
Content-Adaptive Image Downscaling

Johannes Kopf
Microsoft Research

Ariel Shamir
The Interdisciplinary Center

Pieter Peers
College of William & Mary

Input

Subsampling

Sharpened

Lanczos

Bicubic

[Nehab2011]

Our result Input

Subsampling

Bilateral

Bicubic

Our result

Figure 1: Previous content-insensitive downscaling methods have to compromise between preserving sharpness while introducing aliasing
artifacts (e.g., subsampling), or preventing aliasing at the expense of smoothing out fine details and edges (e.g., Bicubic, Lanczos, etc.). Our
new content-adaptive algorithm provides a more balanced result, that is crisp and contains neither noise nor ringing, and mostly avoids
aliasing artifacts. (“Merlon” input image c© Nintendo Co., Ltd.)

Abstract

This paper introduces a novel content-adaptive image downscaling
method. The key idea is to optimize the shape and locations of
the downsampling kernels to better align with local image features.
Our content-adaptive kernels are formed as a bilateral combination
of two Gaussian kernels defined over space and color, respectively.
This yields a continuum ranging from smoothing to edge/detail pre-
serving kernels driven by image content. We optimize these kernels
to represent the input image well, by finding an output image from
which the input can be well reconstructed. This is technically real-
ized as an iterative maximum-likelihood optimization using a con-
strained variation of the Expectation-Maximization algorithm. In
comparison to previous downscaling algorithms, our results remain
crisper without suffering from ringing artifacts. Besides natural im-
ages, our algorithm is also effective for creating pixel art images
from vector graphics inputs, due to its ability to keep linear features
sharp and connected.

CR Categories: I.4.1 [Computer Graphics]: Image Processing
and Computer Vision—Sampling

Keywords: Images, Downscaling

Links: DL PDF WEB CODE

1 Introduction

Downscaling is perhaps the most commonly used image operation
today. We rarely view a photo we just took at its original reso-
lution anymore. Instead, it is instantly reduced from its original

(a) Input (b) Subsampling (c) Bicubic (d) Our result

Figure 2: Balancing sharpness and antialiasing: the subsampled
result is sharp everywhere but suffers severely from noise and alias-
ing. On the other hand, the bicubic result, over-smoothes detail in
the face. Our algorithm avoids both problems and produces a crisp,
noise-free image that exhibits only minimal aliasing.

multi-megapixel size to much smaller dimensions to be viewed on
a camera viewfinder, on a computer or mobile screen, or on the web.

The de facto standard for image downscaling are linear filters,
originating from the signal processing community [Wolberg 1990].
Here, the image is first convolved with a low-pass kernel to reduce
the bandwidth before it is resampled to the final resolution. The fil-
tering pushes the image below the Nyquist frequency and prevents
aliasing, but as a side effect the result might suffer from loss of fine
details and blurring of sharp edges (Figure 2c). Sharpening these
images or using kernels that more closely model a sinc filter (e.g.,
Lanczos) can cause ringing (Figure 3), while simply subsampling
the image without prefiltering typically leads to strong aliasing ar-
tifacts (Figure 2b). Because all these methods are content-invariant
(i.e., they use invariant kernels), the tradeoff between preserving
detail and preventing aliasing is global.

In this work we present a new content-adaptive downscaling algo-
rithm. As in classic methods, the output pixels are computed as a
weighted sum of the input pixels. This can be interpreted as associ-
ating an averaging kernel to every output pixel. Our key idea is to
adapt the shape of these kernels in order to better align them with
local image features (Figure 2d). Following previous techniques
such as bilateral filtering [Tomasi and Manduchi 1998] and mean
shift [Comaniciu et al. 2002], we use kernels that are a combination
of a spatial Gaussian kernel ensuring locality, and a color space
Gaussian kernel for alignment with the image content. The simple
parametric form of these kernels achieves a good trade-off between

http://doi.acm.org/10.1145/2508363.2508370
http://portal.acm.org/ft_gateway.cfm?id=2508370&type=pdf
http://research.microsoft.com/en-us/um/people/kopf/downscaling
http://research.microsoft.com/en-us/um/people/kopf/downscaling/paper/pseudocode.pdf

Input Lanczos Bicubic
sharpened

Our result

Figure 3: The Lanczos kernel or Photoshop’s “Sharpen” filter
come at the expense of ringing artifacts due to negative lobes and
oscillations in their kernels. Our kernels are strictly positive and
mostly without oscillations, yielding results that are practically free
of ringing artifacts.

a small number of parameters to optimize, and sufficient flexibility
to take on the shape of image features. We formulate the problem as
a constrained reconstruction problem and optimize for a set of ker-
nels whose combination would best reconstruct the original image.
The optimized kernels are constrained to remain compact, simple,
and “blob-shaped”, since they correspond to simple pixels in the
output image: the color of the output pixel is computed as the sum
of kernel-weighted input pixel colors.

In classic methods, all kernels have the same shape and are arranged
in a regular grid (Figure 4b). Using just bilateral kernels without op-
timizing their parameters can align them with image features. How-
ever, just like the subsampling method, they might “miss” features
depending on the location of their center (Figure 4c). Our kernels
also align themselves with curved features in the image, but since
they are optimized to represent the input image better, they tend to
not miss features (Figure 4d). This property is of particular impor-
tance when downscaling images that contain fine lines, like cartoon
art (Figures 1, 8, 15)

Our local kernel parameters are derived through an iterative max-
imum likelihood optimization using a constrained variation of the
Expectation-Maximization algorithm. This optimization yields a
continuum of local kernels in a single framework, ranging from
smoothing in some places to edge/detail preserving filters in others,
depending on local image content. By locally controlling sharpness
against antialiasing, we achieve a good balance of both objectives.

Our algorithm is also useful for downscaling cartoon and vector
art, and can also be combined with palette reduction to create pixel
art imagery. Because pixels usually appear bigger in these images,
the blurring of linear resampling filters shows even more severely.
Subsampling can produce sharp results, but it takes only a frac-
tion of the input pixels into account, and might miss features. This
can lead to broken features and disconnected lines. Our optimized
kernels also produce crisp pixel art, while minimizing broken or
disconnected features (see Figure 1, 8, 15).

We tested our algorithm on a wide range of natural and vector
graphic input images. We compare our results against an extensive
set of alternative downscaling methods. In addition, we performed
a user study to validate the perceptual quality of our results. Our
method especially improves the quality of downscaled images ex-
hibiting small details or stochastic textures.

2 Previous Work

Classical image downscaling techniques find their origin in sam-
pling theory [Shannon 1949], and prefilter and reconstruct the sig-
nal with a spatially constant lowpass filter in order to prevent alias-
ing in the reconstructed signal. However, by suppressing high fre-
quencies they also tend to blur the signal. Filters that are designed
to more closely model the (theoretically ideal) sinc filter, such as
Lanczos, come at the expense of negative lobes that can produce

R
es

ul
t

K
er

ne
ls

R
ec

on
st

.

(a) Input (b) Bicubic (c) Bilateral (d) Our result

Figure 4: Using averaging kernels for downscaling: (b) linear fil-
ters associate the same averaging kernel with every output pixel,
forcing a global compromise between smoothing and aliasing. (c)
unoptimized bilateral kernels adapt to the image, but might “miss”
image features depending on the placement of their centers (e.g.,
the dial plate numbers). (d) Our optimized kernels adapt to the
image even more, but do not suffer from missed or disconnected
features.

ringing artifacts near strong image edges (Figure 3). Many fil-
ters (e.g., bilinear, bicubic, etc.) have been developed [Wolberg
1990], and even mined from image data [Triggs 2001], that balance
mathematical optimality with perceptual quality of the downsam-
pled result. Recent developments [Nehab and Hoppe 2011] add a
correction stage on the discrete signal before reconstruction, result-
ing in less ringing at a similar computational cost. However, in
none of these techniques the filtering kernel is adapted to the image
content—a filter that removes aliasing in one area, might produce
ringing in another. In contrast, our method adapts the shape and lo-
cation of every kernel to the local image content, producing sharper
results. Since our kernels are strictly positive and mostly without
oscillations our results are practically free of ringing artifacts.

A different class of algorithms focuses on retargeting an image
to different aspect ratios while preserving the salient content of
the image as much as possible (e.g., [Avidan and Shamir ; Wolf
et al. 2007; Rubinstein et al. 2009; Karni et al. 2009]). However,
these methods are mostly geared towards altering aspect ratio, and
are only suited for moderate reductions in resolution (e.g., 25% to
50%). Furthermore, retargeting methods focus on preserving the
salient content, and thus can alter the global image composition.
Our method, on the other hand, maintains the image composition
as much as possible.

Thumbnail creation can also be viewed as a method to reduce the
size of an image. Suh et al. [2003] propose to compute thumbnails
by selectively cropping and scaling images guided by face detectors
or saliency maps. Samadani et al. [2007] preserve the original ap-
pearance in thumbnails by reintroducing artifacts such as blurring
and noise lost in downscaling. Trentacoste et al. [2011] also rein-
troduce blur for previewing images on a camera’s view finder based
on a perceptual model. Instead of preserving the blurred appearance
of the input image, our method targets the opposite by selectively
removing blur to preserve small image detail and texture.

Gerstner et al. [2012] abstract an image in a low resolution repre-
sentation with a reduced color palette. Their algorithm alternates
between updating SLIC (Simple Linear Iterative Clustering) super-
pixels [Achanta et al. 2012] and refining the color palette. Similar to
our method, SLIC also works in the joint 5D space of location and
color. However, SLIC segments the image (i.e., hard assignment),
whereas our method produces a soft assignment of input to output
pixels, allowing us to better adapt to the underlying high resolution
image.

Manson and Schaefer [2012] present a method for generating
mipmaps that adapts the filtering to the texture content and surface
parameterization. Inglis and Kaplan [2012] present a method for
rasterizing vector line art at low resolution, using rules established
by pixel artists to avoid certain artifacts like jaggies and preserve
local continuity. However, in contrast to the general downsampling
strategy employed by our method, the above techniques downsam-
ple image content based on application specific rules.

3 Algorithm

To find the local filtering kernels, we formulate our task as a re-
construction problem of the input image from a smaller set of local
kernel functions wk (probability density functions) with fixed col-
ors νk, and defined in the joint 5D space of location and color. We
interpret each input image pixel as a sample drawn randomly from
one of the local kernels with uniform probability and then sampling
this local kernel. Theoretically, these kernels can have any shape
and location. However, since they correspond to output pixels, a
number of constraints on the kernels are necessary due to the appli-
cation to image downscaling. First, the number of kernels must be
equal to the number of output pixels, hence, no kernel can vanish
during optimization. Second, their position cannot vary too much
from the output pixel grid and their size cannot vary too much from
the output pixel size. Third, to prevent aliasing artifacts, we add
orientation constraints as described in Section 4.

Denote X = {xi} as the input image with pixels xi = (pi,ci), where
pi are the spatial coordinates and ci the corresponding CIELAB
color of pixel i. Each reconstructed image pixel color c′i is defined
as a weighted sum of the kernel colors νk:

c′i = ∑
k

γk(i)νk (1)

where γk(i) =
wk(i)

∑n wn(i)
is the (unknown) weight of kernel k at pixel

i relative to all kernels overlapping pixel i. The (also unknown)
kernels wk : domain(X)→ [0,1] are bilateral Gaussian kernels in
our case, i.e., we denote the value of kernel k at pixel i as:

wk(i) =
1

Wk
fk(i)gk(i), (2)

where the normalization factor Wk = ∑ j fk(j)gk(j) ensures that
each wk is a probability density function (i.e., integrates to 1). The
spatial component fk and the color component gk are given by:

fk(i) = exp
(
−1

2
(pi−µk)

>
Σ
−1
k (pi−µk)

)
, and (3)

gk(i) = exp
(
− ‖ci−νk‖2

2σ2
k

)
, (4)

where µk and Σk are the mean and covariance matrix of the spatial
Gaussian, and νk and σk are the mean and variance of the color
space Gaussian. Note that the spatial Gaussian is characterized by
a full covariance matrix and can therefore take on elliptical shapes,
while the color space Gaussian is characterized only by a scalar
variance and remains isotropic, as we operate in the perceptually
uniform CIELAB color space.

Given our input image X , we search for the most probable set of
parameters θ = {µk,Σk,νk,σk} of the kernels, and set of unknown
variables γk(i) that can produce (reconstruct) this image. Using
Bayes rule, this converts to maximizing the (log) likelihood of the
input image given the model of the set of kernels:

argmax
θ

Pr(X | θ). (5)

This problem is well known in statistics and solved using the
Expectation-Maximization (EM) algorithm [Hastie et al. 2005]
where the unknown variables γk(i) can be seen as the probability
of pixel i to be drawn from kernel k.

We initialize kernel k corresponding to output pixel (x,y) as:

µk← (xk,yk)
>, Σk←

[rx
3 0
0 ry

3

]
, νk←

(1
2 ,

1
2 ,

1
2
)>
, σk← 10−4, (6)

where (xk,yk) is the center of output pixel k scaled to input image
dimensions, and rx,ry are the ratios of input and output image width
and height, respectively.

In the expectation step we compute soft assignment probabilities
of each pixel to each kernel, assuming the current estimate of the
parameters is correct:

γk(i)← Pr(k | xi ; θ) =
wk(i)

∑n wn(i)
. (7)

In other words, γk(i) quantifies how much an input pixel i con-
tributes relatively to the final color of the output pixel k.

In the maximization step we use these soft assignments in a
weighted maximum-likelihood fit to update the estimate of the pa-
rameters θ :

µk←
∑i γk(i)pi

∑i γk(i)
, (8)

Σk←
∑i γk(i)(pi−µk)(pi−µk)

>

∑i γk(i)
, (9)

νk←
∑i γk(i)ci

∑i γk(i)
. (10)

Note, that we control the color space Gaussians’ σk directly to con-
strain the locality and edge orientations as described in the next
section.

We add a third correction step after every maximization step. In
this step we enforce the different constraints specific to our down-
sampling problem (Section 4).

The algorithm proceeds iteratively, alternating between perform-
ing expectation, maximization, and correction steps, and terminates
when convergence of the model parameters is reached. While the
summations in Equations 8–10 are defined over the whole input
image, this is not necessary in a practical implementation, since the
kernels are constrained in size (see next section). Please refer to the
supplemental document for a detailed pseudo-code description.

4 Constraints

Downscaling is a more restricted problem than general signal re-
construction, and thus finding the optimal kernel shape and weight
that minimizes the reconstruction error is not a sufficient condi-
tion for obtaining a good downscaled result. We perform an ad-
ditional correction step after every maximization step to enforce
downscaling-specific constraints. We identified three types of such
constraints:

1. Spatial constraints: Since the output pixel positions are ar-
ranged in a perfect lattice, it is important to constrain the lo-
cations of the corresponding kernels. Otherwise, they poten-
tially move too far from their initial positions, which can lead
to a scrambled result appearance (Figure 5).

2. Locality: since all output pixels have the same size, the ker-
nels should also neither become too large or vanish. Their
influence should remain local (Figure 6).

3. Edge orientations: The boundary between two neighboring
kernels should have a similar orientation as the boundary be-
tween the two pixels in the output image (Figure 7).

(a) Unconstrained

Unconstrained

Constrained
(b) Kernels (c) Constrained

Figure 5: Spatial constraints are important to maintain the grid
topology of the kernels.

(a) Input (b) Unconstrained (c) Constrained

Figure 6: Enforcing local kernels. The small side-images show the
normalized kernels γk(i). (b) The dark pixel’s kernel grabs a long
stretch of the line, while its neighbor’s kernel completely avoids the
line. (c) The smoothness σk of the kernels are increased until a
more balanced configuration is reached.

4.1 Spatial Constraints

To retain the characteristics of the grid topology of the output pix-
els, we bias the spatial mean µk towards a smooth grid-like topol-
ogy.

First, we limit the extent the spatial mean can move by constraining
µk to lie within a box, centered around the center of the output pixel.
Second, we increase smoothness by moving µk halfway between its
estimated location and the the mean of its four neighbors.

Formally, we update

µk← clampBox
(

1
2µk +

1
2µk, (xk,yk)

>± (
rx
4 ,

ry
4)
>
)
, (11)

where µk =
(

∑n∈N4
k
µn

)
/
∣∣N4

k

∣∣, and N4
k denotes the set of cardinal

(4-connected) neighbors of k. The effect of these spatial constraints
is shown in Figure 5.

4.2 Locality and Edge Orientations

We constrain the shape of the spatial variance Σk to avoid vanish-
ingly small or exceedingly large kernels. We first obtain the sin-
gular value decomposition (U,S,V ?) = SVD(Σk), and modify the
diagonal eigenvalue matrix S by clamping its elements to the inter-
val [0.05,0.1], and finally set

Σk←US′V ?, (12)

where S′ contains the clamped eigenvalues.

While Equation 12 imposes a hard constraint on the spatial com-
ponent of our kernels to be relatively smooth, the color compo-
nent causes them to align with features in the image. In general
this is desired, however, in certain situations too much adaptation
can cause visual artifacts. We use the color variance parameter σk,
which is not estimated, to directly control the amount of adaptation,
and, hence, the sharpness of our results. Small σk cause kernels to
be more sensitive to color variations and have sharper transitions,
while larger σk lead to smoother kernels.

The reason for not freely estimating σk is that the maximum like-
lihood estimation often yields too smooth configurations. Rather

(a) Input (b) Unconstrained (c) Constrained

Figure 7: We detect strong pixel edges whose orientation deviates
from the edge between the corresponding kernels (e.g., the edge
with the arrow), and selectively increase the smoothness of these
kernels.

than estimating σk from the data, we control it explicitly to locally
adjust the sharpness of the result. For most kernels we let σk remain
at its initial “crisp” setting, and we only increase local smoothing
under two specific conditions: (1) when kernels become too dom-
inant compared to their neighbors, and (2) to prevent staircasing
artifacts. Following each maximization step we search for kernels
that match one of these conditions, and correct them by increasing
σk by 10% (i.e., increase the smoothness of the color kernel).

Locality: While clamping the eigenvalues of Σk avoids large spa-
tial Gaussians, the resulting bilateral kernels can still have a large
spatial extent due to the normalization in Equation 7.

Figure 6b illustrates an instance of this problem. The small figures
show the normalized kernel weights γk(i) for two pixels. In subfig-
ure (b) the kernels keep a small color variance, leading to a solution
where one kernel grabs all dark pixels on the line, while the other
kernels grab the light pixels in the surrounding. Even though the
spatial weights of the kernel on the line fall off quickly, the normal-
ization causes them to become large again, because the surrounding
kernels have even lower weights due to the strong color adaption.
This causes the line feature to become disconnected.

We correct this behavior by detecting kernels that are growing too
strong in any direction, and then selectively increase their color
variance. First, we compute the directional variance for each of
the eight neighbors:

sd
k = ∑

i
γk(i)max

(
0, (pi−µk)

>·d
)2, (13)

where d ∈
{
(a,b)> | a,b∈ [−1,1]

}
\
{
(0,0)>

}
is the offset to one of

the eight neighbors. If any directional variance sd
k exceed a thresh-

old of 0.2rx (where rx is the ratio of the input image’s width over
the output image’s width), we increase the smoothness of both the
current kernel and the respective neighbor. The effect of this heuris-
tic is illustrated in Figure 6c. The ability of our algorithm to keep
linear features connected while maintaining sharpness can also be
nicely observed in the pixel art results in Figures 1, 8, and 15.

Edge Orientations: A form of staircasing artifacts occur when
the orientation of an edge between two dissimilar pixels in the out-
put pixel grid is significantly different than the orientation of the
edge between the corresponding kernels. This artifact is most vis-
ible on long lines with almost cardinal direction. Consider, for ex-
ample, the horizontal edge marked with an arrow in Figure 7b. The
corresponding image edge in the input image is almost vertical.

We selectively remove such false edges by increasing σk of the cor-
responding kernels. First, we detect strong edges between adja-
cent pixels by testing for neighboring kernels that have an abrupt
transition. If k and n are horizontal or vertical neighbors, we
measure the strength of the edge between the normalized kernels
fkn = ∑i γk(i)γn(i). If the transition between the two kernels is
abrupt, there will be few pixels where both kernels take on large
values, and, thus, fkn will be small. We consider edges where
fkn < 0.08rxry as strong. Next, we compute the direction of the
edge between the kernels as dkn = ∑i ∇

(
γk(i)/(γk(i)+ γn(i))

)
. If

Input

256 colors 12 colors 8 colors 6 colors 5 colors 4 colors
Gerstner et al.’s results

Not quantized 12 colors 8 colors 6 colors 5 colors 4 colors
Our results

Figure 8: Our method can also be extended to create pixel art with a limited color palette from cartoon and vector inputs. Color quantization
is achieved in a post-process using mean shift segmentation. (Input image c© Nintendo Co., Ltd.)

Input Gerstner et al.,
16 colors

Our result,
16 colors

Input Gerstner et al.,
16 colors

Our result,
16 colors

Figure 9: Post-process color quantization using k-means clustering combined with our content-aware downsampling methods applied to
natural images yields similar results to prior work.

dkn deviates by more than 25 degrees from the orientation of the
pixel edge, we consider this a false edge and increase the smooth-
ness of both kernels involved. The effect of this correction is illus-
trated in Figure 7c.

5 Results

We tested our algorithm on a wide range of input images ranging
from natural images to line and vector art. All results were cre-
ated with the same algorithm settings. Figure 13 and other figures
throughout the paper show representative results of our algorithm.
We compare our method to naı̈ve subsampling and the bicubic fil-
ter (arguably the most commonly used rescaling algorithms). Our
results show that our method yields sharper results (for instance on
text), maintains details better (e.g., on the lunar surface or the flower
in Figure 13), and preserves the appearance of high frequency tex-
tures (e.g., Figure 1-left). In the supplementary material we provide
an extensive comparison on a large set of images, and compare our
method to a wider range of downscaling methods (including a range
of linear filters, unoptimized bilateral kernels, Generalized Sam-
pling [Nehab and Hoppe 2011], and Pixelated Image Abstraction
[Gerstner et al. 2012]).

5.1 Pixel Art Downscaling and Palette Reduction

Downscaling: Our algorithm is particularly well suited for down-
scaling cartoon and vector art images to create pixel art. Figures 1,
8, and 15 show representative results. When generating these re-
sults we disabled the edge orientation constraint (Section 4.2), since
we are aiming for a blocky “old school” look (i.e., big pixels).

Of particular note is our algorithm’s ability to keep line features
connected. In comparison, many lines in the subsampled results
are interrupted, while the bicubic results exhibits washed out colors
due to excessive smoothing. Our algorithm strikes a balance be-
tween both extremes: it keeps outlines sharp and connected where

possible, while in too detailed areas it naturally resolves to averag-
ing out features.

Extension for Palette Reduction: One particular form of pixel
art also includes a reduced color palette [Gerstner et al. 2012].
While not the focus of our method, we were interested in investigat-
ing the effectiveness of applying color palette reduction in a post-
process. We use mean shift segmentation, following the description
of Comaniciu and Meer’s paper [2002] (using the Epanechnikov
kernel, and fixed spatial bandwidth hs = 4), and use the color band-
width parameter hr to adjust the number of colors in the output
image.

We found that this works particularly well on cartoon and vector art
inputs as shown in Figure 8. On these type of images, our method
produces higher quality results than Gerstner et al. [2012]. How-
ever, this is mainly due to our algorithm’s ability to keep line fea-
tures connected.

When applied to natural images, however, we found mean shift seg-
mentation to not work well. Instead, we use simple k-means cluster-
ing for natural images, where it produces images of similar quality
as Gerstner et al. [2012] (Figure 9).

5.2 User Study

To verify our algorithm we conducted a formal user study with 51
subjects using Amazon Mechanical Turk, in which we compare our
algorithm against five alternatives: (1) Generalized Sampling [Ne-
hab and Hoppe 2011], which we consider the state-of-the-art algo-
rithm for image scaling, (2) bicubic, since it is one of the most com-
monly used scaling algorithms, (3) subsampling, for its simplicity,
(4) box filtering, because it yields sharper results than bicubic, and
(5) unoptimized bilateral kernels, to verify the effectiveness of our
optimization.

In each test we showed the participant the “high resolution” (400
pixels on the long side) input image as well as two downscaled re-

Figure 10: Results of the user study comparing our algorithm
against several existing algorithms.

sults (128 pixels), one produced by our algorithm, and the other pro-
duced by one of the competing algorithms. Participants were asked
which result “represents a better downscaled version of the input
image”, and had to choose either one of the results or express “no
preference”. No time limit was imposed. All images were shown
at native display resolution and participants were not provided with
any means to zoom into the images. We did not, however, control
the user distance from the screen to better simulate realistic appli-
cation conditions, i.e., subjects could move closer to the screen to
examine details.

Each participant was presented 13 tests in total, each testing our
algorithm against a random competing algorithm on a different in-
put image, i.e., no participant saw the same input image more than
once. We repeated every question throughout the test to filter unre-
liable participants by removing all answers from participants who
were consistent on less than 80% of the tests. For the study we se-
lected a variety of natural images from the MSRA Salient Object
Database [Liu et al. 2007] that span different categories, including
people, stochastic and regular textures, text, and smooth areas. The
images used for the study are provided in the supplementary mate-
rial. Results are shown in Figure 10. A χ2-analysis between each
condition indicates that our algorithm was significantly preferred
over each of the competing techniques.

5.3 Performance

Our method employs an iterative optimization strategy to down-
scale images, consequently, it is computationally more demanding
than classical linear rescaling filters. In the following we analyze
the performance of our C++ implementation, running on a Intel
Xeon E5640 CPU at 2.66 GHz. We partially use multiple cores in
our implementation, but we have not fully parallelized or optimized
the implementation.

The convergence proofs of the original EM-Algorithm do not carry
through onto our algorithm due to our modifications. However, we
did not encounter convergence issues on several thousand images
tested—if this would happen one could simply terminate the algo-
rithm after a fixed number of iterations.

A single iteration of our algorithm is linear both in the input and
output image sizes. Due to the content dependent nature of our
algorithm, the number of iterations varies for different in-/output
images of the same size. Figure 11 reports the runtime (blue) and
number of iterations (red) averaged over processing 100 randomly
selected natural images. The shaded region indicates the standard
deviation and the dashed lines indicate the min–max ranges. In
Figure 11-left, the output size is kept fixed at 80×60 pixels, while
the input size varies from 160×120 to 640×480. In Figure 11-right,
the output size varies from 40×30 to 160×120 while the input size
remains fixed at 640×480 pixels.

Varying input dimensions, fixed output dimensions

Varying output dimensions, fixed input dimensions

Figure 11: Average runtime (blue) and number of iterations (red)
from processing 100 random natural images. The shaded region
indicates the standard deviation, and the dashed lines indicate the
min-max range. The left/right figures show the result of varying the
input/output image dimensions while keeping the other fixed.

5.4 Limitations

Our algorithm relies on a number of heuristic constraints to pre-
vent certain downscaling artifacts (Section 4). It would be desirable
to incorporate these constraints directly into the EM optimization,
however, most of these constraints are of a fundamentally differ-
ent nature. The EM steps process each kernel independently. The
constraints, on the other hand, rely on the relation between neigh-
boring kernels, and hence, cannot be directly solved in the E or M
step. Therefore, these constraints are handled in an additional third
step.

Due to the content-adaptive nature our algorithm behaves tempo-
rally less coherent than linear filters when applied to smooth ani-
mations, e.g., a slow zoom into a picture. Our results are flickering
slightly, while each individual image appears crisper and exhibits
more detail. Please refer to the supplementary material for videos
illustrating this issue. A similar problem can occur for symmetric
features in input images. For example, our algorithm fails to pre-
serve the symmetry of the yellow buttons in Figure 12.

Our algorithm does not prevent aliasing under all circumstances.
Consequently, our method does not perform well on most standard
aliasing tests, e.g., the zone plate pattern in Figure 12. Further-
more, our results cannot reach the quality that well-trained experts
achieve when manually hinting fonts and manually creating pixel
art (Figure 12, bottom).

While our method significantly improves the quality of downscaled
images exhibiting small details such as eyes or stochastic textures,
it does not always produce better results on images with blurred fea-
tures, or images that contain structured textures. In the latter case,
despite our efforts (Section 4), staircasing can still occur. This ar-
tifact shows up in particular on long, almost cardinal lines, e.g.,
the right edge of the sign in the top row of Figure 13. A system-
atic investigation of this artifact can be found in the supplementary
material and accompanying web site.

Lastly, since Equation (5) may have multiple local minima, we may
reach slightly different solutions depending on our initialization. In
the supplementary material and accompanying web site we show
that various sensible initialization choices yield similar solutions.
We settled on using a “middle gray” initialization, which worked
well in our tests.

Input

Input

Input (Vector)

Bicubic

Bicubic

Manually hinted

Our result

Our result

Our result

Figure 12: Limitations of our method. Top: our algorithm fails
to preserve the symmetric arrangement of the yellow buttons on
Mario’s overall. Middle: Our method was not specifically designed
to prevent aliasing under all circumstances. Bottom: Our method
cannot compete with manually downscaled images. (“Mario” input
image c© Nintendo Co., Ltd.)

6 Conclusions

We have presented a novel content-adaptive image downscaling
method that adapts the shape of its downsampling kernel, yielding
sharper and more detailed downscaled results. Contrary to common
wisdom that dictates that frequencies above the Nyquist frequency
introduce artifacts in the downsampled image (in the form of alias-
ing), we show that by careful sampling, certain high frequencies
features can still be preserved in the downscaled image without ar-
tifacts.

Given the growing “resolution gap” between cameras and display
devices and the advent of gigapixel panoramic imaging, we believe
that this work opens up an exciting area of research. There are
plentiful avenues for future research. Our work has shown that it
is possible to sometimes drastically improve quality over existing
downscaling methods. For future work we would like to further im-
prove the robustness of the method, e.g., through smarter heuristics,
so that our method always outperforms simpler filters. It would also
be interesting to look at other signals than images as inputs. A nat-
ural immediate step would be to analyze and constrain the temporal
behavior of our algorithm, e.g., when applying it to videos.

Acknowledgements

This work was in part supported by NSF IIS-1217765 and by the
Israeli Science Foundation (grant no. 324/11).

References

ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P.,
AND SÜSSTRUNK, S. 2012. Slic superpixels compared to state-

of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach.
Intell. 34, 11, 2274–2282.

AVIDAN, S., AND SHAMIR, A. Seam carving for content-aware
image resizing. ACM Transactions on Graphics, (Proc. SIG-
GRAPH 2007) 26, 3, article no. 10.

COMANICIU, D., MEER, P., AND MEMBER, S. 2002. Mean shift:
A robust approach toward feature space analysis. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 24, 603–619.

GERSTNER, T., DECARLO, D., ALEXA, M., FINKELSTEIN, A.,
GINGOLD, Y., AND NEALEN, A. 2012. Pixelated image ab-
straction. Proceedings of the International Symposium on Non-
Photorealistic Animation and Rendering (NPAR), 29–36.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., AND FRANKLIN, J.
2005. The elements of statistical learning: data mining, inference
and prediction. The Mathematical Intelligencer 27, 2, 83–85.

INGLIS, T. C., AND KAPLAN, C. S. 2012. Pixelating vector line
art. Proceedings of the Symposium on Non-Photorealistic Ani-
mation and Rendering, 21–28.

KARNI, Z., FREEDMAN, D., AND GOTSMAN, C. 2009. Energy-
based image deformation. Proceedings of the Symposium on Ge-
ometry Processing (SGP 2009), 1257–1268.

LIU, T., SUN, J., ZHENG, N.-N., TANG, X., AND SHUM, H.-Y.
2007. Learning to detect a salient object. Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
2007), 1–8.

MANSON, J., AND SCHAEFER, S. 2012. Parameterization-aware
mip-mapping. Computer Graphics Forum (Proc. Eurographics
Symposium on Rendering) 31, 4, 1455–1463.

NEHAB, D., AND HOPPE, H. 2011. Generalized sampling for
computer graphics. Tech. rep., feb.

RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2009. Multi-
operator media retargeting. ACM Transactions on Graphics
(Proceedings SIGGRAPH 2009) 28, 3, 1–11.

SAMADANI, R., LIM, S. H., AND TRETTER, D. 2007. Repre-
sentative image thumbnails for good browsing. Proceedings of
the International Conference on Image Processing (ICIP 2007),
193–196.

SHANNON, C. E. 1949. Communication in the presence of noise.
Proceedings of the Institute of Radio Engineers 37, 1, 10–21.

SUH, B., LING, H., BEDERSON, B. B., AND JACOBS, D. W.
2003. Automatic thumbnail cropping and its effectiveness. Pro-
ceedings of the 16th annual ACM symposium on User interface
software and technology, 95–104.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. Proceedings of IEEE International Con-
ference on Computer Vision (ICCV ’98), 836–846.

TRENTACOSTE, M., MANTIUK, R., AND HEIDRICH, W. 2011.
Blur-aware image downsizing. Computer Graphics Forum
(Proc. Eurographics 2011) 30, 2, 573–582.

TRIGGS, B. 2001. Empirical filter estimation for subpixel interpo-
lation and matching. Proceedings of IEEE International Confer-
ence on Computer Vision (ICCV 2001) 2, 550–557.

WOLBERG, G. 1990. Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA, USA.

WOLF, L., GUTTMANN, M., AND COHEN-OR, D. 2007. Non-
homogeneous content-driven video-retargeting. Proceedings
of IEEE International Conference on Computer Vision (ICCV
2007), 1–6.

Input Subsampling Bicubic Our result Input

Input Subsampling Bicubic Our result Input

Figure 13: A comparison of natural images downscaled using subsampling, bicubic, and our algorithm. To fully appreciate the quality
difference of the downsampled results, we recommend viewing the results in native resolution when viewed electronically. An extended set of
results can be found in the supplementary material.

Input Downscaled Input

Figure 14: A selection of downscaled results at various output resolutions ranging from 32×24 to 192×144 (original resolution: 708×531
and 384×288 for the “Snow Leopard” and “Flowers” respectively). Our method produces good results at any scale. In the supplementary
material we compare against the bicubic filter on slowly zooming videos.

Input Subsampling Bicubic Our result Input

Figure 15: Our method can be used to create pixel art from drawn inputs. Note the ability of our algorithm to keep features connected (e.g.,
the outline). Furthermore, the “staircase” correction step was disabled to achieve the typical quantized look of pixel art. (Input images
c© Nintendo Co., Ltd.)

