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Abstract
We present a deep learning based solution for separating the direct and global light transport components from a single pho-
tograph captured under high frequency structured lighting with a co-axial projector-camera setup. We employ an architecture
with one encoder and two decoders that shares information between the encoder and the decoders, as well as between both
decoders to ensure a consistent decomposition between both light transport components. Furthermore, our deep learning sep-
aration approach does not require binary structured illumination, allowing us to utilize the full resolution capabilities of the
projector. Consequently, our deep separation network is able to achieve high fidelity decompositions for lighting frequency
sensitive features such as subsurface scattering and specular reflections. We evaluate and demonstrate our direct and global
separation method on a wide variety of synthetic and captured scenes.

Keywords: Direct-global Separation, Single Photograph, CNN

1. Introduction

Many inverse methods in computer graphics assume that direct
lighting dominates the observations. The presence of significant
global light transport breaks this key assumption, often adversely
affecting the accuracy of such inverse algorithms. In seminal work
Nayar et al. [NKGR06] introduced a method for separating direct
and global reflectance from a few measurements of the scene lit
by high frequency shifted stripe, checkerboard, or sine wave light-
ing patterns. Nayar et al.’s key insight is that, in contrast to direct
reflectance, the resulting global reflectance is approximately invari-
ant under shifted high frequency lighting. However, Nayar et al.’s
method requires multiple photographs of the scene, and is there-
fore only suited for static scenes. Single-photograph decomposition
has been introduced to overcome the inherent limitations of multi-
photograph methods. However, separating direct and global light-
ing from a single photograph is an underconstrained problem. Ex-
isting single-photograph solutions either rely on specialized hard-
ware [ORK12, OMK16], or sacrifice spatial resolution or sharp-
ness [NKGR06, SaFZ∗18].

The majority of single-photograph and multi-photograph meth-
ods rely on high frequency illumination to introduce additional
cues to help in decomposing the direct and global components.
The higher frequency the lighting patterns, the higher the granu-
larity at which direct and global lighting can be disentangled. This
becomes particularly important for light paths that vary quickly
in either the direct or global component such as specular reflec-
tions, caustics, and single scattering (vs. subsurface scattering) light

transport. The ready availability of low cost projectors makes them
a convenient tool to induce such high frequency lighting. However,
most methods assume binary lighting patterns, and typical low-cost
consumer-grade projectors cannot produce sharp high contrast bi-
nary patterns at their highest resolution, necessitating lower reso-
lutions to mitigate the effects of blurring. While reducing the res-
olution improves robustness, it also adversely affects the ability to
accurately separate lighting frequency sensitive indirect transport
effects such as subsurface scattering and specular reflections.

In this paper we propose a novel method for decomposing the
direct and global components of a scene that aims to both maxi-
mize the frequency content of the lighting, thereby improving ac-
curacy for decomposing lighting frequency sensitive effects, and
at the same time only requiring a single photograph of the scene
taken with a co-axial camera-projector system. Our method relies
on deep learning, and we employ two identical encoder-decoder
networks, with shared encoder weights, that jointly regress the di-
rect and global components at the full projector resolution. To pro-
mote consistency between both decoders we not only employ skip
connections between the encoder and decoder, but also between the
direct and global decoders. We illuminate the scene with structured
lighting using the full available resolution of consumer-grade pro-
jectors to resolve the ambiguities inherent in decomposing an im-
age in its direct and global components. Projecting high frequency
lighting patterns at full projector resolution is practically challeng-
ing, as consumer-grade projectors introduce many types of spatial
artifacts in the projected illumination due to compromises in the
optical system or due to ’clever’ firmware-based image enhance-
ments. As a result, we cannot assume that binary patterns remain
binary after projection, and the artifacts introduced need to be taken
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into account during training in order to make the deep network ro-
bust to typical acquisition conditions.

Key to our method is that it is designed from the start with imper-
fect non-binary structured lighting in mind. To tailor the network to
the specific imperfections of an acquisition setup, we refrain from
adding additional ad-hoc loss function terms or requiring the ardu-
ous acquisition of an extensive training set for each new capture
setup, but instead we leverage a light weight method for adapting
a small publicly available general training set to the peculiarities
of the capture setup that only requires two photographs of a white
planar surface captured with the target setup. In addition, we use an
effective data-enhancement method to further augment the small
set of 20 publicly available training decompositions to ensure that
our method generalizes to a wide variety of scenes and materials.

Typically, the resolution of consumer cameras exceeds that of
projectors. Ideally we would like to separate the lighting compo-
nents at camera resolution instead of at projector resolution. How-
ever, at camera resolution, the variations in lighting are blurred and
the network has difficulty distinguishing scene edges from lighting
edges. To address this issue, we augment our deep direct-global
separation network training with a novel total variation loss-term
variant that takes into account the structured lighting. This allows
us to decompose photographs at native camera resolution while
maintaining sharp scene features.

In summary, we propose a deep learning based direct-global de-
composition method that:

• only requires a single input photograph of a scene under a fixed
high frequency lighting pattern;
• uses the full projector resolution, enabling more accurate decom-

positions compared to other existing single and, in some cases,
multiple image decomposition methods for high frequency light
paths;
• only requires two calibration images per hardware setup suited

for off-the-shelf projectors;
• avoids additional ad-hoc loss terms or dedicated training data ac-

quisition steps, but instead relies on a novel low-weight training
augmentation scheme based on a small set of publicly available
direct-global decompositions to adapt the neural network to the
idiosyncrasies of the capture setup; and
• that can be extended to handle sharp full camera resolution de-

compositions through a novel total variation loss function.

We demonstrate our method on a variety of scenes, and perform a
careful analysis of the capabilities and limitations on synthetic and
real-world test cases.

2. Related Work

Direct-Global Component Separation Nayar et al. [NKGR06]
formulate image formation of a scene lit by a digital projector as the
sum of a direct reflectance component Id that is directly modulated
by the projector lighting L, and a global reflectance component Ig
that encompasses the resulting reflectance from all indirect lighting
incident at the corresponding surface point:

I = IdL+ Igw(L), (1)

where w(L) represents the ratio of indirect reflectance produced
under the lighting L with respect to the indirect reflectance un-
der uniform white lighting. Nayar et al.’s key insight is that under
high frequency illumination (i.e., that varies rapidly over neighbor-
ing pixels), w(L) is approximately constant. By further constrain-
ing the lighting to be binary and lighting half the projector pixels,
the resulting w(L) = 0.5. Under binary lighting, the direct compo-
nent will either be visible (lit projector pixel) or not (unlit projector
pixel). In theory, by capturing the scene under two complementary
high frequency projector lighting patterns, the direct Id and global
component Ig can be computed. Due to practical limitations of pro-
jector systems (e.g., defocus, edge blurring, etc.) and the camera
(e.g., camera noise), multiple observations under shifted high fre-
quency illumination are needed to robustly solve Equation 1.

Subsequent work extended direct-global component separation
to multiple light sources [GKGN11], to compensate for mo-
tion [ANN13], to high-speed capture [KYN12], to real-time vi-
sualization of indirect-only images [OANK15], to overcome lim-
itations in depth of field [GTNZ12, AN14], and to further refine
the global component in near and far-range transport [RRC12].
Other work has explored more exotic hardware such as time-of-
flight cameras [WVO∗14, OHX∗14], and by adding an additional
controllable mask in front of the camera [ORK12, OMK16].

All of the above methods either rely on multiple images and/or
complex hardware and/or can only extract a single component
at the time. Our method uses a more common co-axial camera-
projector setup and only requires a single photograph to extract
both the direct and global components. Furthermore, all of the
above methods rely on explicit calibration and/or an overcomplete
set of lighting patterns to compensate for acquisition hardware defi-
ciencies. In contrast, we take a data-driven approach based on deep
learning and convolutional neural networks that are trained to take
hardware specific artifacts automatically into account.

Single Image Direct-Global Component Separation In their
seminal work, Nayar et al. [NKGR06] also propose a single image
solution by searching for the minimum and maximum pixel val-
ues in a small window, and then interpolating the resulting direct
and global components to the desired output resolution. Subpa et
al. [SaFZ∗18] perform direct-global separation from a single image
assuming sparsity in a Fourier or PCA basis, and assuming some
spatial smoothness. Both methods rely on binary patterns, typically
displayed at a 4× or 8× lower resolution than the full projector res-
olution to avoid display artifacts. This has two direct consequences.
First, using a lower effective resolution acts as a low-pass cut-off
on the light transport that can be separated, effectively incorrectly
assigning some indirect lighting to the direct component. Depend-
ing on the lighting effect (e.g., specular reflections and subsurface
scattering), this error can be significant. Second, the direct compo-
nent for camera pixels that are not directly lit need to be inferred
from the indirect lighting and/or by interpolation. Lower resolution
binary lighting requires more indirect inference or longer range in-
terpolation, and thus can introduce additional errors in the direct
component. In contrast, our learning based separation method can
leverage the full projector resolution ensuring a more accurate sep-
aration of high frequency light transport effects. Furthermore, be-
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cause we rely on non-binary patterns, each captured pixel provides
some information on both the direct and indirect component.

Recently, Nie et al. [NGS∗18] introduced a cycleGAN [ZPIE17]
inspired image-translation solution with a fixed inverse mapping to
decompose a single photograph, trained on a large (100) training
set of direct-global decompositions under uniform white lighting.
Nie et al. show that their method generalizes well to general uncon-
trolled lighting. While more flexible and independent of the lighting
frequency, a decomposition under uncontrolled lighting is a more
ill-conditioned separation problem as there is no direct observation
of the differences of both components. The use of non-binary light-
ing patterns in our solution strikes a balance between observing
spatial image detail in both components and observing the differ-
ences between the direct and global components.

3. Deep Separation of Direct and Global Components

We endeavor to separate the direct and global components from a
single photograph. This is an ill-conditioned problem as there are
more unknowns (Id and Ig) then knowns (I in Equation 1). To keep
the problem tractable, we will assume that the controlled incident
lighting L is exactly known. For convenience we also assume that
all components (direct Id and global Ig), the photograph I, and the
incident lighting L are all expressed in the same parameterization.
Since projectors typically have a lower resolution, we will assume
that all images are parameterized according to the projector’s res-
olution and ’view’ of the scene; in section 6 we will relax the con-
straint that the camera and projector resolution are identical. We
will also first explain our algorithm for general full projector reso-
lution lighting patterns; section 4 details the specific high frequency
pattern we use in practice.

Network Structure We use two regular fully convolutional
encoder-decoder networks to separate the direct and global compo-
nents, and share the encoder weights between both networks. The
structure of the direct and global components are closely related to
the structures in the input photograph, as well as to each other. We
therefore include skip connections between the different layers of
the encoder and decoder, as well as cross connections between the
both decoders to promote sharing the embedded relations.

The goal of the network is to encode the relations between ob-
served reflectance under structured lighting in a local window to
a clean direct and global component without spatial variations due
to the structured lighting. Note, even though global light transport
is a non-local light transport phenomena, as observed by Nayar et
al. [NKGR06], under high frequency lighting the effect of global
lighting can be encoded locally. We therefore, train our network
on 128× 128 patches; working with small patches limits the size
of the network and simplifies training. However, using structured
lighting also implies that the incident lighting will vary over the
image, and thus between patches (e.g., due to projector fall-off,
chromatic aberrations, etc.). We therefore also provide the corre-
sponding 128× 128 patch from the incident lighting. Practically,
we concatenate the incident lighting L to the captured image I to
form a 6-channel 128×128 input image. Figure 1 summarizes our
network structure.

During inference, we support larger image resolution than 128×

Figure 1: Deep direct-global separation network consisting of a
shared encoder and dual decoder branches connected to the en-
coder via skip connections, as well as cross connections between
both decoders.

128 by exploiting the fully convolutional nature of our network ar-
chitecture, and expand the size of the bottleneck proportionally to
the size of the input photographs.

Loss Function To train our separation network, we employ a reg-
ular loss function that directly measures the accuracy of the direct
component, and the global component:

Esep =M(Îd,Id)+M(Îg,Ig), (2)

where Îd and Îg are the reference direct and global component re-
spectively, andM(·, ·) is a distance metric. We purposefully kept
our loss function simple, refraining from including ad hoc terms to
bias the solution, and instead we aim to include all relevant learn-
able features in our training data.

We have experimented with a number of different distance met-
rics (subsection 5.5), and found that computing the L2 distance in
LAB color space produced the sharpest results with best color fi-
delity. Note that we store the components in RGB and only con-
vert to LAB for computing the distance. Storing the components
in LAB would make Equation 1 non-linear and thus more diffi-
cult to regress. We also experimented with adding a sum-constraint
M(Îd + Ig,Id + Ig) as in Nie et al. but found that this neither im-
proved nor degraded the quality of the separation.

Training Data Due to the simplicity of our loss function, the train-
ing dataset needs to be sufficiently varied and rich to encode all
relevant features necessary to successfully decompose the compo-
nents and generalize beyond the training data.

A critical design decision that needs to be addressed before de-
signing the training data is whether or not to make the network in-
variant to the optical characteristics of the setup. Training an setup-
agnostic network requires a more rich training set that includes all
possible variations introduced by different setups. While such an
agnostic network is more flexible, it can lead to reduced accuracy
especially for low signal-to-noise capture setups that employ com-
modity projectors. Training a setup-specific network on the other
hand, requires training data that embeds the optical artifacts and
characteristics of the setup. The most straightforward way to obtain
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such a training set is to capture one with the target setup. However,
this approach is labor intensive and cumbersome, and it introduces
uncertainty on whether the captured scenes are sufficiently rich to
ensure successful training. To get the best of both, we will train
a setup-specific network, but instead of capturing training data for
each setup, we will synthesize setup-specific exemplars.

A common strategy is to generate such synthetic images using
a global illumination rendering algorithm. However, we found that
they are not suited for training our network. A key issue is that it
is very easy to compute a clean, noise free, direct image, while it
is much more difficult to obtain an equally clean and noise free in-
direct image. Even for very high sample rates, there is still some
minute amount of noise, and consequently, a trained network tends
to assign noise and image details to the global image. Instead, as-
suming knowledge of the lighting pattern L as emitted by the setup
(section 4), we will leverage Equation 1 and simulate the capture
from decompositions of a set of captured reference scenes. Given
a reference direct-global decomposition patch of 128×128 resolu-
tion, we select a random 128× 128 patch from the target lighting
pattern L, and simulate the resulting acquisition according to Equa-
tion 1. We compute w(L) as the average over a 20× 20 window
over L. While Equation 1 is only an approximation, we found that
the resulting network generalizes well to real-world acquired pho-
tographs.

Ideally, the set of reference decomposition should be sufficiently
rich and representative. Unfortunately, there currently does not ex-
ist a sufficiently large publicly available dataset of direct-global
reference decompositions, and only a few (≈ 20) high quality de-
compositions are publicly available [NKGR06,AN14]. To facilitate
reproduction, we base our training set on this publicly available
small set of 20 direct-global decompositions (Figure 2), and ap-
ply an extensive set of augmentations to enrich the training data.
We apply the following augmentations on the reference direct and
global components simultaneously:

1. Select a random 128×128 patch from the training images. Note
that the images in the training set are significantly larger than
128× 128, and thus a large variety of patches can be sampled.
We discard patches for which the mean of both the direct and
global component falls below 0.003 as these represent patches
with little information;

2. Randomly rotate each patch by 0,90,180, or 270 degrees;
3. Upsample each patch by a random scale factor ∈ [1,2], and crop

a 128×128 patch;
4. Randomly flip the patch vertically and/or horizontally;
5. Consider all 6 permutations of color channels (i.e.,

rgb,rbg,grb,gbr,brg,bgr);
6. Scale each color channel by a random scale factor ∈ [0,1] with

a probability of 95%; we keep the original color channel scaling
for the other 5%.

We apply the above augmentation online during training, and thus
each epoch a different set of 170,610 training samples (and 48,000
test exemplars) is used. We found the color channel swapping and
color scaling augmentation to be the most critical for promoting
generalization to scenes that differ significantly from the training
set.

Implementation We implemented our network in PyTorch. We

Figure 2: Training images (direct and global components) gath-
ered from prior work (1 − 18 from [NKGR06] and 19 − 20
from [AN14]).

train the network for 80 epochs using Adam [KB14] with the fol-
lowing hyper-parameters: β1 = 0.9, β2 = 0.999, and a learning rate
of 0.0001.

4. Practical Considerations

Setup Equation 1 expresses the relation between direct and global
reflectance in relation to the incident lighting L, which are all ex-
pressed in the same parameterization (i.e., the projector’s view in
our case). Hence, the relation between each camera pixel and cor-
responding projector pixel location needs to be known. Our goal
is to construct a setup that eases the calibration of the projection
between camera and projector pixels. This projection is defined by
the relative camera and projector’s extrinsic and intrinsic parame-
ters, as well as the scene geometry. To allow for direct-global sepa-
ration on objects with ill-defined shape (e.g., fur), we desire a setup
that does not require prior knowledge on the shape. Therefore, we
opt for a co-axial camera-projector setup, where the transformation
from projector pixel location to camera pixel location (and vice
versa) is scene geometry independent, and it reduces to a simple
scale that accounts for differences in resolution.

Our co-axial camera-projector setup consists of a 50− 50 beam
splitter, a Nikon D750 camera operating at 6016×4016 resolution,
and an Optoma W490 DLP projector operating at 1280×800 reso-
lution. We follow a standard calibration procedure for the co-axial
camera-projector pair. Please refer to the supplemental document
for a detailed description of the geometric and radiometric calibra-
tion procedure.

Determining L As detailed in section 3 we synthesize our setup-
specific training data from a small general set of publicly available
decompositions and the target lighting L. However, this lighting L
is that received by the scene which includes any deviations from
the ideal lighting introduced by the projector’s optics and the beam
splitter. Hence, we need to acquire the actual incident lighting L.

To determine L, we follow a data-driven approach and capture
two photographs: one of a perpendicular (to the view direction)
white diffuse plane WL under the high frequency lighting pattern
and another photograph W1 of the plane under uniform full-on
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Figure 3: Ideal versus projected lighting patterns. Due to limita-
tions of off-the-shelf projectors, the actual contrast for high fre-
quency lighting patterns is often reduced.

lighting. The ratio L′ = WL
W1

eliminates any effects of imperfections
and surface reflectance of the calibration surface. We then directly
use this L′ for generating the training data.

Lighting Pattern While our deep separation network can be
trained for any lighting, not all will produce equally good results.
As in prior work, we will rely on high frequency lighting to help
disentangle the direct and global lighting. To maximize the granu-
larity at which we can disentangle the lighting components, we de-
sire to maximize the frequency content of the lighting patterns (i.e.,
at maximum projector resolution). Furthermore, we desire lighting
patterns that are compatible with the deficiencies of off-the-shelf
projectors (e.g., due to blur, light leakage, etc.).

To maximize the signal-to-noise ratio, we want to maximize the
contrast difference between neighboring pixels. Ideally, a binary
pattern fulfills this goal. However, due to optical limitations of off-
the-shelf projectors, the ratio between “dark” and “light” pixels is
limited (only 0.93 in our setup). To improve the average ratio, we
consider regular 4-intensity and 9-intensity patterns, in repeated
2×2 or 3×3 pixel blocks respectively. However, due to the limita-
tions of consumer-grade projectors, using a uniform distribution of
pixel intensities does not necessarily yield the highest contrast. We
therefore capture 2× 2 (or 3× 3) regular grid patterns with only
one of the 4 (9 respectively) pixels turned on, and optimize the
weights for each pixel, between 0 and 1, that yields the best ratio.
Figure 3 shows the ideal and captured for the binary, 4-intensity,
and 9-intensity patterns. For our set up, the average ratio between
neighboring pixels for the 4-intensity pattern after optimization was
0.82, with a maximum of 0.93 and a minimum of 0.72. The 9-
intensity pattern has a slightly lower average of 0.80, a similar low-
est ratio but a much worse maximum ratio (0.99). We therefore opt
to use the 4-intensity pattern.

Note all these calibration steps only need to be performed once
when setting up the acquisition setup, and it can be reused for all
acquisitions with the same setup and settings.

5. Results & Discussion

5.1. Qualitative Results

Figure 4 shows 8 decompositions of a variety of captured scenes
at projector resolution. For comparison we also include decom-
positions obtained using the multi-image method of Nayar et
al. [NKGR06]. However, we remark that this multi-image decom-
position is not a ground truth decomposition; it is limited in ac-
curacy by the frequency of the lighting patterns used. We briefly
discuss each scene from top to bottom:

1. The “Plastic Blocks” scene includes a variety of plastic blocks
in a transparent scale. Note that our method correctly decom-
poses the sticker on the orange block, and features the indirect
lighting on the blue cylinder in the global component. A key dif-
ference is that our direct component is less colorful for a number
of blocks. This is an example of the decomposition of subsur-
face scattering affected by the frequency of the lighting pattern;
we will further analyze this in subsection 5.4.

2. The “Candles & Soap” example showcases the decomposition
of a scene containing only translucent objects. Our results are
qualitatively close to those obtained with Nayar et al.’s method.

3. The “Ducky” scene shows a stuffed animal next to a sharp spec-
ular cylinder and sphere. Here we can see a significant difference
in the direct component on the stuffed duck due to the difference
in lighting frequency. Another remarkable difference is that our
deep separation method handles specular reflections better. The
mirror image of the stuffed duck is very visible in Nayar et al.’s
direct component, while in ours it is almost fully and correctly
allocated to the global component.

4. The “Glass Objects” example shows two glass containers in
front of a greeting card with one of the containers partially filled
with water. Both decompositions look similar with exception of
the caustic in the global component cast by the left container
onto the top middle of the greeting card; the method of Nayar et
al. exhibits the characteristic high frequency “ringing” artifacts.
The method of Nayar et al. also produces an odd colorization of
the decomposition of the water in the right container. However,
our method loses a little bit of sharpness in the texture as it needs
to aggregate information from neighboring pixels.

5. The “Ball & Plants” scene showcases complex interreflections
between the ball and the planters, as well as subsurface scattering
on the plants and pots. Again, we see high frequency light trans-
port artifacts in Nayar et al.’s decomposition of the reflections of
the orange ball on the planters in the global component, and dif-
ferences in subsurface scattering decomposition of the planters
(subsection 5.4).

6. The “Fruit” scene contains a variations of fruits. Our decompo-
sition is qualitatively close to Nayar et al.’s decomposition, with
some differences in the direct component most visible on the Star
Fruit and Tangerine related to the decomposition of subsurface
light transport (subsection 5.4).

7. The “Colored Balls” scene showcases the decomposition of
strong indirect lighting between the three balls.

8. The “Colored V-shapes” shows diffuse interreflections between
a series of v-shapes with colored sides.
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Figure 4: A selection of scenes decomposed using the multi-image method of Nayar et al. [NKGR06] and our deep separation method at
projector resolution.
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Figure 5: Decompositions of two synthetic scenes (shown in the first column). Subsequent columns from left to right: ground truth reference
decomposition, multi-image decomposition [NKGR06] with ideal lighting, deep separation with ideal lighting, and deep separation with
captured lighting (i.e., including optical artifacts introduced by the projector).

Table 1: RMSE for the scenes shown in Figure 5.

V-Shape Cornell Box
Direct Global Direct Global

Ideal 0.0074 0.0174 0.1094 0.0419
Captured 0.0092 0.0106 0.1094 0.0504

[NKGR06] 0.0089 0.0081 0.0582 0.0571

5.2. Quantitative Results

The results in Figure 4 show that our method produces qualitatively
good results. We further quantitatively corroborate the quality of
our deep separation method on two synthetic scenes, featuring both
glossy and diffuse interreflections. For each scene we synthesize
a reference decomposition (i.e., global lighting is light transport
that has undergone more than 1 bounce), a multi-image decom-
position [NKGR06], a deep decomposition with the ideal lighting
pattern, and a deep composition with a real-world captured lighting
pattern (Figure 5). Note that the multi-image method has trouble
correctly separating high frequency light transport (e.g., the apex
of the v-shape, the glass object, and reflections on the glossy floor).
Our deep separation method, on the other hand, loses some sharp-

ness (e.g., on the textured torus). For each scene we also compute
the RMSE (Table 1). From the error we can see that our method
produces slightly higher errors than the multi-image method. In
all, considering that our method decomposes from a single image,
these errors are reasonable. Furthermore, we also observe that un-
der ideal lighting our method performs slightly better than under
the real-world degraded lighting pattern (as expected).

5.3. Comparison to Prior Single Image Methods

Figure 6 compares the quality of our results on the single image
method proposed by Nayar et al. [NKGR06], the single image
method of Subpa et al. [SaFZ∗18], and the recent deep learning
based method of Nie et al. [NGS∗18]. For the single image method
of Nayar et al., a single 4 pixel wide stripe pattern is used. We also
follow Subpa et al. and use a 4× 4 checkerboard pattern with a
Fourier basis. For the deep learning method of Nie et al. we capture
the scene under uniform white lighting. The single image methods
of Nayar et al. and Subpa et al. suffer from the lower frequency of
lighting pattern (e.g., reflection of the “Ducky” in the direct com-
ponent) as well as interpolation artifacts (i.e., blocky and ringing
respectively). The method of Nie et al., while plausible, does not
produce an accurate decomposition. However, it should be noted
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Figure 6: Comparison of our deep decomposition results against the single image decomposition methods of Nayar et al. [NKGR06],
Subpa et al. [SaFZ∗18], and Nie et al. [NGS∗18].

that the method of Nie et al. solves a much more difficult prob-
lem, namely a decomposition under unstructured lighting. We can
also train our network under uniform full-on white lighting, but this
does not yield as good results as Nie et al. (please refer to the sup-
plemental document for an example).

5.4. Impact of Lighting Frequency

As noted in subsection 5.1, for scenes with subsurface scattering
as well as scenes that exhibit high frequency light transport our
method produces different results that the multi-image method of
Nayar et al. The main reason for this difference is the higher fre-
quency of our structured lighting. For the multi-image decomposi-
tion we used 4-pixel wide stripe patterns, effectively illuminating
the scene with a 4 times lower frequency pattern. Note that using
a sinusoidal lighting pattern for the method of Nayar et al. does
not alleviate this issue since the frequency of the sinusoids is still

band limited; it just produces slightly smoother artifacts for high
frequency light transport. While a better decomposition of high fre-
quency light transport is expected when increasing the frequency of
the lighting patterns, its impact on subsurface scattering is perhaps
less obvious. Ideally, all subsurface transport should be classified
as global transport, and the main source of direct lighting is direct
(white) reflections due to the dielectric surface reflectance. In prac-
tice, the frequency of the lighting pattern essentially determines
which scattered reflectance is consider direct “single scattering”
and which ones is global “multiple scattering”. If the pattern is low
frequency, more reflectance will be allocated to the direct compo-
nent; in the limit case for very low frequent lighting, the minimum
observed value will be black and thus no indirect lighting is “ob-
served” and the decomposition assigns all subsurface scattering to
the direct component. To further illustrate this, we also captured our
scenes with a 4 times lower resolution lighting pattern. Because we
decompose our image at “projector” resolution (4 times lower in
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Direct Global

Figure 7: Deep separation with 4 times lower frequency lighting.
The resulting decomposition is more similar (in color in the direct
component) to the multi-image decomposition as shown Figure 4.

this case), the resulting decomposition are also of lower resolution.
Albeit at lower resolution, Figure 7 illustrates that the decompo-
sitions, and in particular the color of the direct component of the
subsurface scattering materials, is more similar to the multi-image
method of Nayar et al. [NKGR06] in Figure 4.

5.5. Ablation Study

Generalization Typically, training a neural network requires a
large set of training exemplars to avoid overfitting and ensure
generalization to unseen cases. Yet, we only rely on just 20 de-
compositions as training exemplars, albeit with an extensive data-
augmentation step. We perform three ablation experiments to show
that our method generalizes well to unseen cases.

Our first indication that our method generalizes well is that we
only train on captured decompositions, yet, as shown in Figure 5
our method works without any adaptation, beyond the calibration
steps, on synthetic scenes. These synthetic scenes are significantly
different than the training data.

Second, to further demonstrate the necessity of our data-
augmentation, we also trained a network without applying color
swapping and color scaling augmentation. Figure 8 shows that
without swapping, severe artifacts are visible. While less visible,
without color scaling, the resulting network fails to adequately de-
compose the glossy indirect reflections on left and right walls of
the synthetic scene.

As a final experiment, we train a network without using any of
the training exemplars that exhibit subsurface scattering. For the
scenes in Figure 2, we remove any training patches that overlap
with the candles in scenes 1, 11, 19, and 20, and we completely
remove all training data from scenes 3, 4, 12, and 18. Despite re-
moving a significant portion of the training data, we observe in Fig-
ure 9 that the resulting network is still able to correctly decompose
subsurface light transport.

Loss Function Thanks to our extensive data-augmentation we can
rely on a straightforward direct difference loss between the refer-
ence and predicted solutions to train our decomposition network.
Perhaps less obvious is the decision to compute the distance in LAB
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Figure 8: Color channel swapping and color scaling training
exemplar augmentation is essential for generalization to unseen
scenes (i.e., compared to Figure 5).

Direct Global

Figure 9: To illustrate the generalization capabilities of our
method, we decompose a scene with subsurface scattering with a
network trained without subsurface scattering exemplars.

space as opposed to RGB, and to use the square distance (L2) in-
stead of the L1 distance. Empirically, we found that both the L1
and L2 distance in RGB can produce artifacts at sharp high contrast
edges, and that an L1 LAB loss produced artifacts in the global
decomposition of smoothly varying regions. We refer to the sup-
plemental material for a visual comparison.

Joint Inference of Direct and Global Our network uses a shared
encoder and features two decoders. This raises the question whether
we need to output both components, or whether it is possible to
only compute a single component and then leverage Equation 1 to
compute the other component. We therefore, train a network that
only outputs the direct component Id, and compute the global com-
ponent as: Ig = 1

w(L) (I− IdL). As can be seen in Figure 10, this
produces a global component where the lighting pattern is still vis-
ible, because Equation 1 is only approximate.

Cross Connections Our network features cross connections to
share information between the layers of the direct and global de-
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Table 2: RMSE for the scenes shown in Figure 5 for decomposition networks trained for different training patch sizes and layer configura-
tions.

V-shape Cornell Box
Repeated Layer Single Layer Repeated Layer Single Layer
Direct Global Direct Global Direct Global Direct Global

128×128 0.0092 0.0106 0.0117 0.0104 0.1094 0.0504 0.1085 0.0561
64×64 0.0095 0.0130 0.0185 0.0281 0.1089 0.0547 0.1107 0.0578
32×32 0.0208 0.0231 0.0178 0.0203 0.1069 0.0519 0.1077 0.0498
16×16 0.0206 0.0290 0.0257 0.0220 0.1076 0.0516 0.1207 0.0563

Direct Global Close-up

Figure 10: Only estimating the direct component with a deep net-
work, and then estimating the global component using Equation 1
does not completely remove the structured lighting pattern from the
global component.

coder networks. While the differences are relatively subtle, we
found that it produces cleaner decompositions for high frequency
textures. Figure 11 illustrates that without cross connections the
high frequency texture on the torus is not as well decomposed.

Training Patch Size The depth of our network depends on the
training patch size (128×128 in our implementation), and the num-
ber of repeated layers per resolution (2 convolution layers in our
implementation). To better understand the impact of both factors,
we perform an ablation study on the synthetic scenes where we
reduce the training patch size (from 128 to 16) and with a single
or two convolutional layers per resolution. Table 2 summarizes the
RMSE for the synthetic Cornell Box and V-shape scenes. We refer
to the supplemental material for a visual comparison on the Cornell
Box scene for the different network configurations. From Table 2
we can see that our selected configuration (128×128 with two con-
volutional layers) performs best. However, the single convolutional
layer at 128×128 and both configurations at 64×64 are also com-
petitive, and can serve as an alternative that require less training
time. The 32× 32 solutions can also produce high quality results,
albeit it not equally over all scenes. At 16× 16 the RMSE error
significantly increases, and visually we can observe discolorations
in the decompositions.

6. Resolution Augmentation

Our deep learning based solution currently assumes that the cam-
era image is expressed at projector resolution. Typically, however,
cameras have a much high resolution than projectors. It is therefore
desirable to compute the decomposition at camera resolution rather
than projector resolution.

We observe that our network architecture presented in section 3

without Cross with Cross

Figure 11: Impact of cross connections between the direct and
global decoder networks.

does not explicitly assume that the lighting L and capture photo-
graph I are expressed at projector resolution. Indeed we can also
train the network with both L and I expressed at camera resolu-
tion. While this provides a reasonable separation (Figure 12 left),
the lighting pattern is still visible in the decomposition. A com-
mon strategy to reduce the effect of such high frequency distor-
tions is to add to the loss function a total variation penalty term:
|||∇Id|+ |∇Ig|||1. However, such a term tends to also remove the
high frequency features from the direct and global components
(Figure 12 middle). Instead, we only want to remove the high fre-
quency features introduced by the lighting pattern. We therefore
only apply a total variation loss when the lighting pattern intro-
duces a high frequency change:

E f ull = Esep +w|||∇L|(|∇Id|+ |∇Ig|)||1, (3)

where the L1 norm sums over all camera pixel, and w is an appro-
priate weighting factor. In our implementation we set w to 0.00004.
We train on 128× 128 (camera resolution) patches, which effec-
tively results in a “smaller” patch in projector resolution. Modulat-
ing gradients of the direct and global component with the gradients
of the lighting produces sharper decompositions (Figure 12 right).

Figure 13 shows for a selection of scenes from Figure 4 a
full camera resolution decomposition. For comparison, we also
show a projector-resolution decomposition that has subsequently
been upsampled using a state-of-the-art deep super-resolution net-
work [ZLDQ19]. As can be seen, while our method exhibits
slightly less detail than the multi-image decomposition, it fea-
tures significantly more detail (and less artifacts) than the super-
resolution result. Furthermore, our method can, thanks to the full
projector-resolution lighting patterns, more accurately decompose
high frequency light transport paths.
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Figure 12: The deep separation network directly trained on full camera resolution fails to fully remove the structured lighting pattern. Adding
a regular total variation loss removes the structured lighting pattern, but also over-smooths. Our modulated total variation strikes a balance
between smoothing and removing the effects of the structured lighting.
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Figure 13: Comparison between full camera resolution decompositions using a multi-image method, our deep separation method, and a
super-resolution method [ZLDQ19] applied to a deep projector-resolution decomposition.
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7. Limitations

Our method is not without limitations. Two of our main limitations
are related to our setup. First, the quality of camera image plays a
significant role. A high quality (i.e., without compression artifacts
and minimal noise) estimate of pixels values is required to pro-
duce good results. Second, off-the-shelf projectors are designed to
project on a planar projection screen, and therefore typically have
a limited depth of field. This also limits the depth of the scene for
which we can faithfully decompose the direct and global compo-
nents. this can potentially be overcome by either using a projector
with a larger depth of field (e.g., a laser-projector), or potentially by
using multiple networks trained for decomposing the photograph at
a specific depth, and then combining the images with a second net-
work. An interesting avenue for future research would be to relax
the co-location requirement (i.e., beam-splitter setup) so that the
difference between depths is increased (cf. disparity), and thus aid-
ing in combining the decompositions with a second network.

Another limitation is that our decompositions exhibit some spa-
tial degradation and some loss of quality because the high fre-
quency lighting introduces spatial variations that the network needs
to correct.

Finally, while our method can attain real-time decompositions
(e.g., on a NVidia Quadro P6000, a 500× 200 image can be de-
composed at 50 fps, and a 4096× 1024 image at 20 fps), our
method is not explicitly trained to produce temporally coherent de-
compositions on video sequences. In the supplemental material we
demonstrate a decomposition of a synthetic scene with a diffuse
ball rolling from one side to the other. Despite not being explicitly
trained to be temporally coherent, we can see that the decomposi-
tion is mostly coherent. The global component exhibits some flick-
ering, especially on the rolling ball. Note that our method correctly
and coherently decomposes the glossy reflections on the green and
blue wall, as well as the indirect shadows on the background.

8. Conclusion

In this paper we presented a deep learning based solution for de-
composing the direct and global light transport components of a
scene from a single photograph captured under high frequency illu-
mination. Our method is designed to operate on non-binary lighting
patterns, allowing us to naturally compensate for the deficiencies
in common off-the-shelf projectors. Furthermore, this also allows
us to separate the direct and global components at full projector
resolution, yielding more accurate decompositions for lighting fre-
quency sensitive features such as subsurface scattering and specular
indirect lighting.

Avenues for future research include adapting our method to op-
erate on non-colocated setups, to overcome the depth of field lim-
itations of common projector systems, to improve temporal co-
herency, and to improve robustness by using multiple lighting pat-
terns.
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