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Figure 1: For visual comparison on a statue under spot lighting, (a) a heterogeneous chessboard (8× 8) was rendered with a full Monte
Carlo path tracing algorithm (reference image); (b) and (c) were rendered using Peers et al. [PvBM∗06] and our factored subsurface scattering
model, respectively. (d), (e) and (f) show closeups of highlighted regions. Below each image we also report the RMSE value (lower is better)
and PSNR value (higher is better). For better comparison, false-color differences were scaled by a factor of 5.

Abstract
This paper presents a novel compact factored subsurface scattering representation for optically thick, heteroge-
neous translucent materials. Our subsurface scattering representation is a combination of Tucker-based factor-
ization and a linear regression method. We first apply Tucker factorization on the intensity profiles of the het-
erogeneous subsurface scattering responses. Next, we fit a polynomial model for characterizing the differences
between the different color channels with a linear regression procedure. We show that our method achieves good
compression while maintaining visual fidelity. We validate our heterogeneous subsurface scattering representation
on various real-world heterogeneous translucent materials, geometries and lighting conditions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
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1. Introduction

Translucent materials, such as wax and marble, have
a unique soft appearance. Although, fast rendering
solutions [JB02] and compact analytical representa-
tions [JMLH01, dI11] for homogenous translucent materi-
als exist, no such compact analytical representation for het-
erogeneous translucent materials has been presented. More-
over, representing subsurface scattering effects of heteroge-
neous translucent materials is a challenging task, since the
structural deficiencies, impurities and composite structures
found inside the object volume (e.g., the veins in marble)
make the acquisition and representation of heterogeneous
translucent materials a non-trivial task. Acquiring hetero-
geneous data is a convenient way that yields realistic re-
sults [PvBM∗06, STPP09]. However, due to the enormous
storage requirements (gigabytes), efficient compression al-
gorithms are necessary.

In this paper, we propose a novel factorization based
subsurface scattering model for representing heterogeneous
translucent materials. First, we factorize the intensity pro-
files of the heterogeneous subsurface scattering responses.
After that, we fit a polynomial model for characterizing the
differences between the different color channels with a lin-
ear regression procedure. Consequently, our subsurface scat-
tering representation is a hybrid model that consists of a
Tucker-based representation and a polynomial model.

Factorization is a popular tool for representing material
appearance, such as BRDFs [LRR04,BÖK11], BTFs [VT04,
WWS∗05] and subsurface scattering effects of heteroge-
neous translucent materials [PvBM∗06]. We show that our
novel Tucker-based factored subsurface scattering model
can represent heterogeneous translucent materials more
compactly and visually more plausible. As can be seen in
Figure 1, our novel material model representation can be
used with any geometry, while providing a compact and vi-
sually plausible representation of heterogeneous subsurface
scattering.

2. Related Work

This paper is closely related to the following two sub-
domains in computer graphics: representation of translucent
materials and factorization of multidimensional functions.

Representation of Translucent Materials: The diffusion
dipole approximation for homogeneous subsurface scatter-
ing was introduced to computer graphics in the seminal work
by Jensen et al. [JMLH01]. Although Jensen et al.’s BSS-
RDF model is an analytical model and it can only represent
homogenous translucent materials, many researchers have
extended this model to represent other types of translucent
materials and/or render translucent materials at real-time
frame rates. For example, Mertens et al. [MKB∗05], Don-
ner and Jensen [DJ05], d’Eon et al. [dLE07], and Jimenez et
al. [JSG09, JWSG10] have extended this model to represent

human skin. Jakob et al. [JAM∗10] derived a new anisotropic
dipole approximation model for representing anisotropic ho-
mogenous medium. d’Eon and Irving’s [dI11] subsurface
scattering representation is more accurate than Jensen et al.’s
BSSRDF model, and that is valid for a larger range of scat-
tering and absorption coefficients. However, these represen-
tations have not been designed to represent heterogeneous
translucent materials accurately.

Goesele et al. [GLL∗04] presented DISCO, a laser-based
acquisition system and a compact model for represent-
ing heterogeneous translucent materials. However, Goe-
sele et al.’s representation is an object model representa-
tion and it closely depends on the underlying geometry.
Tong et al. [TWL∗05] proposed a representation for quasi-
homogenous translucent materials, i.e., translucent materials
with uniformly distributed heterogeneous elements. Fuchs et
al. [FGCS05] represented heterogeneous translucent materi-
als with a linear combination of exponential fall-off func-
tions. Song et al.’s [STPP09] SubEdit representation allows
interactive editing and rendering of heterogeneous translu-
cent materials, at the cost of sacrificing efficiency in com-
pactness. However, none of these representations have been
designed to represent real-world heterogeneous translucent
materials accurately and efficiently.

The work of Peers et al. [PvBM∗06] is most closely re-
lated to ours. In this work, Peers et al. proposed a com-
pact representation that factorizes the remainder (i.e., het-
erogeneities) after division by a homogeneous approxima-
tion of the translucent material using a Non-negative Ma-
trix Factorization (NMF)-based algorithm. Our method dif-
fers from this work in two ways. First, we employ a Tucker-
based factorization to compactly represent the mean hetero-
geneous subsurface scattering response over the color chan-
nels per surface point. While not as efficient as the special-
ized NMF-based factorization of Peers et al., it provides a
faster and more convenient algorithm. Second, we exploit
the similarities between the different color channels, and
characterize the differences between channels by fitting a
polynomial model with a linear regression procedure. The
resulting combined model yields a more compact and more
accurate model.

Factorization: In computer graphics, factorization has
been a useful tool for the compact representation of
BRDFs [KM99, MAA01, LRR04, SZC∗07, BÖK11], spa-
tially varying BRDFs [LBAD∗06], Bidirectional Texture
Functions (BTFs) [VT04,WWS∗05] and heterogeneous sub-
surface scattering [PvBM∗06].

An example of popular factorization methods is
NMF, which has been used in importance sampling of
BRDFs [LRR04] and representation of heterogeneous sub-
surface scattering [PvBM∗06]. Another popular factoriza-
tion method is based on tensor decomposition [KB09]. Ten-
sor approximations [KB09] have been used in volume simu-
lations [WWS∗05], BTF representations [VT04, WWS∗05],
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BRDF representations [SZC∗07, BÖK11] and importance
sampling of BRDFs [BÖK11]. Following the work of Bilgili
et al. [BÖK11], we will use Tucker factorization based on
tensor decomposition for representing measured heteroge-
neous subsurface scattering data compactly and accurately.

3. Background

The behavior of translucent materials is described by the
Bidirectional Scattering Surface Reflectance Distribution
Function (BSSRDF) [NRH∗77] S(xi,~ωi;xo,~ωo) which re-
lates outgoing radiance Lo(xo,~ωo) at a point xo in a direction
~ωo to the incoming radiance Li(xi,~ωi) at a location xi and an
incoming direction ~ωi:

Lo(xo,~ωo) =
∫

A

∫
Ω+

Li(xi,~ωi)S(xi,~ωi;xo,~ωo)(~ωi ·~n)d~ωidxi,

(1)
where A is the area around the point xo, Ω

+ is the hemi-
sphere around xi and ~n is the surface normal at point xi.
Eq. (1) can be separated into a local component and a
global component. While the local component represents the
light immediately reflected from a surface, the global com-
ponent represents the light scattering in the material vol-
ume. As in [PvBM∗06], we model the global component by
the diffuse BSSRDF Sd which can be further decomposed
as [DJ05]:

Sd(xi,~ωi;xo,~ωo) =
1
π

Fi(xi,~ωi)Rd(xi,xo)Fo(xo,~ωo), (2)

where Fo and Fi are directionally dependent components,
and Rd(xi,xo) is a four dimensional (4D) spatial subsurface
scattering component. As in Goesele et al. [GLL∗04], Peers
et al. [PvBM∗06] and Song et al. [STPP09], we focus on ac-
curately representing the 4D spatial component Rd of hetero-
geneous translucent materials, and we ignore the local com-
ponent and the directional dependencies (Fo and Fi).

4. Subsurface Scattering Representation

In this section we will first introduce our new factorization
and regression framework before briefly discussing the im-
pact of the various parameters.

4.1. Pre-Processing

We represent the measured BSSRDF as a matrix Rd(xi,xo)
where xi and xo are incoming and outgoing surface loca-
tions. The measured 4D input data is linearized to a two-
dimensional (2D) matrix. Figure 2(a) shows an example of
a subsurface scattering matrix Rd of a heterogeneous mate-
rial containing a light blocking vein. The effects of the light
blocking vein are expressed by horizontal and vertical dis-
continuities in Rd .

First we reorganize the subsurface scattering matrix
Rd(xi,xo) by a change of variables d = xo −xi (Figure 2(b)).
The reparameterized subsurface scattering matrix R′d(xi,d)

xi

d = x o-xi d = x o-xi

xi

Rd(xi ,d) Rd(xi ,d)
(b) (c)(a)

xi

xo

Rd(xi ,xo)

Alignment Reorder

Figure 2: (a) - (b) We reformat the BSSRDF matrix (a) by first
aligning the diagonal by a change of variables to R′d(xi,d). (b) - (c)
Next, we reorder the elements in each row by shifting and wrapping
around each row such that the element with the maximum magni-
tude moves to the first position. After that, we divide each row with
its maximum value, finally yielding the subsurface scattering matrix
R′′d (xi,d). To reconstruct R′d(xi,d) from R′′d (xi,d), we only need to
store the coordinate of the maximum element and its corresponding
value in each row.

xi

d = xo-xi

≈

f1(xi )

h1(d)g1

+ .... +

fT(xi )

hT ( d )gT

Rd(xi ,d)

T times

Figure 3: Similar to Bilgili et al. [BÖK11], we use an error model-
ing approach using Tucker factorization for representing measured
subsurface scattering matrix R′′d (xi,d).

can be factorized instead of Rd(xi,xo). To increase the ef-
fectiveness of the factorization, we apply a similar approach
as described in [XYL∗09]. We shift each row independently
such that the maximum element in the each row will become
the first element and divide each row by its maximum value
(Figure 2(c)). Note that R′′d (xi,d) is better suited for efficient
factorization than R′d(xi,d), because these operations align
similar values along the same columns. Another advantage
of the shifting of the rows is that this also allows us to effi-
ciently compensate for any shift in the peak that can occur
due to measurement or calibration issues.

4.2. Factorization

For an efficient and compact factorization, we apply the error
modeling approach using the Tucker factorization [Tuc66]
on R′′d (xi,d). According to the error modeling approach, we
first factorize R′′d (xi,d) matrix with Tucker factorization. Af-
ter the first Tucker factorization, we get our Tucker-based
model with two vectors ( f1(xi) and h1(d)), and a scalar value
(g1). Then, we factorize the model errors again with Tucker
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Sample Material Physical Resolution Kernel Original No of No of Factored CR RMSE
Size (cm2) (pixels) Size (pixel) Size (Gb) T P Size (Mb)

Chessboard (4×4) 12.6×12.6 277×277 29×29 2.74 15 7 24.11 1/116 0.0102
Chessboard (8×8) 25.1×25.1 222×222 39×39 2.75 10 4 10.2 1/276 0.0242
Marble (close up) 2.6×2.6 128×128 39×39 6.0 15 4 4.19 1/1466 0.0072
Densely Veined Marble 13.0×13.0 213×211 29×29 4.92 15 4 11.0 1/458 0.0152

Table 1: Statistics of the factored heterogeneous subsurface scattering materials. The table also summarizes some statistics of our subsurface
scattering model with typically selected values for model parameters T and P.
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Figure 4: (a) RMSE of our Tucker-based model for various T parameters; (b) the compression ratio (CR) of our model for various T
parameters; (c) RMSE of our Tucker-based model for various P parameters; (d) CR of our model for various P parameters.

factorization. This process is repeated for a predetermined
number of times. As can be seen in Figure 3, the final subsur-
face scattering model will be the sum of estimation of model
errors and the first factorization of R′′d (xi,d). Please refer
to [BÖK11] for an in depth discussion on the error modeling
approach. The resulting subsurface scattering model can be
formalized as:

R′′d (xi,d)≈
T

∑
j=1

g j f j(xi)h j(d), (3)

where T is the total number of terms, g j is the scalar core
tensor, f j(xi) and h j(d) are the univariate tensor functions,
xi incoming surface location and d = xo − xi. Since we ap-
ply Tucker factorization to 2D subsurface scattering data,
the applied factorization method is similar to Singular Value
Decomposition (SVD) method. However, our Tucker-based
factorization algorithm can also be applied to higher dimen-
sional data efficiently, which can be seen as an advantage
over the classical SVD approach.

While, our Tucker-based factorization by itself (without
the linear regression presented in Section 4.3) is not as com-
pact as Peers et al.’s [PvBM∗06] subsurface scattering rep-
resentation, it is less complex and computationally more ef-
ficient as shown in Table 2.

4.3. Linear Regression

Prior work in compressing heterogeneous subsurface scat-
tering, treated each color channel independently. However,
while not identical, the scattering profiles for the different
color channels are very similar. We exploit this correlation,
by only applying the Tucker-based factorization to the mean
values of the measured subsurface scattering values of the

three color channels, and approximate the deviations from
the mean by fitting a polynomial regression model of degree
P. In the linear regression procedure, we estimate the linear
coefficients for each row of measured subsurface scattering
matrix. Then, the corresponding models for each color chan-
nel can be written as:

Rdr(xi,xo)≈
P

∑
p=0

βrpxi R
′
d(xi,d)

p, (4)

Rdg(xi,xo)≈
P

∑
p=0

βgpxi R
′
d(xi,d)

p, (5)

Rdb(xi,xo)≈
P

∑
p=0

βbpxi R
′
d(xi,d)

p, (6)

where P is the degree of the polynomial, and βrpxi , βgpxi and
βbpxi are the parameters of the model. Linear least square
optimization techniques were used to fit the model to sub-
surface scattering data and the subsurface scattering values
for the underlying color channel were estimated from the fit-
ted model.

Our linear regression-based method exploits coherency
between the color channels and provides a more compact
representation without significant loss of accuracy. This ap-
proach can potentially also be applied other factorization-
based compression methods.

4.4. Parameter Analysis

Our subsurface scattering representation has two parame-
ters: T and P. T is the number of terms in the Tucker fac-
torization, P is the degree of the polynomial approximation
used in the subsurface scattering model.

The Tucker-based factorization plays an important role in
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the accuracy of the factored subsurface scattering, since it is
applied to the mean values. As can be seen in Figure 4(a),
when the first 10 terms are used, our Tucker-based sub-
surface scattering model can represent the general shape of
the subsurface scattering accurately. Since we apply Tucker-
based factorization to the mean values, the number of Tucker
terms T directly impacts the compression rate. On the other
hand, our linear regression based method exploits coherency
between the color channels and provides a more compact
representation without significant loss of accuracy. As can
be seen in Figure 4(c), errors decrease linearly as the degree
of the polynomials increase.

As the Tucker factorization is only applied to the mean
intensity of the color channels (i.e., size ∼ T ), while a poly-
nomial fit is applied per color channel (i.e., size ∼ 3P), it is
more efficient to prioritize minimizing P then it is to mini-
mize T .

5. Results

To visualize our results, we implemented a rendering scheme
similar to Peers et al. [PvBM∗06] in the Mitsuba ren-
dering system [Jak13]. We verified our Tucker-based sub-
surface scattering model on several real-world subsurface
scattering materials, ranging from fairly homogeneous to
highly translucent heterogeneous materials. Table 1 gives
an overview of the factored heterogeneous translucent ma-
terials, and lists a number of statistics of our subsurface
scattering model based on typical values for P and T . Fig-
ure 5 shows the results of our model with T = 15 and P = 4
for marble (close up) and densely veined marble materials.
These results show that our method provides high compres-
sion ratio, while maintaining visual fidelity.

We also compared our model with Peers et
al.’s [PvBM∗06] subsurface scattering model on a se-
lection of heterogeneous translucent materials in Figure 1
and Figure 6. Both are rendered under a spot light with a full
Monte Carlo path tracing algorithm to better illustrate the
effects of the subsurface scattering. We set the parameters
of our representation to T = 10 and P = 4 for chessboard
(8 × 8) material in Figure 1, and T = 40 and P = 7 for
chessboard (4× 4) material in Figure 6. We also report the
root-mean-square error (RMSE), the peak signal-to-noise
ratio (PSNR) [Ric02] and false-color difference images of
zoom-ins to better visualize the differences between the
representations. All of these results show that our Tucker
factorization based subsurface scattering model represents
heterogeneous translucent materials more accurately at
comparable data sizes.

Furthermore, we compared measured and factored sub-
surface responses of selected surface points in Figure 7. In
Figure 7, the dashed square is approximately equals to ker-
nel size and it illustrates the relative size of the responses.
Furthermore, Figure 7 also compares Peers et al.’s subsur-
face scattering model and our subsurface scattering model at

comparable data sizes. Therefore, we set parameters of our
representation to T = 40 and P = 7 for representing chess-
board (4×4) material, and T = 10 and P= 7 for representing
chessboard (8×8) material. In this setting, our model needs
38.9 MB and 13.6 MB storage, and it gives 0.007 and 0.0212
RMSE for representing chessboard (4× 4) and chessboard
(8× 8) materials, respectively. On other hand, Peers et al.’s
representation needs 38.7 MB and 10.8 MB storage, and it
gives 0.0134 and 0.0384 RMSE for representing chessboard
(4×4) and chessboard (8×8) materials, respectively. As can
be seen in Figure 1, Figure 6 and Figure 7, another advan-
tage of our representation is that the modeling errors of our
representation are uniformly distributed–a preferred prop-
erty for a subsurface scattering representation. Our repre-
sentation also compensates for any shift in the peak that can
occur due to measurement or calibration issues. Finally, our
heterogeneous subsurface scattering representation is more
accurate than Song et al.’s [STPP09] heterogeneous subsur-
face scattering representation (SubEdit) at comparable data
sizes, since Song et al. have reported in their paper that their
representation has a slightly larger relative error (2 − 7%)
than Peers et al.’s [PvBM∗06] representation at comparable
data sizes.

Our subsurface scattering model has two parameters that
can be tweaked, namely T and P. As a result, compared to
Peers et al.’s [PvBM∗06] subsurface scattering representa-
tion, our subsurface scattering representation is more flexi-
ble. Higher T and P values mean more fitting accuracy and
more storage needs. On the other hand, our Tucker-based
subsurface scattering model still reproduces visually plausi-
ble measured heterogeneous subsurface scattering materials
even with lower T and P values. This illustrates the flexibil-
ity in exchanging accuracy versus size of our factored repre-
sentation.

Finally, Table 2 lists a comparison of computation times
for different subsurface scattering models. We selected pa-
rameters of our Tucker-based model for the chessboard
(4× 4) dataset (T = 10; P = 7) and the chessboard (8× 8)
dataset (T = 5; P = 4), so that RMSE values of the com-
pared models are the same. All computations are performed
on a dual Intel Xeon X5650 CPU @ 2.67 GHz with 48
GB RAM. These results show that our subsurface scatter-
ing representation is faster (36×−88×) and more compact
(1.30×−1.83×) than Peers et al.’s [PvBM∗06] representa-
tion at the same RMSE values.

6. Conclusions and Future Work

In this paper we have presented a compact and efficient
factorization-based representation for the spatial component
of heterogeneous subsurface scattering. Our subsurface scat-
tering representation is composed of Tucker factorization
and a linear regression procedure. We have illustrated effi-
ciency and compactness of our factorization based subsur-
face scattering model on a number of real-world heteroge-
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(a) (b) (c) (d)

Figure 5: In all of these images, our Tucker-based subsurface scattering model was used to render different geometries under spot light
illumination. We set T = 15, and P = 4 for our factored subsurface scattering model in these materials. (a) and (c) are marble (close up)
material, (b) and (d) are densely veined marble material.

(a) (b) (c)
(Data size: 2.74 GB) (Data size: 38.7 MB) (Data size: 38.9 MB)

(d) (e) (f)
(RMSE = 0.0134, PSNR = 32.58) (RMSE = 0.007, PSNR = 37.70)

Figure 6: For visual comparison on a dragon under spot lighting, (a) a heterogeneous chessboard (4× 4) was rendered with a full Monte
Carlo path tracing algorithm (reference image); (b) and (c) were rendered using Peers et al. [PvBM∗06] and our factored subsurface scattering
model, respectively. (d), (e) and (f) show closeups of highlighted regions. Below each image we also report the RMSE value (lower is better)
and PSNR value (higher is better). For better comparison, false-color differences were scaled by a factor of 20.

neous translucent materials. We have demonstrated that our
compact factored representation can be applied to any ge-
ometry and it can be easily integrated into a standard global
illumination rendering system, resulting in convincing im-
ages. Furthermore, we compared our subsurface scattering
model with Peers et al.’s [PvBM∗06] factored model and we
showed that our compact subsurface scattering model can
represent heterogeneous subsurface scattering effects accu-
rately and efficiently.

In the future we are interested in investigating the use
of perceptual metrics and reparametrizations for even bet-
ter representations of the subsurface scattering profiles. Fi-
nally, we are interested in exploring rendering algorithms to
employ our subsurface scattering representation directly in
real-time applications.

Representation Chessboard (4×4) Chessboard (8×8)
Peers et al. 3.756 1.135
Our model 0.0427 0.0314
Representation Chessboard (4×4) Chessboard (8×8)
Peers et al. 38.7 10.8
Our model 21.1 8.33

Table 2: (Top) average albedo computation times (in seconds)
and (bottom) data sizes (in MB) of various subsurface scattering
representations at the same RMSE values.
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