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Figure 1: Changing the diffuse albedo with consistent interreflections for a decorative table centerpiece and a bathroom scene. The dif-
ference images (inset) between the initial scene (left column) and the recolored results (middle and right) highlight the complex changes in
interreflections due to a change in diffuse albedo of the planter and middle towel respectively.

Abstract

We present a novel measurement-based method for editing the
albedo of diffuse surfaces with consistent interreflections in a pho-
tograph of a scene under natural lighting. Key to our method is a
novel technique for decomposing a photograph of a scene in several
images that encode how much of the observed radiance has inter-
acted a specified number of times with the target diffuse surface.
Altering the albedo of the target area is then simply a weighted sum
of the decomposed components. We estimate the interaction com-
ponents by recursively applying the light transport operator and for-
mulate the resulting radiance in each recursion as a linear expres-
sion in terms of the relevant interaction components. Our method
only requires a camera-projector pair, and the number of required
measurements per scene is linearly proportional to the decomposi-
tion degree for a single target area. Our method does not impose
restrictions on the lighting or on the material properties in the un-
altered part of the scene. Furthermore, we extend our method to
accommodate editing of the albedo in multiple target areas with
consistent interreflections and we introduce a prediction model for
reducing the acquisition cost. We demonstrate our method on a va-
riety of scenes and validate the accuracy on both synthetic and real
examples.
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1 Introduction

Typical photo-editing operations directly manipulate pixel values
without any notion of the underlying physics of light transport
through the scene, and significant artistic skill is required to pro-
duce plausible results. One such operation is changing the color or
albedo of a surface in a photograph. While changing the directly re-
flected appearance of the target surface is easy, correctly changing
the effects of indirect lighting on other surfaces, as well as inter-
reflections back to the target surface, is non-trivial.



One possible strategy for physically-accurate editing of surface
albedo and corresponding interreflections is to employ an inverse
rendering approach to infer material properties, geometry, and
lighting of the scene, then alter the target surface’s albedo, and fi-
nally rerender the scene. Not only does the quality of the edited
result depend on the accuracy of each of the estimated separate
components, it is also very labor intensive compared to the relative
modest change in appearance in the photograph.

An alternative strategy is to start from just a single photograph, and
by exploiting different heuristics, approximate the effects of physi-
cal light transport. Typically, these methods impose restrictions on
the materials, light, and/or geometrical components that comprise
the scene. While such methods can produce visually pleasing re-
sults, the accuracy depends on the heuristics used and how well the
assumptions are met.

In this paper, we present a novel method for recoloring surfaces
with accurate interreflections that strikes a balance between ac-
quisition cost and flexibility. Our data-driven approach refrains
from fully characterizing the scene properties, and only captures
the components necessary to model the change in light transport
when editing the surface albedo of a target area. We introduce a
novel measurement-based method for computing the portion of out-
going radiance that interacts a specified number of times with the
target area with an acquisition complexity linearly proportional to
the maximum number of interactions modeled. The final recolored
result is then a weighted linear combination of the estimated in-
teraction components. We acquire the interaction components us-
ing a camera-projector pair and conventional methods only, with-
out relying on frequency-based separation, time-of-flight imaging,
or transient rendering. Key to our method is the recursive appli-
cation of the transport operator by appropriately reprojecting the
observed radiance, in conjunction with rewriting the transport op-
erator in terms of the relevant interaction components. This allows
us to formulate the estimation of the interaction components as a
per-pixel linear system. Furthermore, we extend our method to re-
coloring of multiple target areas with consistent interreflections be-
tween the different target areas. However, this comes at the cost of a
polynomial acquisition complexity. To reduce the acquisition cost,
we propose to build, on-the-fly, an acquisition-prediction model,
and only capture photographs when the prediction is insufficiently
accurate. While our method is limited to changing the albedo of
diffuse surfaces only, it imposes no further restrictions on lighting,
geometry, or material properties outside the target area. We demon-
strate our method on a variety of scenes, and validate the accuracy
of editing and decomposition on synthetic and real scenes.

2 Related Work

Inverse Rendering To support artistic direction while alleviat-
ing the high computational costs of forward rendering pipelines, a
number of methods (e.g., [Sun et al. 2007; Hašan and Ramamoor-
thi 2013; Ben-Artzi et al. 2008]) rely on reuse and precomputa-
tion to efficiently visualize the effects of altering the albedo or the
reflectance properties in a synthetic scene. Such methods can, in
conjunction with inverse methods such as [Yu et al. 1999], be used
to alter albedo and reflectance properties in photographs of physi-
cal scenes. However, the quality of the edited result strongly de-
pends on the accuracy of the estimated components, including the
unaltered ones. Furthermore, such inverse methods can be labor-
intensive and computationally expensive compared to the modest
change in the resulting photograph. Instead, the proposed method
aims to reduce acquisition and computation cost by only capturing
and modifying the affected light transport components.

Recoloring Recoloring is a natural application of intrinsic im-
ages [Barrow and Tenenbaum 1978] that represent a decomposi-
tion of an image into its shading or illumination component and its
reflectance component. Recoloring is achieved by altering the re-
flectance component to the desired color before recomposing the
image. Beigpour and van de Weijer [2011] constrain intrinsic im-
age decomposition to a single-colored object and propose a Multi-
Illuminant Dichromatic Reflection model that permits object recol-
oring under multiple light sources and which accounts for specu-
lar reflections. Carroll et al. [2011] recolor images with consistent
first-order diffuse interreflections by decomposing the illumination
component of an intrinsic image decomposition in direct lighting
and indirect diffuse lighting for each material. However, a key as-
sumption is that interreflections are a linear mix of a sparse set of in-
dependent colors, and hence it cannot disambiguate between inter-
reflections of surfaces with similar colors. Similar to Carroll et al.,
we also focus on recoloring diffuse surfaces with consistent inter-
reflections. However, whereas Carroll et al. aim to produce plausi-
ble results from a single photograph, we target physically-accurate
recoloring and take higher-order interreflections in account, which
in contrast to first-order interreflections, can alter the appearance
of the target area itself in a non-linear way (e.g., light reflected
multiple times from the target area). Furthermore, we impose no
restrictions on the incident lighting or on the colors in the scene.
However, this increased flexibility and accuracy comes at the cost
of more input images.

Light Transport Decomposition The proposed technique is also
closely related to measurement-based light transport decomposition
methods and inverse light transport theory. Nayar et al. [2006] and
O’Toole et al. [2012] decompose light transport into direct and in-
direct lighting. While these methods only require a few measure-
ments, they can only separate the direct and indirect components
for uniform lighting. Reddy et al. [2012] estimate direct, near in-
direct, and far indirect lighting under any initial projector lighting
condition. While these methods could potentially be adapted to re-
coloring, they would only be applicable to full scene recoloring and
they would only correctly account for first-order interreflections.

Wu et al. [2014] and O’Toole et al. [2014] rely on time-of-flight
cameras to tease apart different lighting components. However,
similarly to the direct-indirect separation methods, the decompo-
sitions are not suitable for recoloring.

Inverse light transport methods [Bai et al. 2010; Seitz et al. 2005;
Ng et al. 2012] employ an interreflection or “bounce” cancellation
operator to remove the effects of a single interreflection. Repeated
application of the cancellation operator decomposes the full trans-
port matrix in its separate “bounces”. Such decomposition is ideally
suited for recoloring with consistent higher-order interreflections.
However, all of these methods require full knowledge of the trans-
port matrix which can be costly to acquire at high resolution. In
contrast, the proposed method computes a related decomposition
with significantly less measurements, at the cost of “baking” in the
initial lighting condition.

O’Toole and Kutulakos [2010] propose optical computing to invert
the light transport operator on a given lighting condition by repeat-
edly re-emitting the observations. Similarly, we also re-emit the
observations, but instead of inverting the light transport operator
we estimate the different interreflection components.

3 Measurement-based Recoloring

Our goal is to decompose a photograph of a scene under arbitrary
lighting such that we can effectively modify the albedo of a user-
selected target area, while keeping the interreflections consistent
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Figure 2: Left: diffuse lighting Ld(x) that models the outgoing radiance at x on the target area (marked in cyan). Note that this is the
result of all sub-paths from the light source that end at x. This includes all sub-paths of varying length (examples of length one (blue), two
(green) and three (red) shown) that do not interact with the target area except at the end point x. Furthermore, it includes the diffuse surface
reflection at x (marked in light blue). Middle: interaction operator R(y, x) that relates the outgoing radiance at point y on the target area
to the outgoing radiance at point x. Right: camera operator C(u, y) that models all sub-paths from y on the target area to a pixel u.

both inside and outside the target area. Our measurement-based
solution builds on two key ideas: an “interaction decomposition”
suitable for recoloring, and the recursive evaluation of light trans-
port through a scene to obtain sufficient observations to estimate the
interaction components.

Interaction Decomposition Consider a light path starting at the
light source, bouncing several times around the scene while inter-
acting n times with the target area before reaching the camera. Scal-
ing the albedo of the target surface by a factor κ, results in a change
of the path’s contribution by κn. Hence, a suitable decomposi-
tion will partition the light transport in “interaction components”
that aggregate the contributions from all light paths that interacted
a specified number of times with the target area. Appropriately
weighting (by κn) and summing the different components yields
the recolored result.

Recursive Acquisition To estimate the different interaction
components, we repeatedly re-emit the observed radiance (normal-
ized by direct lighting), in effect recursively evaluating light trans-
port through a scene. Our key observation is that the recursive eval-
uation of light transport can be expressed as a weighted sum of the
original light transport’s interaction components. Intuitively, light
paths encoded in the observations are “concatenated” with the light
paths that constitute the light transport through the scene. The re-
sulting concatenated light paths are still valid light paths through the
scene, and thus part of the original interaction components. Given
the recursive observations, we then formulate the recovery of the
interaction components as a linear system.

The remainder of this section is organized as follows. We first in-
troduce a novel light transport formulation that supports albedo-
recoloring of diffuse target surfaces (Section 3.1) and that allows
us to specify the relation between the recursive evaluation of light
transport and the interaction components (Section 3.2). Finally,
we discuss practical considerations for the recoloring of physical
scenes in Section 3.3.

3.1 Light Transport Formulation

Assume we have a photograph of a scene under (unknown) incident
lighting and a user-selected directly visible diffuse target area A for
which we would like to change the albedo by a factor κ. Light
transport along a light path starting at the light source, bouncing
through the scene before reaching the camera, remains unaltered
except for interactions at the target area. To better reflect the effects
of recoloring on light transport, we “chop” the light paths in sub-

paths at each interaction with the target area, and group these sub-
paths based on whether they start or end (or both) at the target area.

Define the diffuse lighting Ld(x) for x ∈ A as the outgoing radi-
ance at x from all sub-paths that start at the light source and which
do not interact with the target area A, except for the last interaction
at x (Figure 2-Left). Since the sub-paths only interact once with
the target A at x, scaling the albedo of the target area by a factor κ
implies that the corresponding “recolored” diffuse lighting equals
κLd(x).

Similarly, define the single-interaction operator R(y, x) for x, y ∈
A that relates outgoing radiance at y to outgoing radiance at x over
all sub-paths from y to x of any length that do not interact with the
target area A, except at the last interaction at x1. However, these
sub-paths can interact with any number of surface points outside the
target area (Figure 2-Middle). Similarly, since all of the sub-paths
only interact with the target area A at x, scaling the albedo of the
target area by κ implies that the corresponding recolored operator
is equal to κR(y, x).

Finally, define the camera operator C(u, y) which relates the out-
going radiance at y ∈ A to the observed radiance at a pixel u, over
all sub-paths of any length that do not interact with the target area
(Figure 2-Right). The operator C(u, y) is not affected by changes
in the target surface’s albedo, since the sub-paths in C(u, y) only
leave the target area at y without interacting with it.

To combine these operators to describe the light transport through a
scene, let us first consider the light transport between two points x
and y on the target area. The transport between both points is the re-
sult of sub-paths that interact once with the target area, plus the sub-
paths that interact twice, plus the sub-paths that interact three times,
etc. However, the operator R only models single interactions2. To
model higher-order interactions, observe that the operator R aggre-
gates all single-interaction sub-paths between two surface points x
and y on the target area, and thus any collection of sub-paths that
interact twice with the same set of surface points must be a con-
catenation of the respective single-interaction sub-paths. Hence, the
outgoing reflectance of all sub-paths that start at y, interact at any
point z ∈ A, and then end at x is equal to

∫
A
R(y, z)R(z, x)dz.

Using the discrete matrix equivalent of the operator R(y, x), we

1The sub-paths start at y, and hence do not interact with the target area
A at y.

2The operator R does not describe a single “bounce” of light, but mod-
els a single interaction with the target area which can be the result of sub-
paths of any length. This is a key difference with prior work on inverse light
transport theory [Bai et al. 2010; Seitz et al. 2005; Ng et al. 2012].



can write the two-interaction operator as: RR = R2. This triv-
ially generalizes to i interactions as: Ri.

Consider first the case of directly visible surface points on the target
area. To express the full transport, we connect the multiple inter-
action operators Ri to the camera via C and the lighting via Ld.
Using the discrete matrix and vector equivalents of the operators
R, C, and Ld, we can then express the observed radiance I as:

I = C

(
∞∑
i=0

RiLd

)
, (1)

=

∞∑
i=0

RiLd. (2)

We can drop the operator C because the points on the target surface
are directly visible, and hence the sub-paths between camera and
surface points on the target area do not interact at any other surface
points inside or outside the target area.

As noted before, changing the albedo by a scale factor κ is equiv-
alent to scaling the light paths that interact i times with the target
area by a factor κi. Observe that each term in Equation (2) interacts
i+ 1 times with the target area (i times for Ri, and 1 time for Ld).
Thus, the observed radiance when recoloring the target area is:

I ′ =

∞∑
i=0

κi+1RiLd. (3)

To formulate the observed radiance at a point outside the target area,
we need to define an additional function L̄d(u) that represents the
observed radiance at a camera pixel u from sub-paths that start at
the light source and that do not interact with the target area. Simi-
larly as for the camera operator, L̄d(u) is not affected by scaling the
albedo in the target area. The observed radiance outside the target
area after recoloring is then:

Ī ′ = L̄d + C

(
∞∑
i=0

κi+1RiLd

)
. (4)

While the summations in Equations (2) and (4) are infinite, practi-
cally, Ri ≈ 0 when i > N for some large enough value of N . In
the remainder of this paper, we will assume that this approximation
is exact, and limit the summation to N + 1 terms.

3.2 Interaction Component Estimation

Observe that in order to compute the recolored images I ′ (Equa-
tion (3)) and Ī ′ (Equation (4)), we only need to estimate the N + 1
terms RiLd and CRiLd, and the additional term L̄d, instead of
fully characterizing C, R, Ld separately. While there are typically
more terms than operators, each term is only a vector (i.e., image),
whereas R is a matrix. The length of the vector (and thus dimen-
sions of the matrix) is significantly larger than N + 1, and hence
the N + 1 terms require less effort to fully characterize than R.

We first focus on recoloring the directly visible points inside the
target area, and hence only the N + 1 terms RiLd, 0 ≤ i ≤ N are
required. Unfortunately, the terms RiLd cannot be directly mea-
sured. Instead, we seek a sequence of observations, generated by
altering the direct lighting Ld, that allows us to infer the desired
terms RiLd. Our key insight is that the recursive sequence Ir , the
result of repeatedly applying the transport operator T =

∑
i R

i on
Ir−1:

Ir = TIr−1, (5)

Table 1: Relation between Tr+1Ld and RnLd. Each Tr+1Ld

is equal to the weighted sum of the weights (in the same row) times
the corresponding RnLd terms (listed in the columns). The weights
listed correspond to the figurate numbers Pr(n+ 1).

R0Ld R1Ld R2Ld R3Ld R4Ld

T1Ld 1 1 1 1 1
T2Ld 1 2 3 4 5
T2Ld 1 3 6 10 15
T3Ld 1 4 10 20 35
T4Ld 1 5 15 35 70

with I0 = I = TLd, the original observation (Equation (2)), yields
a sequence of polynomials in terms of Ri only:

Ir = Tr+1Ld =

N∑
n=0

Pr(n+ 1)RnLd, (6)

where Pr(n) =
(
n+r−1

r

)
are figurate numbers (see Table 1 and

Appendix A).

Given the sequence {Ir}Nr=0 of N + 1 observations (obtained by
replacing the outgoing radiance Ld at the target area with the previ-
ous observation of the scene), it follows from Equation (6) that the
N + 1 unknown terms RiLd can be computed by solving a linear
system per pixel (Equation (6)). To ensure a physically plausible
solution, we constrain the solution to: 0 ≤ RiLd ≤ Ri−1Ld.

The corresponding sequence of observed radiance outside the target
area yields a similar recursive sequence:

Īr = CTIr−1, (7)

= C(Tr+1Ld), (8)

=

N∑
n=0

Pr(n+ 1)CRnLd, (9)

where Ī0 = Ī , the original observation. Thus {Īi}Ni=0 represents
the observed radiance outside the target area when setting the out-
going radiance at the target area to match the previously observed
radiance inside the target area. Observe that only the initial obser-
vation Ī0 contains the term L̄d, but not any of the N subsequent
observations {Īi}Ni=1. Given the sequence {Īi}Ni=0 of N + 1 ob-
servations, we can compute L̄d and the unknown terms CRiLd by
solving a linear system per pixel, using a similar constraint as be-
fore and enforcing L̄d ≥ 0. Note, we can only solve for up toN in-
teractions CRiLd, compared toN+1 interactions for points inside
the target area because of the additional unknown direct lighting
L̄d. If we know a priori that L̄d = 0, then an additional interaction
component can be estimated.

3.3 Acquisition

To practically acquire the sequences {Ii}i and {Īi}i, we first note
that both Ir and Īr can be observed in a single photograph Ir =
Ir ∪ Īr of the scene since in both cases the lighting is identical, and
where Ir are the observed pixels on the target area, and where Īr
are the pixels outside the target area.

To alter the outgoing radiance Ld at the diffuse target area, we em-
ploy a camera-projector system. We assume that the camera and
the projector are radiometrically calibrated, and that the correspon-
dences between camera and projector pixels are known. We sub-
tract I0 from subsequent observations to remove the light transport



input : Target Areas: A1, A2, albedo scales κ1, κ2, #interactionsN
output: Recolored image I′′ ∪ Ī′′

1 initialization: I′0 = Recolor(L, κ1, A1);
2 for r=1 to N do

// New lighting to be emitted onto A2

3 Lr = (I′r−1 ∩ A2)/D;

// Recoloring from albedo change on A1 under
// initial lighting Lr

4 I′r = Recolor(Lr, κ1, A1);

5 compute: I′′ ∪ Ī′′ from {I′r}
N
r=0 (forA2 and κ2);

Algorithm 1: Recoloring of two target areas.

effects of the initial (unknown and uncontrolled) lighting condition
and only retain the effects from the emitted lighting.

When emitting a projector pattern L, the resulting direct outgoing
radianceLd at the target area can be modeled by: D(x)L(x), where
D is a (per pixel) scale factor that depends on the diffuse surface
albedo, foreshortening, attenuation, etc. Instead of separately mod-
eling each of these factors, we will estimate D directly. Observe
when L = 1, that the direct outgoing radiance Ld = D. This cor-
responds exactly to the direct image from [Nayar et al. 2006]. Once
the direct image D is estimated, acquisition of Ir is achieved by
capturing a photograph of the scene when emitting (Ir−1 ∩ A)/D
from the projector to the target area – we abuse notation to indicate
with Ir−1 ∩ A that we only select the pixels in Ir−1 that overlap
with the target area A.

Summary The above algorithm allows us to estimate an N -
interaction decomposition for a single target area in O(N) acquisi-
tion complexity. While the material properties in the target area are
limited to diffuse only, no restrictions are imposed on the material
properties outside the target area or on the initial incident lighting
which does not need to originate from the projector.

4 Multiple Target Areas

We now extend our method to multiple target areas. We first con-
sider the two-target area case, where the albedo of the first target
areaA1 is scaled by a a factor κ1, and the albedo of the second area
A2 by a factor κ2. We will also assume that the user first finalizes
the adjustment to A1 (i.e., κ1 is fixed thereafter), before adjusting
the albedo in A2.

Denote Recolor(L, κ1, A1) the resulting image of recoloring tar-
get area A1 under the original incident lighting L. This recolored
image also contains the altered interreflections outsideA1 (and thus
in A2). Consequently, when recoloring target area A2, we can con-
sider Recolor(L, κ1, A1) as the initial observation in Equations
(5) and (9). However, naively running the acquisition process again
for the second target area A2, starting from this “initial” observa-
tion, will not produce the correct result because the albedo in target
area A1 has not been altered physically. Consequently, observed
physical interreflections from light paths between surface points on
A2 that pass i times though A1 will not be scaled by the factor κi

1

(Figure 8 Bottom-Left). Hence, each time we illuminate target area
A2 with some novel lighting condition L′, we cannot directly use
the observed photograph, but we need to compute the recolored im-
age Recolor(L′, κ1, A1) that accounts for the scaled albedo of
target area A1. Thus, for each new lighting condition on A2, we
need to perform a decomposition on A1 under this new lighting
condition in order to perform the recoloring. Algorithm 1 summa-
rizes the two-target area recoloring procedure.

Discussion Each call in the for-loop to Recolor(Lr, κ1, A1)
(line 1 & 4) in Algorithm 1 captures O(N) photographs of the
scene, resulting in a total acquisition complexity of O(N2). In to-
tal, N + 1 recolored images are computed (i.e., N times for target
areaA1, and once for target areaA2). Note, that once the recolored
observations for {I′r}Nr=0 are computed, all recolored interreflec-
tions from target area A1 are accounted for, and thus we do not
need to take A1 into account anymore when computing the final
recolored image (line 5).

The lighting conditionLr (line 3) is based on the recolored observa-
tions I′r (i.e., recolored according to κ1 onA1). Because recoloring
has a non-linear effect on the observed image (and thus new light-
ing), the recolor scale factor κ1 for the first target area A1 needs
to be fixed a priori. However, the recolor factor κ2 for the second
target area A2 can still be modified after acquisition.

The above algorithm trivially generalizes to 3 or more target ar-
eas; recoloring is recursively cascaded to the previous target areas.
The total acquisition complexity for recoloring K target areas is
O(NK). When altering a large number of target areas, it might
be more efficient to first capture the light transport matrix T, and
generate the sequences in Equations (5) and (9) numerically (cf.
image-based relighting). The transition point for K at which it is
more efficient to first capture the transport matrix depends on N
and on the acquisition complexity of the method used to capture T.

5 Adaptive Capture

Depending on the number of interactions N and the number of
target areas K, the acquisition cost can be significant. In order
to reduce the acquisition cost, we employ a prediction model that
given the projector lighting pattern, produces an approximation of
the observed photograph. If the predicted approximation is accurate
enough, then we can use this instead of capturing the photograph.

Linear Prediction Denote Lr = (Ir−1 ∩ A)/D, r < N : the
projector lighting that generates the r-th observation Ir . Our goal
is to predict the observations based on the lighting. For this, we
first approximate the lighting Lr as a weighted linear combination
of the previously emitted lighting conditions {Li}r−1

i=1 (excluding
the initial unknown lighting):

argmin
wi

∣∣∣∣∣Lr −
r−1∑
i=1

wiLi

∣∣∣∣∣
2

. (10)

Due to linearity of light transport, we can replace each Lr by Ir ,
yielding the following linear prediction of the observations:

Ir ≈ Ĩr =

r−1∑
i=1

wiIi, (11)

where the weights wi are the same as for the lighting.

We validate the quality of the linear predictor based on the relative
error between Ir and its prediction Ĩr . If this falls below some user-
set threshold, then we halt the acquisition, and use the predictor for
subsequent observations: {Ii}Ni=r+1 = {Ĩi}Ni=r+1, as subsequent
lighting conditions will be linear combinations of the first r − 1
lighting conditions.

Recolored Prediction Ideally, we would like to control the er-
ror on the recolored result instead of the error on the observations.
When the scaling factor κ ≈ 1, then the above linear predictor suf-
fices. When κ � 1, then the magnitude of the interreflections are



reduced, and the error on the observations will be too conservative.
However, when κ � 1, then the influence of interreflections in-
creases, and the error on the observations will tend to underestimate
the error on the recolored image, especially for higher-order inter-
actions. To correctly account for such cases, we adapt the linear
prediction scheme to predict the recolored observations I′r given
the incident lighting.

Observe that any Ir is a weighted sum of the same interreflec-
tion components as I0 weighted by the appropriate figurate number
(Equations (6) and (9)). Hence, given a decomposition of I0 we can
easily compute the recolored versions of any observation Ir . How-
ever, this poses a dilemma as we need all N observations {Ir}Nr=0

to decompose I0, while we only have a partial sequence {Ir}Mr=0,
withM < N available. We circumvent this dilemma by computing
an approximate decomposition on the first M observations supple-
mented by N −M linear predictions as in Equation (11).

To predict I′r , we recombine the recolored components κi+1RiLd

according to Equations (6) and (9). However, unlike the linear pre-
dictor, the lighting conditions are not linearly related to the pre-
dicted recolored images. Consequently, a relative error between
the recolored prediction Ĩ′r and the recolored observation I′r below
the user-set error threshold does not guarantee that all subsequent
predictions will fall below the threshold. Instead, we will use the
relative error on I′r to decide whether to capture photograph Ir+1,
and repeat the process again for r + 1 with either the captured or
predicted image. Hence, the final captured sequence will be a mix
of captured and predicted photographs. In our implementation, we
set the error threshold to 1%.

Discussion The number of successful predictions depends on the
specifics of the scene and the recolor scale κ. A smaller κ reduces
the influence of higher-order interreflections, and thus allows us to
terminate the acquisition earlier. In contrast, a larger scale factor
κ typically requires more acquisitions to obtain an accurate recol-
ored photograph. In general, the accuracy of the prediction for Ir
improves for increasing size of the sequence {Ii}r−1

i=0 , and thus in-
creases the likelihood of reducing the acquisition cost. However,
there is no requirement that only observations from the same se-
quence can be used. In the case of multiple target areas, decom-
positions of several lighting conditions on initial target areas are
sought, and thus we can trivially increase the size of {Ii}i by in-
cluding the observations from prior decompositions (on the same
target area).

Finally, an interesting application of the linear prediction model is
to automatically determine the optimal decomposition order in a
regular (non-recoloring related) interaction decomposition by not
setting a maximum interaction count N , but instead only terminat-
ing the acquisition when the relative error on the linear prediction
falls below the error threshold.

6 Results

Acquisition & Calibration The results in this paper were cap-
tured with a DLP projector and a Nikon D700 camera. We directly
use the RAW image format of the camera to ensure a radiometri-
cally linear response. The gamma curve of projector is measured by
emitting each intensity value and recording the response. We emit
and capture each color channel separately to avoid color crosstalk
between the projector and the camera at the cost of tripling the ac-
quisition cost. The camera and projector are not co-axial (but po-
sitioned nearby), and correspondences between camera and projec-
tor are estimated using gray coded structured light [Inokuchi et al.
1984]. We increase the dynamic range of the projector by exploit-

Initial Scene κ = (1.3, 0.6, 0.2) κ = (0.2, 1.2, 1.2) κ = (0.1, 0.1, 0.1)

Figure 3: Three recoloring results using a 3rd-order decomposi-
tion of a plaster statue, initially illuminated by a full-on projector
pattern, using recoloring scales κ = (1.3, 0.6, 0.2) (2nd column),
κ = (0.2, 1.2, 1.2) (3rd column), and κ = (0.1, 0.1, 0.1) (last col-
umn).
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Figure 4: Two-target area recolored result of a scene containing
four balls, using a 3rd-order decomposition, under two different
initial lighting conditions: fluorescent office lighting (left) and an
incandescent light source positioned on the right side (right).

ing linearity of light transport and apply the following two steps:

1. To maximize the available dynamic range and to
avoid oversaturation, we scale the projector image by
(τ/maxImageIntensity), where τ is the desired maxi-
mum intensity to emit. In our implementation, we simply
set τ to 1. After capture, we undo the scale by dividing the
observed image by the same scale factor.

2. Instead of re-emitting Ir directly, we re-emit (Ir − Ir−1),
which effectively drops the direct component R0Ld, resulting
in an increase of dynamic range. By exploiting Equation (5),
and the linearity of light transport, the expected observation
Ir+1 can be computed as:

I = T(Ir − Ir−1), (12)
= TIr −TIr−1, (13)
= Ir+1 − Ir, (14)

or, Ir+1 = I + Ir .

Simulated results in this paper are generated using the same
pipeline, except that instead of recording a photograph, an image is
rendered with path tracing [Pharr and Humphreys 2010]. We per-
form the synthetic experiments with a simulated co-axial projector-
camera configuration to avoid potential bias due to inaccuracies in
the correspondences. Furthermore, we modify PBRT to output the
ground truth interaction components by keeping track of how many
times a ray interacts with the target surface.



κ = (0.8, 0.1, 0.1)Initial Scene κ = (0.9, 0.3, 0.4)

Figure 5: Recolored results (using a 3rd-order decomposition) of a wooden toy car and a road roller with recoloring scales κcar =
(0.8, 0.1, 0.1) and κroller = (0.9, 0.3, 0.4). The proposed measurement-based recoloring method can only modify the albedo of visible
surfaces; invisible surfaces (e.g., the underside of the roller) and their corresponding (visible) interreflections cannot be recolored.

Results Figure 3 shows recolored results, using a 3rd-order de-
composition, of a plaster statue on a specular floor initially illumi-
nated by a full-on projector pattern. Observe the coherent inter-
reflections from the ear to the head, from the mouth to the nose,
and the correct recoloring of the specular reflection on the floor.
Furthermore, observe that reducing the recolor scale factor, results
in more muted interreflections. Conversely, by increasing the scale
factor, interreflections become more pronounced. Recoloring (with
any factor κ) is simply a linear weighted combination of the differ-
ent interaction components that only need to be acquired once. This
recoloring example would be difficult to achieve with the method of
Carroll et al. [2011] because there is little color difference between
the target surface and other surfaces in the scene.

Figure 4 shows a scene containing four balls of which the mid-
dle two are recolored with a 3rd-order decomposition using κ1 =
(1.03, 0.6, 0.1) and κ2 = (1.2, 0.1, 0.8) for the left and right ball
respectively. We demonstrate that our method can produce consis-
tent recolored images under different lighting conditions (i.e., fluo-
rescent office lighting, and an incandescent light source positioned
on the right side) that did not originate from the acquisition sys-
tem’s projector. Note that we can only recolor surface points which
are visible from both the camera and the projector. In this particu-
lar case the outer rim of the balls are visible from the camera, but
not from the projector, and thus cannot be altered. To minimize
the number of “non-editable” surface points, projector and camera
should be positioned as close together as possible; a co-axial setup
would fully eliminate this issue.

Figure 1 highlights two scenes recolored using a 3rd-order decom-
position. The initial unaltered scenes (under fluorescent lighting)
are shown in the left column, and two recolored examples are shown
in the middle and right column. We further highlight the complex
interreflection changes in the difference images (insets) between the
recolored images and the initial scene. For illustration purposes, we
scaled the difference images by a factor 4 (top row) and 2 (bottom
row). In the decorative table centerpiece scene (top row), the color
of the textured planter is scaled by κmiddle = (0.5, 1.0, 0.4) and
κright = (1.1, 0.3, 0.4) respectively. As illustrated by the complex
interactions with the glass beads, the proposed measurement-based
recoloring method is agnostic to the light transport and geomet-
rical complexity in the scene since each pixel is processed sepa-
rately. For the bathroom scene (bottom row), the diffuse albedo
of the middle towel is changed by κmiddle = (0.6, 0.6, 1.0) and
κright = (1.0, 0.6, 0.6) respectively with consistent diffuse higher-
order interreflections (between the towels), specular reflections (on
the glass dish and the soap dispenser), and caustics (though the

glass dish on the floor).

Figure 5 demonstrates the recoloring using a 3rd-order decompo-
sition of a wooden toy car (κcar = (0.8, 0.1, 0.1)) and road roller
(κroller = (0.9, 0.3, 0.4)) that both cast strong interreflections on
the floor and on neighboring vehicles. A limitation of our method
is that we can only recolor visible surfaces. Invisible surfaces, such
as the underside of the road roller, remain unaltered and can po-
tentially cast visible interreflections (e.g., the residual yellow inter-
reflections under the road roller).

Accuracy Figure 6 compares the recoloring of the right wall from
(0.1, 0.8, 0.1) to (0.2, 0.1, 0.8) (κ = (2.0, 0.125, 8.0)) on a simu-
lated Cornell Box-like scene that contains a wide variety of mate-
rial properties and which is originally lit by an area light source. In
addition, the separated 4th-order diffuse interreflections are shown
and compared to the ground truth decomposition. The decomposi-
tion visualizations are obtained by merging the corresponding pix-
els from RiLd and CRi−1Ld for inside and outside the target area
respectively. Consequently, the pixels on the target area are “tem-
porally ahead” of the pixels outside the target area, and thus appear
darker. We opt for this visualization because it allows us to show
both Ld = R0Ld and L̄d in the first image. Both the recoloring
and the decomposed interreflections closely match the ground truth
results with a relative error of 0.6%. The main sources of error
are: (1) Monte Carlo noise (1M samples per pixel), especially at
higher-order interactions, (2) at the edge of the target area due to
discretization of the projected target area that causes a mismatch
with the wall edge, and (3) light paths that retain significant energy
after the 4th-order interaction.

We further validate the accuracy of our method on a physical scene
of a V-shape wedge (Figure 7) and where only the target area is illu-
minated by uniform lighting from the projector. We decompose the
interreflections from a diffuse colored paper attached to the right
side of the wedge. We also capture a ground truth recolored re-
sult by carefully replacing the colored paper. We compute the re-
color scale factor based on the ratio of the direct components [Nayar
et al. 2006] of each of the pieces of colored paper. The recolored
result closely matches the ground truth measurement with a rela-
tive error of 5.8% (3.7% on the left wall of the V-shape wedge)
for a 3rd-order decomposition. A 2nd-order decomposition yields
a 1.2× (1.6× on the left wall) larger error. For this particular scene
and setup, a 4th-order decomposition did not yield a noticeable im-
provement compared to a 3rd-order decomposition due to the im-
pact of measurement noise.
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R3Ld ∪CR2Ld (+6 f-stop)R0Ld ∪ L̄d (+0 f-stop) R1Ld ∪CR0Ld (+2 f-stop) R2Ld ∪CR1Ld (+4 f-stop)

Figure 6: Recoloring of the right wall (κ = (2.0, 0.125, 8.0)) from green to blue with consistent interreflections in a synthetic scene. Top
Row: ground truth recolored result and a 4th-order decomposition. The brightness of the decomposition is adjusted for illustration purposes
by a factor of 1, 4, 16, and 64 respectively. Bottom Row: 4th-order decomposition and the resulting recoloring obtained with the proposed
method. Middle Row: False color difference between the ground truth and the estimated decomposition.

Original Scene Recolored ResultGround Truth

R0Ld ∪ L̄d (+0 f-stop) R1Ld ∪CR0Ld (+1 f-stop) R2Ld ∪CR1Ld (+3 f-stop)

Figure 7: Recoloring using a 3rd-order decomposition of a V-shape
wedge scene, where only the target area (right wall) is illuminated
from the projector. The ground truth recolored result is obtained by
placing a diffuse red paper over the target area.

Multiple Targets Figure 8 shows a simulated two-target area
recoloring on both sides of a V-shaped wedge using a 4th-
order decomposition. We recolor the left side first from
purple (0.6, 0.2, 0.6) to yellow (0.9, 0.9, 0.3) with κleft =
(1.5, 4.5, 0.5). Next, we recolor the right side from light blue
(0.4, 0.7, 0.8) to light purple (0.8, 0.0875, 0.96), with κright =
(2.0, 0.125, 1.2). The recolored result closely matches the ground
truth recolored result with a relative error of 1.2%. Capturing all

images, without using the selective capture method from Section 5,
results in a total of 16 images for a 4th-order decomposition. When
employing the adaptive acquisition algorithm, we only capture 11
images with approximately the same relative error (1.2%). When
using a 5th-order decomposition the adaptive acquisition captures
exactly the same number of images (11) versus 25 for the brute
force acquisition. This indicates that a 5th or higher order decom-
position does not contribute additional information for this particu-
lar combination of scene and recoloring. In general, increasing the
albedo requires a more accurate decomposition (and thus higher-
order interactions) as it increases the magnitude of the interreflec-
tions. Furthermore, increasing the albedo is further complicated by
the amplification of measurement noise.

Target areas do not need to be connected and can exhibit interreflec-
tions between surface points inside the target area. Figure 9 demon-
strates this on the V-shape wedge scene from Figure 8 by compar-
ing a 4th-order decomposition and recoloring with two target areas
with identical recoloring scales (κ1 = κ2 = (1.5, 1.2, 0.25)) and a
recoloring with a single target area that is the union of the previous
two areas. Both images match the ground truth with a relative er-
ror of 8.9% and 6.6% for the single-target area and two-target area
recoloring respectively. The slightly higher relative error (mostly
located on the ground plane) for the single-target area recoloring
is due to the relatively shorter light paths, and thus relative higher
importance of the separate decompositions.

As noted before, our method trivially extends to more than two tar-
get areas. Figure 10 demonstrates a three-target area recoloring.
Starting from the initial scene (left-top), we first alter the red area
to yellow using κ1 = (0.86, 6.0, 1.0) (middle-top), then the blue



Initial Scene Full Capture

Adaptive CaptureNaive Recoloring Ground Truth

Figure 8: A V-shape wedge scene with two target areas covering
the left (1st) and right (2nd) wall respectively. Top-left: The initial
scene illuminated from the projector with uniform white. Bottom-
middle: Ground truth recolored result with κleft = (1.5, 4.5, 0.5)
and κright = (2.0, 0.125, 1.2). Bottom-left: Naive recoloring of
each target area separately fails to produce the correct result as
highlighted by the large error in the false color difference image.
Top-right: brute-force recoloring with an O(N2) acquisition com-
plexity on a 4th-order decomposition (16 images) produces results
that closely match the ground truth (1.2% relative error). Bottom-
right: adaptive 4th-order decomposition with a 1% relative error
threshold only captures 11 images with an almost identical error.

Single Target Area Ground Truth Two Target Areas

Figure 9: A comparison between a single-target area recoloring
and a two-target area recoloring, where the single target area is
the union of the two target areas, and where the recolor weight is
the same for all target areas κ = (1.5, 1.2, 0.25). Both recolored
results are comparable to the ground truth result with a relative
error of 6.6% and 8.9% for the two-target area and single-target
area recoloring respectively.

area to green using κ2 = (2.0, 4.5, 0.5) (right-top), and finally the
beige area to white using κ3 = (2.0, 2.0, 4.0) (middle-bottom).
Note that even though the first target area and the second target
area are in the same plane, there is still indirect light transport via
the third target area between both. The error on the brute-force (64
captured images) and the adaptive capture (38 captured images) is
virtually identical (1.3%) for a 4th-order decomposition.

Figure 11 shows the results of a two-target area recoloring on a
physical scene containing a V-shape wedge using a 4th-order de-
composition. We first alter the left side from light purple to green
(κ1 = (0.672, 1.18, 0.34)), and then the right side from yellow
to red (κ2 = (0.49, 0.098, 0.25)). Observe the consistent recol-
oring of the reflections on the specular floor, and the difference in
color (on both the ground truth as well as the recolored results) on
the yellow and green sides when altering the albedo on the other
side. Similarly as in Figure 7, we compare the recolored result to a
ground truth recolored result where we physically alter the albedo
of the target areas. Additionally, we show a false color difference
image for the full two-target area recolored result. The relative er-
ror, for the brute-force capture, after altering the first target is 6.9%

1st Target Recolor

Full Capture Ground Truth Adaptive Capture

Initial Scene 2nd Target Recolor

Figure 10: Three-target area recoloring using a 4th-order de-
composition. Top Row: Initial scene, first target area recolored
(κ1 = (0.86, 6.0, 1.0)), and second target area recolored result
(κ2 = (2.0, 4.5, 0.5)). Middle-bottom: ground truth three-target
area recolored result (κ3 = (2.0, 2.0, 4.0)). Left-bottom: 64-
image brute-force capture recoloring. Right-bottom: 38-image
adaptive capture recoloring (1% relative error threshold).

(mostly located at the edges), and 6.5% after altering the second
target area. The relative error for the adaptive capture is virtually
identical while only capturing 9 images (compared to 16 for the
brute-force capture).

Discussion and Limitations The proposed method is agnostic
to the albedo variation present in the target area, and it will uni-
formly scale the texture by the recolor scale factor while main-
taining consistent interreflections. This is illustrated in Figure 12
on a recolored result (1.1% relative error) of a scene using a
4th-order decomposition and using a recolor scale factor of κ =
(2.0, 0.125, 1.2). Altering the texture of a surface, besides scal-
ing, is difficult; each texel would correspond to a target area. An
interesting avenue for future research would be to exploit the low
frequency nature of indirect lighting and adaptively subdivide the
target area based on the texture and the error on the interreflections.

A limitation of our method, shared by prior work on inverse light
transport [Bai et al. 2010; Seitz et al. 2005; Ng et al. 2012], is
that only interreflections from diffuse target areas can be accurately
decomposed. However, very few physical materials are perfectly
Lambertian. To better understand the impact of specular “pollu-
tion” on the target area, we compute the error on a 4th-order decom-
position of a V-shape wedge scene for varying degrees of specular
albedo and specular roughness (Figure 13). To compare the differ-
ent decompositions, we average the absolute error for each inter-
action normalized by the peak value. We employ a Cook-Torrance
BRDF model and vary specular roughness on a logarithmic scale
from very rough (1.0) to highly specular (0.009). Similarly, we
also vary the diffuse-specular ratio on a logarithmic scale and en-
sure that the sum of specular and diffuse equals 1.0. Examples of
varying parameters are shown on the right in Figure 13. The impact
of specular roughness is minor compared to the impact of specu-
lar albedo. Overall, our method produces an error of less than 5%
when the specular albedo is less than 10% of the total albedo.

Similarly, recoloring a translucent target area would produce plau-
sible but slightly incorrect results. Currently when re-emitting the
observed radiance, we assume that there exists a one-to-one rela-
tion between incident and exitant radiance at each point on the tar-
get area. This allows us to “undo” the effects of the first interaction
(foreshortening, diffuse albedo, etc.) when projecting an image on
the scene by a simple division by D. In case of a translucent mate-
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Difference 2nd Target Recolored 1st Target Recolored 2nd Target

Figure 11: Two-target area recoloring with a 4th-order decomposi-
tion of a V-shape wedge scene where the incident lighting originates
from the projector covering the full scene. Top-row: Initial scene,
ground truth first target area recoloring, and ground truth second
target area recoloring. Bottom-middle: Result after recoloring the
first target area. Bottom-right: Result after recoloring both target
areas. Bottom-left: A false color difference of the resulting two-
target area recolored result compared to the ground truth.

Initial Scene Ground Truth Recolored Result

Figure 12: A recolored result of a textured diffuse surface using a
4th-order decomposition and κ = (2.0, 0.125, 1.2).

rial, this one-to-one relation is broken due to the subsurface scatter-
ing, producing a slightly (more) blurred outgoing radiance Ld.

The accuracy of our method is also impacted by measurement
noise. First, when increasing the albedo of a surface (i.e., κ > 1),
noise in the decompositions gets amplified, especially when the
original surface albedo is very low, and the scale factor is large.
This is further exacerbated for higher-order terms due to the raised
scale factor κi. Second, measurement noise affects how accurately
we can recover the interaction components. The magnitude of the
interreflections decreases with increasing order, and thus it will fall
below the noise level at some point. Figure 14 plots the effects
of noise on the accuracy for a 5th-order decomposition (using the
same scene as in Figure 6) by adding camera noise with varying
magnitude to the ground truth measurements. We then compute the
absolute error on each of the decomposed interactions, normalized
by the peak value of the corresponding ground truth decomposition.
We vary the standard deviation of Gaussian noise from 0.05% to an
extreme of 10%. As can be seen, the first-order direct component is
not very sensitive to measurement noise. This is further confirmed
by the relative error for this component, which does not rise above
3%. While the absolute magnitude of the absolute error decreases

0.343

0.168

0.059

0.031
0.023

0.492
0.706

0.118
0.083

0.042

0.017
0.013
0.010

0.007
0.006
0.005
0.004

0.
01

2

0.
02

2

0.
01

0
0.

01
1

0.
01

5
0.

01
8

0.
02

8
0.

03
6

0.
04

8
0.

06
4

0.
12

4
0.

17
5

0.
24

7
0.

35
1

0.
50

2
0.

71
8

1.
00

0

1.000

0.
00

9

R
ou

gh
ne

ss

Specular Albedo

0.0

0.5

0.25

0.12

0.6

(1.000, 0.004) (0.175, 0.008)

0.008

0.
08

9

(0.089, 0.013)

0.
01

3

0.240

(0.018, 0.240)

Figure 13: Impact of specular albedo and roughness on the accu-
racy of a 4th-order interaction decomposition. Right: Examples of
the scene with varying specular albedo and roughness on the left
wall. Left: False color plot of the absolute error (normalized by
peak value) averaged over the four interaction components.
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Figure 14: Impact of measurement noise on the accuracy of a 5th-
order decomposition of the scene in Figure 6.

with increasing order, the dynamic range (cf. peak) of the interac-
tion components decreases more rapidly. The resulting normalized
error gradually increases. Overall, the proposed decomposition is
robust to moderate degrees of camera noise. However, this analy-
sis does not include the impact of camera noise on the re-emitted
lighting. In general, due to the low-pass behavior of diffuse inter-
reflections, the decomposition of pixels outside the target area are
less affected by noise in the emitted lighting. In contrast, incident
lighting on the target area is mostly reflected directly back, effec-
tively doubling the camera noise (once from the observation, and
once from the lighting). In practice, the impact of noise is further
complicated due to the dynamic range maximization applied before
emitting the projector pattern, and due to the subtraction of the pro-
jector black level.

Finally, prior work on inverse light transport [Bai et al. 2010; Seitz
et al. 2005; Ng et al. 2012] start from the rendering equation, and
derive a cancellation operator that cancels out a single “bounce”
of light transport. However, as noted by Seitz et al. [2005], this
is only a true single-bounce cancellation operation between visible
diffuse surface points; interactions with invisible points are ignored.
The derivation of our method, on the other hand, starts by explicitly
modeling these “invisible” paths, enabling us to precisely charac-
terize the light transport effects on surfaces outside the target area.
However, in the case where the target area covers the full (diffuse)
scene, both decompositions align. Inverse light transport methods
require full knowledge of the light transport operator which can be
costly to acquire. In contrast, the proposed method decomposes
light transport more efficiently in O(N) acquisition complexity for
a single target area. However, this comes at the cost of a priori
fixing the lighting for which to compute the decomposition.



7 Conclusions

In this paper we presented a measurement-based method for chang-
ing the albedo of diffuse surfaces in photographs with consistent
interreflections. Key to our method is a novel diffuse interreflection
decomposition algorithm that can estimate an N -order decomposi-
tion for a single target area inO(N) measurements under any initial
lighting condition. We believe that our decomposition algorithm is
applicable to other problems besides recoloring such as light trans-
port analysis and the decomposition of the full transport matrix. In
addition, we demonstrated how our theory can be applied to editing
multiple target areas at the cost of a polynomial acquisition com-
plexity. Finally, we introduced a prediction model for reducing the
number of required photographs.

Although our method still produces plausible results for a wide
range of non-diffuse target surfaces, our method is only exact for
recoloring diffuse surfaces. Extending our method to non-diffuse
surfaces is an interesting avenue for future research.
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A Derivation of Equation (6)

First observe that Tr is a polynomial only in terms of Ri due to T
being a polynomial only in terms of Ri. Denote the i-th coefficient
of Tr as cr(i):

Tr =
∑
i

cr(i)Ri. (15)

We can then derive an expression for Tr+1:

Tr+1 = TTr, (16)

=
∑
j

Rj
∑
i

cr(i)Ri, (17)

=
∑
j

∑
i

cr(i)Ri+j , (18)

=
∑
n

n∑
i=0

cr(i)Rn. (19)

Since Tr+1 is also a polynomial with coefficients cr+1, the follow-
ing relation follows from Equation (19):

cr+1(n) =

n∑
i=0

cr(i), (20)

= cr+1(n− 1) + cr(n), (21)

where cr+1(0) = cr(0). Furthermore, from Equation (3), it follows
that c1(n) = 1 (and thus cr(0) = 1). Under these conditions,
Equation (21) expresses the numbers on the diagonal of Pascal’s
triangle. With appropriate renumbering this yields:

cr+1(n) = Pr(n+ 1) =

(
n+ r

r

)
. (22)

References

BAI, J., CHANDRAKER, M., NG, T.-T., AND RAMAMOORTHI,
R. 2010. A dual theory of inverse and forward light transport.
In ECCV, 294–307.

BARROW, H. G., AND TENENBAUM, J. M. 1978. Recovering
Intrinsic Scene Characteristics from Images. In Computer Vision
Systems, vol. 27, 3–26.

BEIGPOUR, S., AND VAN DE WEIJER, J. 2011. Object recoloring
based on intrinsic image estimation. In IEEE ICCV, 327–334.

BEN-ARTZI, A., EGAN, K., DURAND, F., AND RAMAMOORTHI,
R. 2008. A precomputed polynomial representation for interac-
tive brdf editing with global illumination. ACM Trans. Graph.
27, 2 (May).

CARROLL, R., RAMAMOORTHI, R., AND AGRAWALA, M. 2011.
Illumination decomposition for material recoloring with consis-
tent interreflections. ACM Trans. Graph. 30, 4 (July).
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