2 correction and a virtual exposure (i.e.,
scale factor) of 1.0; all pixel values above 1.0 and below
0.0 are clipped to the respective clipping values. We use the
BRDFs in the MERL database [1] for generating reflectance
maps. For each MERL BRDF, we compute a novel Gaussian
mixture model on the 297 remaining MERL BRDFs (i.e., we
exclude the basis BRDFs corresponding to any of the three
color channels of the BRDF), and only use these 297 MERL
BRDFs for reconstruction. Consequently, any reconstruction
of a BRDF from the MERL BRDF database is computed
using a different set of basis BRDFs. As noted in the prior
sections, we compute the Gaussian mixture model on a N = 4
dimensional reduced space, and use K = 4 Gaussians in the
mixture model. All reconstructions are generated with a fixed
balancing factor λ = 0.5. All reconstructed BRDFs preserve,
by virtue of the data-driven BRDF model, reciprocity. We do
not enforce energy conservation, although this could be added
by using a constrained linear least squares procedure.
Reconstruction Results Figure 2 shows reconstructions of
7 selected materials under two different light probes (i.e.,
Eucalyptus Grove and Galileo’s Tomb). For each reconstruc-
tion (and the reference), we show a visualization of the
reference/reconstructed BRDF under a new natural lighting
condition (i.e., Uffizi Gallery; different than the lighting con-
dition under which the BRDF was reconstructed) and two
different light directions (i.e., a slice of the BRDF for a single
incident direction for all outgoing directions). These results
show that our method is able to reconstruct plausible BRDFs
for a wide range of materials from a reflectance map under
natural lighting. We refer to the supplemental material for the
reconstructions under different natural lighting conditions.
Per-Material Class Reconstruction Figure 3 illustrates,
for a selection of 4 materials, reconstructed under the Uffizi
Gallery light probe, that the reconstructions per material class
are different, and that depending on the material a different
class’ reconstruction is selected. We show a visualization
of the reference BRDF and the reconstructions per cluster
under a natural lighting condition (i.e., Eucalyptus Grove)
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Fig. 2. Data-driven BRDF reconstructions from a reflectance map under the Eucalyptus Grove and the Galileo’s Tomb light probe. We visualize the reference
and reconstructed BRDFs under the Uffizi Gallery light probe and two different lighting directions (0◦ and 136◦).

and a directional light. We also list the log-likelihood of the
observation given the BRDF (Equation 19) below each cluster,
and mark the final selected solution (i.e., minimum). While
not all clusters’ reconstructions are plausible, the selection
process tends to pick the most plausible reconstruction. The
Metal material class is smallest and exhibits a large diversity.
As a result, we occasionally observe minor ringing artifacts
in the reconstructions. We posit that a denser sampling of
the Metal material class would reduce these ringing artifacts.
For reference, we also show the linear least squares solution:
argminw ||Y w − y||2. As expected this yields the lowest
reconstruction error (since it explicitely optimizes for this).
However, the linear least squares solution does not always
yield a plausible result when visualized under a different
lighting condition. This is not only clearly visible under the
directional light source, but also under other natural lighting
conditions other than the original observed lighting (e.g.,
the black spot in the center of the visualizations under the
Eucalyptus Grove light probe for Steel and Red Metallic Paint).

Captured Reflectance Map Validation To validate our
method on other materials than the MERL BRDF database,
we performed the following proof-of-concept experiment. We
acquired three spheres with different materials (i.e., Dense
Orange Foam, Blue Plastic, and Dark Bronze) under two
different natural lighting environments shown in the insets.
Next, we estimate data-driven BRDF parameters under the
indoor Chapel lighting, and rerender the sphere under a
novel outdoor lighting condition. We mask out any measured
reflectance values that deviate from the expected measure-
ment conditions (e.g., the dimple on the Blue Plastic, and
the near field reflection from the stand). As can be seen
in Figure 4, the rerendered reflectance maps closely resemble
the acquired reference maps under the novel lighting condition
(2nd row); for reference we also include the visualizations of
the recovered BRDF under the capture lighting (1st row) and
directional lighting (3rd row). Note, the Dark Bronze material
exhibits anisotropic reflectance which adversely impacts the
reconstruction. Nevertheless, the reconstructed BRDF remains
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Fig. 3. Reconstructions for each material class for 4 selected materials observed under the Uffizi Gallery light probe, and revisualized under the Eucalyptus
Grove light probe and directional lighting. We list the log-likelihood error on the observations, and mark the best solution. In addition we provide a comparison
against a naive linear least squares reconstruction with the full MERL BRDFs.
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Fig. 4. Reconstructions for each material class for 3 captured materials observed under indoor natural lighting (first row), and revisualized under the capture
lighting condition (1st row), a novel outdoor natural lighting (2nd row) and directional lighting (3rd row). For each natural lighting condition we also provide
a reference photograph. We list the log-likelihood error, and mark the best solution. In addition we provide a comparison against a naive linear least squares
reconstruction.
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Fig. 5. Comparison between naive linear least squares data-driven BRDF reconstruction, single material class reconstruction, and our multiple material class
reconstruction under Grace Cathedral and revisualized under the Eucalyptus Grove light probe and a directional light. For diffuse-like materials, both the
linear least squares and single material class reconstructions exhibit a central “spike” visible under the directional lighting. For metals, strong ringing artifacts
can be observed for both the linear least squares and single material class solutions.

plausible. For reference, we also include a least squares
data-driven BRDF reconstruction. In addition, we also show
visualizations of the reconstructed BRDFs lit by a directional
light source to better demonstrate the plausibility of the
reconstructions.

VIII. DISCUSSION

Comparison: Single Material Class Reconstruction To
gain insight in the importance of reconstructing the BRDF
per material class, we compare the reconstruction quality
of the BRDF from a single material class to our multi-
material class solution (Figure 5). Our results demonstrate
that using a single material class improves on a naive linear
least squares. However, our solution with multiple material
classes outperforms the single material class case. Note that
we optimized λ for the single cluster case to produce an
as optimal result given the lighting conditions. In this case
we reconstructed the BRDF under Grace Cathedral lighting
using a λ = 0.5 for the single cluster case. Note, that the
single material class reconstruction (Equation 26) is similar
to Nielsen et al.’s [3] method, without applying a non-linear
encoding of the BRDF. Additional minor differences are that
Nielsen et al. subtract the median instead of the mean before
computing the linear least squares and assume a unit standard
deviation. Furthermore, the single class reconstruction is also
similar to Romeiro et al.’s [15] method, using a linear data-
driven BRDF model instead of the bivariate model. Since we
a-priori assume a linear BRDF model, we want to explore the
differences between the reconstruction methods, not the BRDF
model representations.

In general, we found that overall our method outperforms a
single material class reconstruction. The single material recon-
struction tends to work equally well on phenolic and plastic
materials as these are similar in BRDF shape to the mean
material. However, the single material class reconstruction
fails for diffuse and metal-like materials. While less strong
than for the naive least squares, for diffuse materials we
can observe a central “spike” visible under the directional
lighting. For the metal-like materials, we typically observe
strong ringing artifacts.

Impact of Lighting Accuracy Our method relies on prior
knowledge of the lighting in the reflectance map. Practically,
this requires capturing a light probe of the environment before
or after capturing the reflectance map of the material at
exactly the same location. However, in practice the light probe
and the reflectance probe do not have the same size, and
perfect alignment is difficult. To better understand the impact
of lighting accuracy, we perform the following experiment.
Given the reflectance maps of the MERL BRDFs captured
under a light probe, we use our method to reconstruct the
data-driven BRDF using a rotated light probe. Hence, the
light probe during capture and during reconstruction contain
the same lighting features, but they are not identical (i.e.,
rotated). Table I summarizes the relative log-likelihood errors
for different light probes and material classes; visualizations
for each material can be found in the supplemental material.
From this experiment, we conclude that:

1) Diffuse materials are robust in misaligned lighting for
up to 2 degrees, after which ringing artifacts become
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TABLE I
RELATIVE LOG-LIKELIHOOD ERROR FOR MISALIGNED RECONSTRUCTION

LIGHT PROBES FOR ALL MERL BRDFS UNDER FOUR DIFFERENT
LIGHTING ENVIRONMENTS.

Light Probe Rot. Diffuse Plastics & Metals Spec. Paints
Phenolics & Plastics

Eucalyptus
Grove

1◦ 0.42 1.93 3.33 0.42
2◦ 1.67 9.43 10.69 8.61
5◦ 10.76 82.27 73.18 116.92
10◦ 46.55 180.75 121.30 250.17

Grace
Cathedral

1◦ 2.11 3.17 2.18 0.99
2◦ 8.44 13.48 9.93 6.33
5◦ 51.73 78.53 47.57 58.38
10◦ 203.12 200.82 255.99 226.35

Galileo’s
Tomb

1◦ 17.84 12.28 7.75 8.78
2◦ 72.90 47.85 51.76 71.53
5◦ 504.72 335.09 419.84 899.47
10◦ 2358.62 1012.95 508.79 1678.51

Uffizi
Gallery

1◦ 0.25 0.73 2.39 0.29
2◦ 1.02 1.91 4.16 1.00
5◦ 6.58 8.88 5.12 10.08
10◦ 28.70 39.67 15.35 67.98

visible.
2) Metals are extremely sensitive to rotations (i.e., a larger

relative error compared to the other material classes).
Even at 1 degree they exhibit artifacts. This is likely
due to three key reasons. First, the material class of
metals already contains very few exemplars. Second, the
variation in the metal material class is very large. Third,
metals are typically very specular, and thus, rotation
misalignments are more noticeable. These three reasons
combined make metals very sensitive to noise and/or
calibration errors.

3) Some light probes are more sensitive to lighting calibra-
tion artifacts. Galileo’s Tomb and Grace Cathedral are
more sensitive to calibration errors, while Eucalyptus
Grove and Uffizi Gallery are more robust. We posit that
small point lighting in the environment makes it more
prone to calibration errors, while area light sources act
as a low-pass filter, and therefore are less sensitive to
minor rotations.

Robustness with Respect to Lighting The accuracy of
estimating surface reflectance under natural lighting depends
on the qualities of the lighting. Clearly, a fully uniform lighting
environment will not provide sufficient cues to reconstruct the
material properties. Based on prior work, general guidelines
for good lighting environments are those which contain the
right variety in light frequencies [14], especially those with
strong edges in the lighting [11]. From experience, light probes
like Eucalyptus Grove and Uffizi Gallery are well suited for
BRDF estimation (i.e., uniformly distributed sharp edged area
lights). Grace Cathedral suffers from issues with color fidelity
(i.e., non-color neutral probes). Gallileo’s Tomb has trouble
for difficult materials such as metals and is more sensitive to
rotations (likely due to the non-uniform distribution of light
sources).

Even if the lighting environment is suitable, there is still
the open question how robust the method is. To validate this,
we investigate the stability of the reconstruction when rotating
the same lighting environment. Table II lists the stability over

TABLE II
STABILITY OF BRDF RECONSTRUCTION UNDER ROTATED LIGHTING

(AVERAGED OVER FOUR DIFFERENT LIGHTING ENVIRONMENTS).

Angle Diffuse Plastics & Metals Spec. Paints Change
Phenolics & Plastics Class

45◦ 30.00 4.41 1.37 2.57 4%
90◦ 23.09 6.65 1.47 11.08 7.75%
135◦ 47.33 14.42 1.36 15.61 13%
180◦ 49.04 12.64 2.24 6.92 10.25%
225◦ 13.27 4.90 1.31 2.22 7.75%
270◦ 8.17 4.61 2.32 1.17 9.5%
315◦ 5.71 3.23 1.60 1.37 4.24%

four different light probes for the four material classes for
every 45◦ of rotation. Besides the relative log-likelihood error
with respect to the zero degree rotation reconstruction, we also
list how many of the reconstructions changed material class
compared to the reconstruction at zero degrees. From this we
observe that the method is robust to rotation and that the largest
difference is when the light probe is between 135◦ and 180◦

rotated. Furthermore, we observe that specular materials are
less affected than materials with a strong diffuse component.
Both are related to the fact that the diffuse component is deter-
mined by the irradiance from the frontal hemisphere, whereas
specular reflects the full environment lighting. Visually, we
observe limited differences over all rotations; please refer to
the supplemental material for exhaustive visualizations for
each material.
Gaussian Mixture Model The two key parameters in our
Gaussian mixture model are: K, the number of clusters or
material classes, and N , the dimensionality of the subspace in
which we cluster. Both parameters are independent and serve
a different purpose in our algorithm. N , the dimensionality
of the subspace, serves to improve numerical accuracy. First,
the dimensionality of the data is limited by the number of
measurements due to the Expectation-Minimization algorithm.
Second, the higher the dimensionality of the space, the larger
the distances, which can quickly reach the numerical limits
of the floating point machine representations. The number of
clusters K, on the other hand, depends on the diversity of
the material types in the BRDF exemplars. For example, if
the BRDF exemplars only capture diffuse reflectance then less
clusters are needed than for example a BRDF dataset that also
includes specular materials.

Our choice of N = 4 is directed by the observation that
when increasing the number of dimensions, the clustering re-
mains stable. However, using less dimensions yields a different
clustering for a fixed number of clusters. When N > 8 we
observe numerical issues that negatively impact clustering.

We decided on K = 4 material classes as this yields
easily identifiable classes, and because we found that more
clusters did not benefit the reconstruction much. Table III lists,
for each cluster, for how many reconstructions under natural
lighting the material class featured the best reconstruction. We
averaged the result over four different lighting environments
(i.e., Uffizi Gallery, Grace Cathedral, Galileo’s Tomb, and
Eucalyptus Grove). Our experiments indicate that independent
of the number of clusters, only at most 4 of the material
classes are actively used. In general, we found that for more
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TABLE III
MATERIAL CLASS DISTRIBUTION OF MERL BRDF RECONSTRUCTIONS

(AVERAGED OVER FOUR LIGHTING ENVIRONMENTS) FOR K = [2, 7]
MATERIAL CLASSES.

K Material Class (Cluster)
1 2 3 4 5 6 7

2 55.50 44.50
3 46.75 45.25 8.00
4 48.25 44.25 5.50 2.00
5 48.75 37.25 9.25 4.75 0.00
6 50.50 42.00 3.75 3.50 0.25 0.00
7 49.75 45.25 4.00 0.50 0.50 0.00 0.00

than 4 material classes, the already undersampled Metal class
was further subdivided, which eventually results in too small
clusters for computing the necessary statistics for a Gaussian
mixture model. We argue that, unless more measured basis
BRDFs are used, there is no benefit in using more than 4
material classes.
Selection Criterion While our selection criterion does in
the majority of cases select the best reconstruction from the
different material classes, we found that in a few cases it
does not select the best reconstruction, and a better recon-
struction can be observed in another material class. Ideally,
the selection criterion should not only include the data term
(Equation 19), but evaluate the full non-linear MAP estimation
loss (Equation 20). We observe that for cases where our
current selection criterion prefers a suboptimal solution, that
the accompanying likelihood term P (ÛT ρ) is relatively large.
However, a challenge is that the range of the data-term and the
likelihood cover a different range due to: (a) the ommission
of a standard deviation scale in the data-term, and (b) the
dimension reduction in the likelihood term. Finding a good
balancing term is non-trivial and an interesting avenue for
future research.
Balancing Factor λ We currently used a λ balancing factor
of 0.5 for all our reconstructions. This λ is a compromise to
produce the best result over all materials. Despite the material
class and scene dependent scale factor (Equation 25), we
observe that this lambda terms tends to affect the “diffuse”
and “plastics / phenolics” stronger, and the ”metals” and
“specular plastics / paints” less. These latter two material
classes exhibit not only a lower number of materials (for which
we compensate), but we can also observe in Figure 1 that
they are also spread out further. Consequently, the density of
these material classes is significantly lower. This lower density
implies that the material class is very diverse in BRDF types
and that the MERL BRDF database does not densely sample
these material types. Taking in account this density difference
is another interesting avenue for future work. In general, we
find that reconstructions from these material classes are less
often selected.
Extension Beyond Reflectance Maps In all of the above
results and evaluations, we have assumed the availability of a
reflectance map in the form of a visualization of the reflectance
on a spherical geometry. In Figure 6 we explore how well our
method extends beyond reflectance maps, and to visualizations
with other known geometries. Instead of precomputing Y
by rendering a sphere with each basis material bi under

natural lighting, we now render the respective geometry under
the target lighting, All other steps are identical. As shown
in Figure 6, we obtain qualitatively similar results for the
Buddha, Dragon, Stanford Bunny, and Utah Teapot shapes.
As expected, our method will fail for shapes that exhibit little
normal variation such as planes and cubes. However, for such
shapes, inverse rendering methods using analytical models will
also fail.
Relation to Prior Work Matusik et al. [1] showed that the
log-encoded BRDF space can be accurately modeled by a 45D
linear subspace and a 15D non-linear manifold. While a linear
model is computationally more convenient, a non-linear model
offers a tighter fit to the space of BRDFs, and consequently, it
contains less implausible BRDFs. Our Gaussian mixture based
model can be seen as a piecewise linear approximation of the
non-linear manifold of BRDFs. In contrast to Matusik et al.,
we work directly on the space spanned by the basis BRDF (i.e.,
without log-encoding). However, as shown in Figure 1 this
manifold is highly non-linear too. While less tight than a full
15D non-linear model, our Gaussian mixture models strikes a
balance between tightness and the ability to robustly identify
the piecewise linear subspace to which the observations under
natural lighting belong.

An implausible BRDF lies inside the linear subspace
spanned by the linear model, but outside the non-linear BRDF
manifold. Ideally, we would like to bias these implausible
solutions towards the non-linear manifold to obtain a more
plausible solution. Tikhonov regularization biases the recon-
struction towards a mean BRDF, assuming that the solution
is more plausible when closer to the mean. However, such a
regularization is only efficient if the modeled space resembles
a hypersphere. Nielsen et al. [3] model the BRDF space
as a hypersphere by scaling the PCA basis BRDFs by the
singular values. However, as noted before, the BRDF space is
highly non-linear and such a hypersphere is not a tight model.
Intuitively, biasing the reconstruction of a diffuse material
towards the mean or median BRDF is suboptimal; the mean or
median BRDF contains a rough specular lobe. Consequently,
it is possible that biasing pushes the solution towards a point
away from the non-linear manifold. Our solution represents
the space of BRDFs as a sum of (rescaled) hyperspheres: the
per-material class linear likelihood term (Equation 24) biases
the solution to the mean (µ′j) of the local hypersphere (rescaled
by Σ′j). Since each Gaussian subspace is more tight, biasing
towards the mean has a lower likelihood of ending away from
the non-linear manifold.
Practical Outlook As stated in the introduction, our aim
is to narrow the gap between inverse rendering with data-
driven isotropic BRDF models compared to analytical models.
We consider our work a first exploration in this direction
to demonstrate that data-driven BRDF model parameter es-
timation under uncontrolled natural lighting is possible, rather
than introducing a competitive and/or practical method that
displaces current state-of-the-art inverse rendering methods.

Our choice for furthering data-driven BRDF models is
driven by a number of developments. First, recent work has
shown that the classical fitting of analytical BRDF models
is far from optimal [33], and preliminary research indicates
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Fig. 6. Data-driven reconstructions for each of the five geometries (Sphere, Buddha, Bunny, Dragon, and Teapot) observed under Eucalyptus Grove and
revisualized as a sphere under directional lighting.

similar issues for inverse rendering [34]. Second, data-driven
models are by design better suited for robust linear estimation
of their parameters compared to fragile non-linear optimization
required for analytical models. Linear parameter estimation
has the advantage that the global minimum is always reached,
and that the method does not require a suitable starting
point. This makes linear methods better suited for time-critical
applications where the estimation process cannot fail (e.g.,
VR/AR applications). Furthermore, the linear nature of the
estimation process also makes it potentially more amendable
to a GPU implementation.

Our method is not yet suited for real-time applications. Our
current bottle-neck is the rendering of B; the basis BRDFs
under the target lighting. In our current unoptimized imple-
mentation, clustering takes less than 3 seconds, and solving the
linear systems takes less than a second. However, for rendering
we rely on an offline rendering system (Mitsuba [32]) without
using importance sampling for the BRDFs which takes about
a day for the whole set B.

Currently, direct practical applications of our method are
hampered by the requirement of known shape and lighting.
This is in line with prior methods that rely on the data-driven
BRDF [3], [4], [27], and many methods that rely on analytical
models. Recently, a number of methods have been proposed
that jointly estimate shape and/or lighting. However, due to

the larger number of free BRDF variables, directly adapting
such methods to data-driven BRDF models is challenging. We
hope our method will encourage exploration in this direction
for data-driven BRDFs too.

We believe our method could be useful as a preconditioner
for inverse rendering methods that reconstruct an analytical
BRDF model under natural lighting too. Similar to Kang et
al. [35] who first reconstruct dense measurements before
fitting an analytical model, our data-driven reconstruction
can serve as reconstructed measurements to fit an analytical
BRDF model, allowing direct use of advanced BRDF fitting
metrics [33] in inverse rendering. Additionally, more advanced
learning methods than MAP likelihood estimation could also
benefit from our observation that clustering materials (i.e.,
recognition) can aid in BRDF reconstruction.

IX. CONCLUSION

In this paper we presented a novel method for estimating the
parameters of a fully linear data-driven BRDF model from a
reflectance map under uncontrolled, but known, natural light-
ing. Our estimation method does not require any non-linear
optimization, and only requires solving 4 linear least squares
problems. Our method requires modest precomputations: a
Gaussian mixture model clustering for the basis BRDFs, and
for each natural lighting conditions, renderings of each basis
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material. We demonstrated the accuracy and robustness of
our method on the MERL BRDF database, and validated our
method on real-world measurements.

For future work we would like to explore better selection
criteria and a per-material class λj density correction factor.
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