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Fig. 1. Examples of scenes captured with a handheld dual camera setup, and relit using deferred neural lighting. (a) A cat with non-polygonal shape (i.e., fur),
(b) a translucent Pixiu statuette, (c) and a candy bowl scene with complex shadowing. All three scenes are relit with a directional light. (d) A gnome statue on a
glossy surface, (e) a decorative fish on a spatially varying surface, and (f) a cluttered scene with a stuffed Koala toy, a wooden toy cat and anisotropic satin. All
three scenes are relit by the natural environment maps shown in the insets.

We present deferred neural lighting, a novel method for free-viewpoint re-
lighting from unstructured photographs of a scene captured with handheld
devices. Our method leverages a scene-dependent neural rendering network
for relighting a rough geometric proxy with learnable neural textures. Key
to making the rendering network lighting aware are radiance cues: global il-
lumination renderings of a rough proxy geometry of the scene for a small set
of basis materials and lit by the target lighting. As such, the light transport
through the scene is never explicitelymodeled, but resolved at rendering time
by a neural rendering network. We demonstrate that the neural textures and
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neural renderer can be trained end-to-end from unstructured photographs
captured with a double hand-held camera setup that concurrently captures
the scene while being lit by only one of the cameras’ flash lights. In addi-
tion, we propose a novel augmentation refinement strategy that exploits
the linearity of light transport to extend the relighting capabilities of the
neural rendering network to support other lighting types (e.g., environment
lighting) beyond the lighting used during acquisition (i.e., flash lighting). We
demonstrate our deferred neural lighting solution on a variety of real-world
and synthetic scenes exhibiting a wide range of material properties, light
transport effects, and geometrical complexity.
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1 INTRODUCTION
Digitally reproducing the appearance of a scene from a novel view-
point and under novel lighting is a challenging research problem
with many practical applications in both computer graphics as well
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as in computer vision. The classic model-based approach for dig-
itizing the appearance of a scene is to quantify each component
that impacts the scene appearance, i.e., shape, material properties,
and lighting [Lensch et al. 2003; Nam et al. 2018; Xia et al. 2016].
However, due to practical or model limitations, it might not be
possible to recover each of these components exactly, thereby po-
tentially affecting the revisualization accuracy of the scene. For
example, it might not be possible to obtain an unoccluded view
of each part of the shape, thereby yielding an incorrect geometry
estimate which in turn will affect the global light transport simu-
lation through the scene. In contrast to model-based approaches,
image-based solutions directly modify and recast the appearance
information contained in measurements of the scene to the target
rendering, thereby inheriting all the intricate light transport details
present in the measurements [Debevec et al. 2000; Gortler et al.
1996; Levoy and Hanrahan 1996]. However, to accurately reproduce
the correct appearance, generally a dense and accurately calibrated
sampling of the scene’s appearance is needed, which might be costly
or even impractical to obtain. Both approaches have benefitted from
new advances in neural networks to increase the capabilities and
reduce acquisition costs [Gao et al. 2019; Kang et al. 2019; Xu et al.
2018].
In this paper we present a novel image-based method for 360◦

free-viewpoint relighting from unstructured photographs that borrows
ideas from model-based approaches, without the stringent accuracy
demands on the components, and that leverages neural networks
to reduce the complexity of typical image-based acquisition proce-
dures. We take inspiration from deferred lighting [Geldreich et al.
2014], a variant of deferred rendering in which an additional light-
ing pass is performed before generating the final rendered image,
and combine it with the concept of neural textures [Thies et al.
2019]. Similar to deferred neural rendering [Thies et al. 2019], we
project learned neural textures in the first pass onto a rough proxy
geometry. In a second “lighting pass”, we compute a small set of
rough radiance cues by rendering a set of predetermined (scene-
independent) homogeneous basis materials on the rough geometry
under the desired target lighting. Finally, we combine the radiance
cues with the projected neural textures, and forward them to a
scene-dependent learned neural rendering network to produce the
final relit results. The goal of the rough proxy geometry and radi-
ance cues are to aid the neural rendering network in view-synthesis
and image-based relighting. In particular, the radiance cues play
a crucial role in generalizing the neural rendering network with
respect to appearance-changes under novel lighting or viewpoint,
as they naturally encode this information.

We train our neural representation directly on unstructured pho-
tographs of the target scene, and no general pre-training is required.
When the proxy geometry deviatesmuch from the true shape, and/or
the light transport effects are complex, more neural texture chan-
nels and a large neural rendering network are needed for full 360◦
free-viewpoint relighting, thereby imposing significant memory re-
quirements that exceed the capabilities of current GPUs. We address
the memory limitations with an effective view-partitioning strat-
egy for the learned neural textures and neural rendering network,
enabling the full capabilities of our relighting method on current
generation GPUs. Our method is suited for capturing and relighting

a scene with off-the-shelf handheld hardware (i.e., consumer cam-
eras), thereby making full 360◦ free-viewpoint relighting practically
accessible to a wider audience. We demonstrate the effectiveness
of our method for scenes with a wide variety of material proper-
ties and global light transport effects. We show that high-quality
results can be obtained for rough estimates of the geometry with a
setup consisting of two handheld cameras. Both cameras capture the
scene simultaneously while being lit by the flash light of only one
of the cameras. Furthermore, we introduce a novel augmentation
refinement strategy that exploits the linearity of light transport to
generalize the relighting capabilities of the neural rendering net-
work beyond the lighting conditions present during acquisition (i.e.,
flash lighting) to general environment lighting (Figure 1).

In summary our contributions are:
• a novel end-to-end system that enables full 360◦ free-viewpoint
relighting from unstructured handheld captured photographs
for a wide range of material properties and light transport
effects;

• a deferred neural lighting renderer suitable for a wide range
of lighting conditions;

• a novel handheld acquisition scheme that only requires two
cameras; and

• an augmentation method for extending the relighting capabil-
ities of our neural rendering network beyond the acquisition
lighting.

2 RELATED WORK
We focus this overview of related work on methods that achieve
one or both of our goals: multi-view rerendering and relighting.

2.1 Model-based Solutions
A classic tool for enabling multi-view rerendering is to explictly
reconstruct the geometry of an object. Multi-view stereo [Seitz et al.
2006], visual hulls [Laurentini 2003], and photometric methods [Ack-
ermann and Goesele 2015] are among the most versatile and popular
methods. However, these methods only capture the shape of an ob-
ject, and by themselves do not capture the view-dependent changes
in appearance. Nevertheless, we will also leverage such methods,
in particular multi-view stereo [Schönberger and Frahm 2016], to
provide an estimate of the scene geometry. However, we do not
expect perfect reconstruction accuracy, and only use the geometry
estimate as a rough guide for rendering.

Appearance Modeling. Appearance modeling aims to capture the
view and light dependent effects of surface reflectance (see [Wein-
mann and Klein 2015] for an overview). However, such methods
require extensive probing of the appearance with various lighting
conditions or require complex setups. While recent methods [Hui
et al. 2017; Xu et al. 2016; Zhou et al. 2016a], including methods
based on deep learning [Deschaintre et al. 2018, 2019; Gao et al.
2019; Kang et al. 2018; Li et al. 2017, 2018a; Ye et al. 2018], aim to
reduce the number of required lighting conditions, these methods
are limited to planar shapes or known accurate geometry.

Joint Modeling of Shape and Appearance. Jointly inferring shape
and appearance is challenging due to the tight coupling of both
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factors through the surface normals. Holroyd et al. [2010] capture
both shape and appearance with a complex dual-arm gantry system.
Xia et al. [2016] simplify acquisition by inferring shape and appear-
ance jointly from a video of an object rotating under an unknown
natural lighting environment. Similarly, Nam et al. [2018] reduce
acquisition complexity by using photographs captured under active
co-located point lighting. This reduction in acquisition complexity
is traded off by a more complex, computationally expensive, and
fragile, optimization process for estimating shape and appearance.
Li et al. [2018b] leverage convolutional neural networks to robustly
and efficiently infer shape and appearance from a single photograph;
unseen surface points cannot be recovered, and due to biases in the
shape combining multiple views is non-trivial [Vlasic et al. 2009].
Recently, Kang et al. [2019] learn optimal active lighting conditions,
induced by a specially designed LED-cube, for jointly estimating
shape and appearance. In concurrent work, Bi et al. [2020] estimate
shape and reflectance from sparse multi-view images by jointly
optimizing the latent space of the multi-view reflectance network
to minimize the photometric error. However, geometry-based or
BRDF-based solutions are inherently limited by the quality of the
models. The quality of the reconstructions greatly depends on the
completeness of the captured input, calibration accuracy, and accu-
racy of the model. Our method includes a neural rendering pass that
aims to correct deficiencies in the shape and/or reflectance models.

2.2 Image-based Solutions
Image-based methods forego an explicit model of shape or appear-
ance, and instead directly leverage the information embedded in
images of the target.

Image-based Rendering. Light field [Levoy and Hanrahan 1996]
and Lumigraph [Gortler et al. 1996] methods resample view rays
from densely sampled views of the object. Leveraging prior knowl-
edge of the shape improves view interpolation (e.g., via a global
proxy geometry [Buehler et al. 2001; Chaurasia et al. 2013], or
through view-dependent shape estimates [Hedman et al. 2018, 2016;
Penner and Zhang 2017]). Surface light fields [Chen et al. 2018;
Wood et al. 2000] aim to capture the changes in view-dependent ap-
pearance under high frequency lighting, such as point light sources,
by storing a lumisphere for every point on the object’s surface.

In the last few years, deep learning has been extensively explored
as a means for improving novel-view-synthesis [Tewari et al. 2020],
using various strategies ranging from flow-based warping meth-
ods [Jin et al. 2018; Liu et al. 2018; Park et al. 2017; Sun et al. 2018;
Zhou et al. 2016b]), to view interpolation [Kalantari et al. 2016]
and extrapolation [Srinivasan et al. 2019, 2017], to multi-plane im-
ages [Flynn et al. 2019; Mildenhall et al. 2019; Zhou et al. 2018], to
tomographic volume representations [Lombardi et al. 2019], and to
pure image-based disentangled learning [Ji et al. 2017; Olszewski
et al. 2019; Yan et al. 2016; Yang et al. 2015]. Recently, Thies et
al. [2019] demonstrated realistic view synthesis by jointly learning
a deferred neural rendering network together with neural textures
stored on an rough, inexact, proxy geometry. These neural textures
encode the necessary features for the neural rendering network

to correct inaccuracies in geometry and to correctly display view-
dependent appearance. However, as with all of the above image-
based rendering methods, the incident lighting is fixed at capture
time. In contrast, our method allows for free-viewpoint rerendering
of the scene under novel incident lighting by reshaping the neural
textures not only based on a rough shape proxy, but also based on
light-dependent radiance cues.

Image-based Relighting. In seminal work, Debevec et al. [2000]
exploit linearity of light transport to reformulate scene relighting
as a linear combination of photographs of the scene lit with differ-
ent controlled lighting conditions. Subsequent work has focused
on reducing storage requirements [Furukawa et al. 2002], accel-
erating relighting [Malzbender et al. 2001], reducing the number
of required photographs [Peers et al. 2009], or acquisition under
uncontrolled lighting either by limiting to specialized scenes (e.g.,
human subjects) [Guo et al. 2019; Li et al. 2013], landmarks [Haber
et al. 2009], etc.), specialized lighting (e.g., outdoor natural light-
ing [Hauagge et al. 2014]), or simplified transport (e.g., lambertian
reflectance [Imber et al. 2014]). Machine learning methods have
been used to further reduce the number of required images for sin-
gle view relighting [Meka et al. 2019; Ren et al. 2015; Sun et al. 2019;
Xu et al. 2018] and very recently for multi-view relighting [Chen
et al. 2020; Kanamori and Endo 2018; Meshry et al. 2019; Philip et al.
2019; Xu et al. 2019]. We will review this last category in more detail
as it is closest related to our method.
Meka et al. [2019] learn to map two photographs of a human

head under colored gradient illumination to a full 4D reflectance
field. While at inference time only two gradient-lit photographs are
needed, during training the full reflectance fields for 5 viewpoints
of the subject are required. Kanamori et al. [2018] learn inverse
rendering of ambient occlusion of full body photographs, assuming
low frequency incident lighting and Lambertian surface reflectance.
Both methods are specially geared towards human subjects and it
is unclear how well these methods would extend to scenes with
complex geometry (with cast shadows) and more general materials.
Mahmoud et al. [2019] demonstrate total scene rerendering of

tourist landmarks from photo-collections using a proxy geometry in
the form of a point cloud and formulate rendering as a multi-modal
image-translation problem [Huang et al. 2018]. Consequently their
rerendering method only offers an indirect control over incident
lighting.
Philip et al. [2019] introduce a geometry-aware neural network

that leverages geometry cues (e.g., normal maps and specular direc-
tions) and a rough geometric proxy to relight single-view inputs.
Key to their method is a shadow refinement network (used on both
source and target images). However, their method only models the
incident lighting as a single directional light source (i.e., the sun)
and an additional (ambient) cloudiness factor, making the method
less suited for indoor scenes or general object relighting.
Xu et al. [2019] demonstrate high-quality multi-view relighting

from a sparse set of wide-baseline photometric images under con-
trolled lighting using 3D convolutions on a plane sweep volume
aggregated with per-view per-depth attention maps. The relighting
builds on Xu et al. ’s earlier work on single-view relighting [Xu et al.
2018], and thus shares the same limitations. Importantly, it can only
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Fig. 2. Overview of Deferred Neural Lighting. First, an S -channel scene-dependent neural texture {Tt }St=1 is projected to a desired viewpoint p via a rough
geometrical proxy G of the scene: Tp = P̄(T, p;G). Next, radiance cues {Bi }Mi=1 are synthesized by rendering M scene-independent basis materials {bi }Mi=1
under the target lighting l onto the rough geometry G. Finally, the radiance cues and projected neural textures are combined (via a per-pixel multiplication)
and passed to a scene-dependent neural rendering network R(Tpt ⊙ Bi ) that produces the final relit appearance of the scene. Additionally, to facilitate
compositing the relit appearance, we also predict a binary mask from the projected neural textures.

relight from lighting directions from the frontal hemisphere, and
thus is unable to relight a scene with full environmental lighting.
Furthermore, Xu et al. rely on a dedicated acquisition setup, preclud-
ing in-situ capture. In contrast, we employ a more flexible handheld
acquisition setup, and support the sphere of viewpoints and full
environment lighting, at the cost of a denser viewpoint sampling.
In concurrent work and similar to us, Chen et al. [2020] are

inspired by the deferred rendering pipeline of Thies et al. [2019]
and encode a “light transport function” in the neural textures in-
ferred from multi-view photographs of an object under unknown
natural lighting. To regularize this is highly underconstrained prob-
lem, Chen et al. apply a number of heuristics and limit incident
lighting to 10th order spherical harmonic lighting. Consequently,
their method cannot handle specular scenes and self-shadowing is
typically omitted or baked in.

3 METHOD

3.1 Overview
Our algorithm takes as input a corresponding set {Ck , pk , lk ,Mk }

N
k=1

of N photographs Ck of a scene with corresponding maskMk , in-
trinsic and extrinsic camera parameters pk , and incident lighting
lk . We do not assume that the viewpoints or lighting conditions
are distributed in a structured manner. Furthermore, we assume
availability of a rough geometry G, and a predefined set ofM basis
materials {bi }Mi=1.
As in Thies et al. [2019] we encode the view-dependent appear-

ance of the scene by an S-channel learned neural texture {Tt }St=1
that lives in the UV texture space defined by the rough geometry G.
A neural texture acts similarly as a regular texture, but instead of
storing appearance, normals, or displacements, a neural texel stores
a learned S-length feature vector. These feature vectors will inform
the (neural) renderer on how to compute the final pixel color. Given
any view p, we can compute the projection Tp = P̄(T, p;G) into the
current viewpoint via the rough geometry. Unlike Thies et al. we do
not directly pass the projected neural texture Tp to a neural render-
ing network R, but instead embed lighting and material dependent

information through a per-pixel multiplication of the projected neu-
ral texture channels TPt with radiance cues Bi (i.e., visualizations of
the basis materials under the target lighting: Bi = R̄(bi , pi , li ;G)),
which are then passed to the neural rendering network: R(Tpt ⊙ Bi ).
Furthermore, we also predict a mask from the neural textureM(Tp )
which is post-multiplied with the output from the neural renderer.
Figure 2 visually summarizes our algorithm.

As the neural texture informs the neural rendering network how
to compute the output pixel values, and the neural renderer defines
the exact meaning of the feature vectors, both the neural texture
and the neural rendering network are trained in unison for each
scene:

T∗,R∗,M∗ = argmax
T,R,M

N∑
i

L(Ci , pi , li ,Mi |T,R,M),

where L is a suitable loss function. We will describe each of the
components that comprise our system in detail in the subsequent
subsections.

3.2 Neural Textures
Neural textures for neural rendering were introduced by Thies et
al. [2019], and we follow a similar end-to-end training and gradient
update implementation. However, our work differs in three ways.
First, in contrast to Thies et al. we deploy the learned neural textures
differently, and hence they encode different types of appearance
information. Second, unlike Thies et al. , we do not average over the
different mipmap levels, but follow the standard usage of mipmaps.
We use a 4-level mipmap hierarchy of neural textures. For each
level, the mipmapping is computed as the average pooling from the
previous level. Finally, we store more feature channels per neural
texel (30), and hard assign the i × 6 to (i + 1) × 6 feature channels to
encode properties of the i-th basis material.

3.3 Deferred Neural Lighting
Deferred lighting typically computes a diffuse and specular light
map. We generalize this to more “light maps” for deferred neural
lighting. The core idea is, similar to how a rough proxy geometry
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Fig. 3. Visualization of the projected neural textures (encoded in RGB im-
ages) and the corresponding radiance cue images for the synthetic ball
scene.

is leveraged in deferred neural rendering, to provide cues to the
neural renderer on the impact of the incident lighting to the surface
reflectance. We therefore include more than just two light maps,
and leverage M “radiance cue” images, each rendered with a ho-
mogeneous basis BRDF. This is somewhat similar to the idea of
representing surface reflectance with a set of basis materials albeit
with a different goal [Ren et al. 2011]. Instead of characterizing the
surface reflectance as a linear weighted sum of basis materials’ re-
flectances, the neural renderer takes the radiance cues and combines
them non-linearly, based on the neural texture information, into the
final pixel values. This latter is also similar to Deep Shading [Nal-
bach et al. 2017], but instead of using a user-defined set of cues, we
combine our cues with the learned neural textures.
Practically, we use M = 5 basis materials {bi }Mi=1, one charac-

terized by a pure Lambertian BRDF, and the remaining 4 are mod-
eled by the Cook-Torrance BRDF model [Cook and Torrance 1982]
with roughness parameters {0.02, 0.05, 0.13, 0.34} respectively. We
use a GPU-based path tracer to synthesize the radiance cue images
Bi = R̄(bi , pi , li ;G), including indirect lighting, for each of the basis
BRDFs bi using the rough proxy geometry G. Because the radiance
cue images do not depend on learnable parameters, our GPU-based
path tracer does not need to be differentiable. This greatly simplifies
the learning process as well as the implementation. Note that the
incident lighting li can be any type of incident lighting (e.g., direc-
tional light, environment lighting, etc.). Also note that the radiance
cue images are 3-channel RGB images (e.g., to encode the effects of
colored light sources).
Figure 3 shows the projected neural textures (encoded as RGB

images), as well as corresponding radiance cue images for a synthetic
specular ball scene.

3.4 Neural Rendering Network
The neural rendering network takes as input the per-pixel multi-
plied radiance cues and the projected neural textures: Tpt ⊙ Bi . As
noted before, we only multiply 6 neural texture channels with each
radiance cue image. Since the radiance cue images are 3-channel
RGB images, we interpret the neural texture channels as RGB too,
thus yielding 2 RGB images (per radiance cue image) after multipli-
cation (one for the first 3 neural texture channels, and a second for
the last 3 neural texture channels).
Our neural rendering network follows the generator design of

[Johnson et al. 2016; Zhu et al. 2017] with residual blocks [He et al.
2016]. We directly feed the multiplied radiance cue images with
projected neural textures into the neural renderer. Our network

Fig. 4. Network structure of our neural rendering/masking network. A tanh
activation is applied after the last layer, followed by exponentiation to undo
the log encoding (Equation 1).

structure is detailed in Figure 4. We found that a resblock based
architecture more faithfully reproduces the appearance of the scene
than the U-net based architecture used by Thies et al. [2019] (sub-
section 4.3).

To support a larger dynamic range, we further apply a log encod-
ing after multiplying the neural textures and the radiance cues:

log(x + ϵ)
log(s)

+ o, (1)

where ϵ = 1
e (with e being Euler’s number), s and o are a normal-

ization (exposure) scale and offset, respectively, that depend on the
dynamic range of the input pixels x (with negative values clamped
to zero) such that after log encoding the transformed values fall
in the [−1,+1] range. We also apply a log encoding to the training
images; consequently computing the reconstruction loss operates
in the log domain.
The neural renderer serves two goals simultaneous: it converts

the multiplied radiance cues to pixel values, and it corrects errors in
the rough geometry. When the rough geometry differs significantly
from the actual shape or if the scene features complex light trans-
port effects, then the neural renderer has to place more effort in
correcting these errors, and thus a more capable network is needed,
by for example increasing the number of neural texture channels.
A practical issue with this approach is that the memory required
for training exceeds the available GPU memory. We therefore take
an effective alternative approach. Instead of training one neural
renderer for a large number of neural texture channels, we partition
the neural texture channels and train a dedicated neural renderer
per partition. Since each partition is independent, we can train each
neural texture partition plus corresponding neural renderer sepa-
rately. We will show in subsection 4.3 that this partitioning does
not adversely affect the accuracy of the neural renderer.
In practice, we use 13 separate neural networks, each with their

own 30 neural textures and a neural rendering network. Each neural
renderer is trained for a limited subset of view directions (but all
lighting directions). To determine the subset of view directions, we
uniformly distribute 13 vertices on the sphere of view directions
(approximately 60◦ apart), and triangulate these vertices. Each vertex
corresponds to a neural rendering network, and it is trained on all
view directions that fall within the adjacent triangles. Thus, for each
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view direction through a triangle, we have three predicted renders
(from the neural networks associated with the triangle’s vertices)
that we blend based on barycentric weighting to the final relit result.

3.5 Neural Mask
To aid in compositing the relit object on a new background, we
also estimate a binary mask given the viewpoint. We use a neural
network to estimate the mask directly from the projected neural
textures. The neural mask network follows the same structure as the
neural rendering network with only half the number of intermediate
channels, outputting only one channel mask via a sigmoid activation
instead of a tanh activation after the last layer.

3.6 Training & Data Capture
We train our network end-to-end on a set of unstructured pho-
tographs from the same scene using an ℓ1 loss between the log
prediction and the corresponding (log) photograph, and a cross-
entropy loss for the mask; both losses are weighted equally. We
implemented our method in TensorFlow [Abadi et al. 2015] and
train our network with the Adam optimizer [Kingma and Ba 2015],
with a 0.0002 learning rate, using a batch-size of 1, and set β1 = 0.9
and β2 = 0.999. We train each partition’s network on an NVidia
P100 GPU for 20 hours. An additional advantage of partitioning
the neural texture with associated neural renderers, is that we can
trivially parallelize training over multiple GPUs.
We will demonstrate our deferred neural lighting method with

a handheld capture setup using mobile phone cameras as well as
DSLR cameras. Our default setup utilizes two cameras, in video
mode, moved independently around the scene. One of the cameras
also has its (co-located) flash light turned on; we assume no other
major sources of incident lighting are present. We aim to get a
good coverage of possible viewpoints and cover a wide variety of
lighting directions (flash-on camera) for each nearby view (flash-
off camera). While multi-view stereo can be used to estimate the
camera locations of each camera, we place a checkerboard in the
scene to aid estimating the camera parameters. Since the light source
(i.e., flash light) is co-located with one of the cameras, we can use
the corresponding extrinsic camera parameters as the location of
the light and model it as a point light. This avoids the geometric
and radiometric calibration between the two cameras. We employ
a gamma 2.2 correction to transform the recorded pixel values to
(approximately) radiometrically linear measurements. Although it is
possible to use the captured frames from both cameras, in practice,
we found using the captured frames from the flash-off camera are
sufficient to train our neural relighting system. We refer to the
supplemental video for a (sped-up) capture sequence.
We employ COLMAP [Schönberger and Frahm 2016] for recon-

structing the rough geometry from photographs of the object under
fixed natural lighting (i.e., without using the cameras’ flash lights).
While geometry reconstruction is possible from the co-located im-
ages, the non-stationary specular highlight affects the quality signif-
icantly. Figure 5 shows the estimated rough geometries for each of
the scenes used in this paper. We perform minimal manual cleaning
to the recovered COLMAP geometry; we remove features outside the
region of interest by either selecting the largest continuous shape

Fig. 5. Visualizations of the rough proxy geometries, color-coded by the
surface normal directions, used for the different real and synthetic scenes.
The right most column shows two examples of the raw COLMAP geometry
to illustrate the degree of manual intervention.

or by providing a bounding box (Figure 5, right column bottom
example). In the case when COLMAP partially fails, we manually
fix the affected region; this only occurred for the Sphere and Fish ex-
ample (Figure 5, right column top example). We employ closed form
matting [Levin et al. 2008] to compute the masks based on trimaps
computed by shrinking/growing the silhouettes of the projected
rough geometry.

We captured video sequences of 9 scenes to demonstrate the effec-
tiveness of our method, as well as simulated captures of 3 synthetic
scenes for validation (following the real capture process as close
as possible using exactly the same calibration and reconstruction
process). The captured scenes are: a gnome on a glossy surface (with
glossy interreflections), a bronze vase (with rough specular reflec-
tions), a candy bowl (with intricate shadowing effects not captured
by the rough geometry), an empty bowl (with large scale occlusions),
a decorative sword (with fine texture detail), an ornamental fish statue
(with fine texture details), a Pixiu statuette (with translucency), a cat
(with fur), and a cluttered scene with a variety of objects (displaying
complex shadowing, anisotropic reflections, and interreflections).
The ornamental fish, Pixiu statuette, the cat, and the cluttered scene
are captured with a DSLR camera pair, while the other scenes are
captured with a regular mobile phone setup. The synthetic scenes
exhibit a wide variety in geometric details (e.g., the back side of
the pig head scene), challenging material properties (e.g., a textured
specular ball scene including a rough specular ground plane), com-
plex shadowing (e.g., the Christmas tree), texture detail (e.g., the ball
scene and the Christmas tree), and strong interreflections (e.g., the
reflections in the ball scene).
For the synthetic scenes we sample 10,000 views, each with dif-

ferent light source positions. The number of captured video frames
used for the real examples shown in this paper varies per scene
between 6,000 and 20,000 views (see Table 1, first column, for a
summary of the number of captured views). While the number of
captured views might appear high, especially compared to prior
SVBRDF modeling methods (e.g., [Nam et al. 2018]), we remark that
our method is an image-based neural relighting method which typi-
cally requires more captured photographs but, compared to SVBRDF
methods, can handle more intricate scenes with a richer variety in
materials and more complex light transport. To put this in perspec-
tive, lets assume we use classic image-based rendering for view
interpolation from relit views generated by a fixed-view relighting
method. In that case, we would only have 100 lighting directions
for 100 views, which would be challenging to view-interpolate or
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relight with many image-based methods. Furthermore, we extract
frames from a video sequence, which would ideally take less than 6
minutes on a 30fps video camera. Practically, capturing times are
longer (15 ∼ 30 minutes) because the flash light on the camera is
relatively dim, and thus to avoid motion blur, the cameras need to
move slowly (and we subsample the frame rate to get a rich vari-
ation of views). However, brighter flash lighting and faster frame
rates can potentially reduce acquisition time significantly.

Figures 6 and 7 compare results for each of the scenes visualized
from a novel viewpoint and lit from a novel lighting direction with a
reference photograph not used for training. Overall, the relit results
are visually a good match to the reference photographs. Please refer
to the supplemental material for visualizations with different view
and lighting combinations.

3.7 Lighting Augmentation
Our deferred neural lighting method is agnostic to the type of in-
cident lighting used for rendering the radiance cues. Hence, it nat-
urally supports different types of lighting ranging from local to
distant lighting, and from directional lighting to environment light-
ing. However, attempting to relight the scene with environment
lighting does not necessarily yield a plausible relighting because
the neural rendering network is trained exclusively on white point
lighting. Consequently, the rendering network has no concept of
area or colored light sources as shown in Figure 8.
To address the lighting generality issue, we exploit linearity of

light transport and perform an additional augmentation training
refinement pass. The key idea is to refine the network with novel
training images of the scene lit by environment lighting generated
through classic image-based relighting [Debevec et al. 2000] using
basis images under directional lighting predicted by the neural
network itself. However, naively applying this augmentation step is
impractical as this would require generating for many viewpoints
(e.g., 1,500 views) a large number of images (e.g., for an environment
map encoded as a 32×32×6 cube map, this yields 6,144 basis images
per viewpoint). We therefore employ importance sampling on the
environment lighting and approximate the relighting using only
100 light samples for each of the 5 light probes and for each of the
1,500 selected views (yielding a total of 7,500 augmented training
samples). We train the network with an even mix of augmented
training images and the original captured images. We found that
5 training light probes, each randomly selected for each training
viewpoint of the scene from a set of 90 light probes, is sufficient
to generalize to other natural light probes not part of the training
set. Figure 9 shows relighting results under environment lighting
(not part of the 90 training light probes) and the corresponding
reference ground truth results for the synthetic scenes. Figure 1
includes augmented relit results for selected captured scenes. For
scenes with strong specular reflections, using 100 light samples is
not always sufficient for the neural rendering network to learn how
to handle low frequency ambient lighting. In such cases (e.g., the
specular Ball scene), we use an exhaustive relighting with all light
directions. Data preparation for lighting augmentation is costly and
takes about 5 hours per partition, and 1.5 hours for relighting, and

Table 1. Quantitative evaluations of relighting results for each synthetic and
captured scene. The respective absolute errors (AE) and perceptually-based
LPIPS errors are computed over 1,000 view/lighting combinations for the
captured scenes, and 1,384 view/lighting combinations for the synthetic
scenes.

Tot. Mean Maximum
#Input AE LPIPS AE LPIPS

Pig head 10,000 0.0030 0.061 0.0055 0.160
Sphere (Specular) 10,000 0.0007 0.003 0.0012 0.013
Sphere (Diffuse) 10,000 0.0006 0.017 0.0016 0.039
Sphere (Mixed) 10,000 0.0014 0.035 0.0059 0.072
Christmas tree 10,000 0.0017 0.043 0.0040 0.099
Candy bowl 16,729 0.0089 0.051 0.0160 0.084
Bronze vase 17,024 0.0017 0.037 0.0059 0.092
Gnome 14,132 0.0034 0.032 0.0110 0.056
Empty bowl 19,682 0.0034 0.046 0.0094 0.066
Decorative sword 13,537 0.0024 0.015 0.0052 0.029
Ornamental fish 13,032 0.0039 0.121 0.0170 0.180
Cat 6,389 0.0019 0.018 0.0037 0.029
Pixiu statuette 13,928 0.0036 0.066 0.0061 0.130
Cluttered scene 16,720 0.0040 0.066 0.0092 0.089

an additional 20 hours of training per partition using the previously
trained network as a starting point.

4 DISCUSSIONS

4.1 Validation
Figures 6 and 7 demonstrate that our method is able to achieve
visually plausible results. To further validate our results, we quantify
the maximum and mean Absolute Error (AE) and the perceptually
based LPIPS [Zhang et al. 2018] error between 1,000 reference and
predicted images with random view and lighting direction (not
part of the training dataset) for both the real and synthetic scenes.
The results are summarized in Table 1, showing that our method
achieves high accuracy. The higher AE errors on the Candy bowl are
due to artifacts in the mobile phone captured frames (i.e., motion
blur, defocus blur, and sensor noise). The higher LPIPS error for the
Ornamental fish scene are due to the glint-like texture on the ground
plane which is challenging to sample and reconstruct exactly.

4.2 Comparison To Prior Work
A direct comparison to prior work is difficult as there currently does
not exist a method that can relight under exactly the same conditions
(i.e., unstructured photographs, complex material properties and
light paths, and full 360◦ relighting). We therefore make a best effort
comparison with methods that solve similar problems.

The method of Nam et al. [2018] reconstructs shape and spatially
varying BRDFs from handheld captured backscatter observations.
However, their method ignores the impact of interreflections, which
can adversely affect the results for scenes with strong interreflec-
tions, as shown in Figure 10. The SVBRDF estimation (starting from
the same rough geometry as our method) and rendering (with direct
lighting only) were kindly provided by Nam et al.
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Fig. 6. Qualitative comparison between synthetic scenes relit (right) for a novel viewpoint and lit from a novel lighting direction (not part of the training data)
and a rendered reference photograph (left). Difference images (×5) are shown in the insets.

Fig. 7. Qualitative comparison between captured scenes relit (right) for a novel viewpoint and lit from a novel lighting direction (not part of the training data)
and a captured reference photograph (left). Difference images (×5) are shown in the insets.

(a) Reference (b) w/ augmentation (c) w/o augmentation

Fig. 8. Without lighting augmentation, the neural network trained with only
point light source lighting has no concept of area or colored light sources,
yielding artifacts when attempting to relight with environment lighting (c)
compared to the reference (a). Our lighting augmentation generalizes the
neural networks to enable relighting with environment lighting (b).

High quality single-view relighting was demonstrated by Xu et
al. [2018], and the same method served as basis for their multi-view

follow-up work to enable relighting [Xu et al. 2019]. In contrast to
our method, their relighting network generalizes to other scenes.
However, this comes at the cost of only being able to relight from
the frontal hemisphere and it has difficulty handling complex long-
range lighting effects, such as the interreflections between the ball
and the ground plane as shown in Figure 10.

Deferred Neural rendering et al. [Thies et al. 2019] also relies on
neural textures. However, a key difference between our method and
the deferred neural rendering method of Thies et al. is that they
provide viewpoint information to the neural rendering network
by multiplying the lowest 3 spherical harmonics bands with 9 of
the projected neural textures. Given the prominence of spherical
harmonics in precomputed radiance transfer [Sloan et al. 2002] and
inverse rendering [Ramamoorthi and Hanrahan 2001], this raises the
questionwhether a direct augmentation of deferred neural rendering
in which the lighting is embedded via spherical harmonics in a
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Fig. 9. Qualitative comparison between synthetic scenes relit for a novel viewpoint by the light probes shown as insets at the bottom. Difference images (×5)
are shown in the insets at the top.

(a) Reference (b) Ours (c) [Xu et al. 2018]
Mean AE/LPIPS 0.0012/0.035 0.0033/0.053

(d) [Nam et al. 2018] (e) [Thies et al. 2019] ext.
0.0120/0.300 0.0050/0.130

Fig. 10. Comparison to selected prior work. Our method is able to plausibly
reproduce the interreflection effects for this challenging scene, while the
learning-based relighting method of Xu et al. [2018] fails to fully capture
the non-local light transport effects. Similarly, the quality of the results of
the SVBRDF and geometry reconstruction method of Nam et al. [2018]
is adversely affected by the strong interreflections. Naively extending de-
ferred neural rendering [Thies et al. 2019] by encoding the light source
direction with Spherical Harmonics coefficients fails to reproduce the global
illumination effects.

similar fashion (using 9 additional neural texture channels) would
yield a relightable deferred neural rendering solution. Figure 10 (e)
show that such a naive extension trained on the same images as
previous results fails to generalize to unseen lighting directions.
It is important to note that the neural renderer attempts to learn
the relation between lighting direction (expressed in 9 spherical
coefficients) and the observed reflectance in the training images
(under a single light source). Consequently, the use of just 9 spherical
harmonics coefficients does not imply that it is naturally limited to
diffuse surface reflectance only.

4.3 Ablation Study
Impact of Neural Rendering Architecture. The combination of

neural textures and neural rendering was introduced by Thies et
al. [2019] for, among others, view-interpolation. However, we found
that the neural renderer architecture of Thies et al. did not produce

as accurate results when used for deferred lighting as demonstrated
in Figure 11 (c) and which furthermore resulted in temporal arti-
facts (e.g., screen door effects, shimmering, etc.) when changing
viewpoint. Instead we use a more powerful generator design with
residual blocks, which more faithfully reproduces the appearance
(Figure 11(b)).

Impact of Number of Basis Materials/Radiance Cues. Classic de-
ferred lighting only computes diffuse and specular reflectance. How-
ever, unlike our method, it has exact knowledge of the material
properties. Similar as how deferred neural rendering is robust to
inaccuracies in the geometry, our deferred neural lighting method
only requires rough estimates of the reflectance (i.e., “cues”). In Fig-
ure 11 (d-f) we explore the impact of altering the number of basis
materials/radiance cues on the synthetic scenes, while keeping the
number of neural texture channels per basis material constant. As
can be seen, increasing the number of basis materials (f) provides
marginal benefit, whereas decreasing the number of materials (d-e)
results in a significant reduction in quality. Therefore, we opt for
using 5 basis materials as this strikes a balance between relighting
quality and cost of evaluation (i.e., each additional radiance cue
imposes a rendering cost). The quantitative mean AE and LPIPS
errors in Table 2 further confirm our observations.

Impact of Number of Training Photographs. Figure 11 (j-l) demon-
strates the impact of the number of training photographs on visu-
alizations for the synthetic Christmas tree scene trained with 500,
1,000, and 2,500 photographs sampled from the same sequence of
10,000 input photographs (b). We can see that starting from 2,500
input photographs, a plausible relighting can be obtained for a fixed
viewpoint. Increasing the number of input photographs improves
relighting accuracy and exhibits more details. However, when chang-
ing viewpoint, we observe temporal instabilities that decrease with
increasing number of input photographs. Crucially, we do not ob-
serve such temporal instabilities when changing the lighting. This
suggests that the majority of the input photographs are needed
to correct inaccuracies in the proxy geometry and to support free-
viewpoint rendering. ThemeanAE and LPIPS errors (Table 2) further
show that with increasing number of input photographs, a lower
error is obtained.

Impact of Number of Neural Texture Channels. A second important
parameter in our deferred neural lighting method is the number of
neural texture channels assigned to each radiance cue. As shown
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(a) Reference (b) Def. Neur. Lighting (c) [Thies et al. 2019]-net (d) 1 basis material (e) 2 basis materials (f) 9 basis materials

(g) 3 chan./basis (h) 9 chan./basis (i) 15 chan./basis (j) 2500 photos (k) 1000 photos (l) 500 photos

Fig. 11. Ablation study of deferred neural lighting. Compared to a reference visualization of the synthetic Christmas tree scene (a), our method produces
plausible relit results (b). Using the neural rendering network architecture of Thies et al. [2019] fails to reproduce all specular highlights faithfully (c) and
introduces temporal artifacts when changing the view. Key to our method’s ability to relight scenes are radiance cues. A single diffuse basis material (d) (and
thus a radiance cue that encodes incident irradiance) does not yield an accurate relit result (although it is able to reproduce some specular highlights). While
better, adding a specular radiance cue (e) (similar to classic deferred lighting) does not faithfully reproduce the appearance. We found that 5 basis materials
strike a good balance between quality and evaluation cost; increasing the number of basis materials further (f) only provides marginal improvements. The
number of neural texture channels per radiance cue also impacts visual quality; decreasing the number of channels yields some loss of quality (g), whereas
an increase provides modest improvement (h,i). We opt for using 6 neural texture channels per radiance cue, striking a balance between training time and
accuracy. Finally, the number of training photographs (each from a novel view and under a novel lighting direction) has significant impact on the relighting
quality (j-l). We found that, for typical proxy geometry quality, plausible results can be obtained for fixed viewpoint relighting starting from 2,500 photographs,
and that 10,000 photographs further yields visually more stable results when changing the view.

Table 2. Quantitative evaluation for the ablation experiments averaged over
all three synthetic scenes. The respective errors are computed over 1,384
view/lighting combinations not part of the training set. Our default settings
are highlighted in bold.

Ablation Variant MAE LPIPS
Using [Thies et al. 2019] network structure 0.0042 0.073
Small partition range (30◦) 0.0039 0.045
Medium partition range (60◦) 0.0029 0.038
Large partition range (90◦) 0.0042 0.049
1 basis material 0.0057 0.049
2 basis materials 0.0038 0.044
5 basis materials 0.0029 0.038
9 basis materials 0.0029 0.038
3 channels per basis material 0.0031 0.038
6 channels per basis material 0.0029 0.038
9 channels per basis material 0.0030 0.038
15 channels per basis material 0.0028 0.037
500 training photographs 0.0049 0.053
1,000 training photographs 0.0042 0.045
2,500 training photographs 0.0032 0.040
10,000 training photographs 0.0029 0.038

in Figure 11 (g-h), the number of texture channels impacts the vi-
sual accuracy. However, in terms of quantitative errors, we only

see a modest improvement with increasing number of neural tex-
ture channels per radiance cue image (Table 2). Interestingly, note
that using only 3 channels per basis material uses approximately
the same number of neural texture channels as deferred neural
rendering [Thies et al. 2019], while providing additional relighting
functionality. In our implementation, we opt for 6 (i.e., 2× RGB) neu-
ral texture channels per basis material, striking a balance between
accuracy, training time, and inference efficiency.

Impact of Neural Texture Partitioning. In subsection 3.4 we intro-
duced our neural rendering architecture and indicated that, due
to memory constraints, we partition the neural texture channels
and independently train a dedicated neural rendering network for
each partition. To better understand the impact of this choice, we
compare a number of alternative rendering schemes:

(1) We refer to theMonolithic Architecture as the solution without
any partitioning and using the same number of neural texture
channels as the total of all neural texture channels over all
partitions.

(2) Joint Training is similar to our partitioned solution, except
that we train all of the neural textures and neural renders
jointly and the loss function is evaluated on the interpolated
results. This contrasts to our solution where we train each
partition and neural renderer separately.

(3) For the Shared Neural Renderer scheme we share the same
neural renderer between all partitions.
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(a) Reference (b) Ours (c) Joint Training (d) Shared renderer

(e) Shared texture (f) Monolithic (g) 30◦ range (h) 90◦ range

Fig. 12. Comparison of the relighting quality on the synthetic Christmas
tree scene with alternative rendering schemes. We found that our partition
solution (b) trained independently faithfully reproduces specular highlights.
(c) Joint training yields degraded results, suggesting that each individual
partition should be optimized separately. The results from sharing either
the neural renderer (d) or the neural texture (e), indicates that the parti-
tioning of the neural texture plays a more important role in render quality.
Training a monolithic network (f) produces results of similar quality as our
partitioned solution, but at the cost of much larger memory requirements
and computational cost. For a fixed total number of neural texture channels,
increasing the number of partitions (g) produces less accurate results due to
a reduction in total number of training exemplars per partition. Decreasing
the number of partitions (h) produces a less accurate results, and exhibits
artifacts when changing viewpoints.

(4) For the Shared Neural Textures scheme we share the neural
textures between the partitions.

All these alternatives exceed the memory constraints of current
GPUs. To maintain a comparable light transport complexity while
reducing memory consumption, we only train these alternative
schemes for a view range equivalent to 3 partitions (i.e., a single
triangle) instead of a full hemisphere of partitions as in our imple-
mentation.
Figure 12 provides a qualitative comparison on the synthetic

Christmas tree scene between the different neural rendering schemes.
Our independently trained solution (b) is visually close to the refer-
ence (a). The Joint Training (c) solution shows significant differences
in the highlights. Furthermore, we observe that the Shared Neural
Renderer produces more accurate renditions than the Shared Neural
Textures, indicating that partitioning the neural texture is essential.
Finally, the Monolithic Architecture performs similarly to our inde-
pendently trained solution, indicating that our solution is a viable
alternative. The quantitative errors listed in Table 3 agree with the
qualitative conclusions.

Impact of Number of Partitions. In our implementation we used 13
partitions which roughly corresponds to a 60◦ separation between
vertices. The number of partitions depends on two interdependent
factors: first, how efficiently can the appearance be modeled by the
selected number of neural texture channels, and second how many
training samples (i.e., captured frames) can be used for training. The
number of texture channels essentially determines the upperbound
on the separation angle. For example, when going to 90◦ separation

(a) Reference (b) Accurate (c) Rough (d) More rough

Fig. 13. Comparison of the relighting quality on the synthetic Christmas tree
scene for different levels of accuracy for the proxy geometry. With accurate
geometry, our method can recover detailed appearance effects from just
1,000 photographs, providing a close match to the ground truth (a). Using a
proxy geometry quality similar to that obtained from real-world acquisition,
yields good reconstruction of all the appearance details and shadows at
2,500 photographs. For an even more rough geometry proxy, our method
can still produce plausible relit results, but at the cost of more training
photographs (10,000). Note that the geometry of “star” on top of the tree
is severely degraded in (c) and (d). Yet, our method is able to correct these
missing features and faithfully synthesize its (relightable) appearance.

Table 3. Quantitative evaluation for the neural texture partitioning exper-
iments on the Christmas Tree scene. The respective errors are computed
over 180 view/lighting combinations not part of the training set. The lowest
error is marked in bold.

Ablation Variant MAE LPIPS
Monolithic Architecture 0.0026 0.059
Joint Training 0.0036 0.067
Shared Neural Renderer 0.0029 0.063
Shared Neural Textures 0.0040 0.071
Independent partition 0.0027 0.056

between vertices, and keeping the total number of neural texture
channels and training samples fixed, reduces the rendering qual-
ity (Figure 12(h)) and introduces visual artifacts when changing
viewpoints. Reducing the separation angle and thus increasing the
number of partitions, reduces the number of training images per
partition (when keeping the total fixed), and thus also the light-
ing variations seen during training yielding a less accurate neural
renderer (Figure 12(g)).

Impact of Geometry Accuracy. Similar to deferred neural render-
ing [Thies et al. 2019], our deferred neural lighting is robust to
geometric errors. All synthetic examples shown in this paper are
created with rough geometry of similar quality as expected from
real-world acquisition (Figure 13 (c), trained on 2,500 photographs).
However, our method can still produce good results for even more
rough geometries (Figure 13 (d), trained on 10,000 photographs). Fur-
thermore, higher geometry accuracy also helps in recovering small
specular highlights (Figure 13 (b), trained on 1,000 photographs). As
can be seen, the quality of the geometry is closely tied to the number
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(a) Reference (b) Rad. Cues w/o GI (c) Rad. Cues w/ GI

Fig. 14. Comparison between relighting results from radiance cues rendered
with and without indirect lighting (and using an appropriately trained
corresponding neural rendering network). Our method is able to recover
a significant portion of the indirect lighting even if the radiance cues are
not rendered with global illumination effects. However, including indirect
lighting in the radiance cues produces more accurate relit results.

of required viewpoints; a better geometry allows for longer-range
interpolation of view information. However, the exact relation be-
tween geometrical accuracy and number of views highly depends
on the complexity of the shape and material properties.

Global Illumination vs. Local Shading in Radiance Cues. In all our
results we employ path tracing to produce the radiance cues in-
cluding global illumination effects. The key idea is that the neural
rendering network can take these indirect cues and transform them
into correct indirect lighting in the relit images. Since the neural
renderer already has to correct these cues, a natural question arises
on whether the indirect lighting in the radiance cues is necessary.
Figure 14 shows a challenging synthetic scene with strong indirect
lighting effects relit using radiance cues with and without indirect
lighting. We observe that our neural representation is able to plau-
sibly predict the majority of the indirect lighting even if no indirect
lighting was present in the radiance cues. However, we observe that
the quality is lower than those produced with radiance cues with
indirect lighting.

The previous experiment shows that including indirect lighting in
the radiance cues helps in reconstructing plausible interreflections
even for spatially varying materials, including translucency, despite
the fact that the radiance cues are computed from homogeneous
opaque materials. Figure 15 further illustrates the capabilities of our
neural deferred lighting network to reproduce complex interreflec-
tions between different materials despite the fact that our radiance
cues are generated with a single material per cue. The ability to
reconstruct complex interreflection between materials that differ
significantly from radiance cue materials is made possible by the
same capability that: allows our deferred neural lighting method to
introduce indirect lighting effects that were not present in the radi-
ance cues due to missing geometrical features in the rough geometry,
correct the reflectance due to incorrect normals, and add missing
geometrical details. All these operations non-linearly transform the
possibly incorrect direct lighting, incorrect indirect lighting, and
shape encoded in radiance cues (times the neural textures) to plausi-
ble renderings. As shown in our ablation study, the more correct the
shape or the radiance cues, the easier it is for the neural renderer to

Fig. 15. Qualitative validation of the neural renderer’s ability to correctly
relight interreflections between different materials. 1st example: a glossy
sphere on a diffuse spatially varying ground plane. 2nd example: a diffuse
sphere on a glossy ground plane. Each example is relit from a novel view-
point and lit from a lighting direction not part of the training (shown on
the right) and compared to a reference visualization (shown on the left).
The differences images (×5) show that the indirect lighting is faithfully
reproduced.

produce accurate results. An interesting avenue for further investi-
gation would be to explore different encodings of the radiance cues,
e.g., by encoding direct and indirect lighting separately.

Radiance Cues. We have opted to combine the radiance cues with
the neural texture by multiplication. As noted, this process was
inspired by how surface reflectance of spatially varying materials
is often modeled as a linear weighted sum of basis materials. We
also experimented with other strategies, such as concatenating the
radiance cues to the feature vectors before passing them into the
neural renderer. However, we found that this resulted in less stable
training and lower quality results. We suspect that by multiplying,
the radiance cues are explicitely coupled to a fixed subset of the
neural textures, thereby ensuring an even distribution. Concatenat-
ing, on the other hand, does not enforce this, and might result in
a suboptimal distribution. An interesting avenue for future work
would be to investigate different strategies for combining the cues
and the neural textures.

4.4 Limitations
Our method is not without limitations. We observe that small and
narrow highlights are not always reproduced. This is likely due
to two underlying reasons. First, small highlights induce a small
localized error, and hence are more difficult for the network to learn.
Second, we observe that the quality of the proxy geometry plays
a significant role; a more accurate geometry yields a more accu-
rate reproduction of such small and narrow specular highlights as
demonstrated in Figure 13. This argument is further strengthened by
the observation that missing highlights in the relit images typically
also do not show up in the radiance cue images.
While the neural rendering network is able to correct inconsis-

tencies in shape between the radiance cues and the target images,
the effect of camera calibration errors impacts both components,
and hence cannot be corrected (i.e., an incorrect viewpoint esti-
mate will produce a radiance cue seen from an incorrect viewpoint.
However, the corresponding target view will also be seen from the
incorrect view). Consequently, our method is sensitive to camera
calibration errors. Visually, this translates into “wobbling” when
the viewpoint is changed as the network attempts to reproduce the
incorrect camera calibration.
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(a) View distance 0.5 (b) View distance 0.75 (c) View distance 1.5

(d) Light distance 0.25 (e) Light distance 0.42 (f) Light distance 2.5

Fig. 16. Examples of the impact of view and lighting distance demonstrated on the synthetic pig head scene (left: reference; right: relit result). Our deferred
neural lighting method is robust to moving the light and view farther away from the object (c,f) than the original capture distance (i.e., view and light distance
1.0). While our method can handle some degree of inward motion of view and lighting (b,e), it fails to produce plausible results for extreme near-field view and
light positions (a,d).

Furthermore, while our method is fairly robust to inaccuracies in
the proxy geometry, it is also not without limitations. In particular
we observe that large missing parts in the geometry pose a challenge
to our method.

The accuracy of our lighting augmentation strategy is limited by
the accuracy of the relit basis images obtained with deferred neural
relighting trained on unstructured photographs with flash lighting.
One of the most significant sources of error is when the training
photographs do not cover the full dynamic range of the scene; this
is common for scenes with strong specular highlights. In such a
case, our method cannot reproduce the full dynamic range either,
and thus the synthesized image-based relit training images will be
incorrect. Furthermore, we currently employ importance sampling
with 100 samples to reduce the cost of synthesizing the augmented
training samples. However, this assumes that the 100 light samples
can accurately approximate the relit appearance of the scene.
As noted in subsection 3.3, the radiance cues can be generated

from any view and for any lighting condition. However, the neural
rendering network can only render images that are in the space
covered by the training photographs. Experimentally, we found that
our method behaves well for viewpoint and light positions farther
away than those used in acquisition (Figure 16 (c,f)). We also found
that we are able to somewhat move the camera and light closer
to the scene (b,e), but that for extreme near-field views and light
positions, the method fails (a,d). We also empirically found that the
lighting augmented neural renderer is more robust to changes in
lighting distance.

Finally, our method produces plausible relit results from unstruc-
tured photographs. Ideally, our method prefers a good coverage of
(the 4D outer-product space of) view and light directions. In par-
ticular, one has to be mindful to avoid correlating view and light
directions (and thus only sampling a 2D subspace of the 4D view

× light direction space). In our captures, we move the handheld
camera with flash light approximately three times faster than the
other camera to avoid strong view-light direction correlation.

5 CONCLUSIONS
In this paper we presented a novel deferred neural lighting solution
for 360◦ multi-view relighting from unstructured photographs. Our
method is well suited for relighting scenes captured with a dual
handheld mobile camera setup. It does not require an accurate es-
timate of the geometry or of the material properties. Our method
combines the advantages of neural textures and deferred lighting
in a neural rendering framework. In addition, we introduce a novel
refinement augmentation strategy that exploits linearity of light
transport to improve generalization of the neural rendering network
beyond the training lighting conditions.
For future work we want to explore methods for reducing the

number of required photographs, e.g., by embedding better view-
interpolation methods and by exploiting appearance similarities in
different regions of the scene.
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