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Abstract

We present an example-based approach for radiometrically linearizing photographs that takes as input a radiomet-
rically linear exemplar image and a target regular uncalibrated image of the same scene, possibly from a different
viewpoint and/or under different lighting. The output of our method is a radiometrically linearized version of the
target image. Modeling the change in appearance of a small image patch seen from a different viewpoint and/or
under different lighting as a linear 1D subspace, allows us to recast radiometric transfer in a form similar to
classic radiometric calibration from exposure stacks. The resulting radiometric transfer method is lightweight and
easy to implement. We demonstrate the accuracy and validity of our method on a variety of scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications— I.4.1
[Image Processing and Computer Vision]: Digitization and Image Capture—Radiometry

1. Introduction

The nonlinear relation between recorded pixel brightness in
a photograph and the corresponding observed scene radiance
is described by the camera-dependent camera response func-
tion. Recovering the camera response function (i.e., radio-
metric calibration) and undoing its effect (i.e., radiometric
linearization) are critical and important preprocessing steps
to many computer graphics and computer vision algorithms
such as photometric stereo and reflectance and illumination
estimation.

Most radiometric calibration methods focus on recover-
ing the camera response function from an exposure stack
of a static scene recorded from a fixed viewpoint and under
static lighting conditions. However, such calibration meth-
ods are not suited for consumer cameras that offer limited
control on exposure or that employ an image-content de-
pendent camera response function. Similarly, such methods
are also not suited when direct access to the camera is not
possible (e.g., internet photographs). However, one usually
has access to (or the opportunity to record) a radiometrically
linearized image of the same scene, albeit recorded with a
different camera and/or under different lighting or viewing
conditions. This potentially rich source of information has
not been considered for radiometric calibration, and it raises
the question of whether it is possible to transfer radiometric

information from a radiometric linear image to an uncali-
brated photograph of the same scene.

In this paper, we propose a novel example-based radio-
metric linearization method that takes as input a radiomet-
rically linear photograph of a scene (i.e., exemplar), and a
standard (radiometrically uncalibrated) image of the same
scene potentially from a different viewpoint and/or under
different lighting, and which produces a radiometrically lin-
ear version of the latter. Key to our method is the observation
that under modest assumptions, the change in appearance of
a small local pixel neighborhood in a photograph resides in
a 1D linear subspace. This allows us to formulate a fast and
lightweight solution that resembles the classic solution for
radiometric calibration from exposure stacks.

We demonstrate the qualitative accuracy of our method
on a variety of different scenes, and quantitatively validate
the robustness and accuracy of various components of our
system.

2. Related Work

There exists a large body of prior work on various forms of
radiometric calibration.

Probably the most common approach to radiometric cali-
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bration estimates the camera response function from an ex-
posure stack of a static scene (captured with a static cam-
era). Debevec and Malik [DM97] estimate a non-parametric
camera response model regularized by a smoothness con-
straint. Mitsunaga and Nayar [MN99] use a flexible polyno-
mial model and only require approximate estimates of the
exposures ratios. Grossberg and Nayar [GN04] propose a
data-driven model based on a large database of measured
camera response functions. However, these methods are lim-
ited to static cameras, and several strategies have been pro-
posed to address this to some degree. Grossberg and Na-
yar [GN03] use intensity histograms and derive a bright-
ness transfer function between two photographs captured
with different exposures. Kim and Pollefeys [KP08] exploit
epipolar geometry and stereo matching to find correspond-
ing points. In follow up work, Kim et al. [KGFP10] inte-
grate tracking and camera response function recovery to fur-
ther improve the quality of both. While our input is signif-
icantly different, we show that radiometric transfer can be
reformulated in a form similar to the above problems, and
hence similar solution strategies can be employed.

The recent interest in large photo collections necessi-
tates radiometric calibration methods that can work not
only for non-static cameras, but also for non-static scenes
and in particular for uncontrolled lighting. Shaque and
Shah [SS04] recover the camera response function, modeled
by a gamma curve, for fixed-viewpoint photographs under
different uncontrolled lighting. Kim and Pollefeys [KFP08]
perform radiometric (and vignetting) calibration for static-
viewpoint images of outdoor scenes under changing illu-
mination by grouping pixels with similar behavior with re-
spect to changes in illumination. Diaz and Strum [DS11a,
DS11b] recover the camera response functions for images in
large photo collections by assuming Lambertian surface re-
flectance and directional or low frequency lighting respec-
tively. They use an inverse rendering approach and lever-
age the geometry obtained from multiview stereo [FP10].
Kuthirummal et al. [KAGN08] establish prior statistics for
large photo collections for recovering the radiometric cam-
era properties. All of these methods require many images of
the same scene to either recover the geometry or to exploit
statistical properties over many images. In contrast, the pro-
posed radiometric transfer technique only requires a single
radiometrically linear exemplar image.

A different strategy is to exploit statistical properties of
photographs and cameras to recover the camera response
function. Lin et al. [LGYS04] and Lin and Zhang [LZ05]
rely on transformations of the linear radiance distribution
at edges. Matsushite and Lin [ML07] exploit the symmetry
of camera noise distributions. Takamatsu et al. [TMI08] in-
fer camera response functions by looking at noise variances.
However, these single image calibration methods are sensi-
tive to deviations from the assumed statistical model. The
proposed radiometric transfer technique is complementary

to the above calibration methods, and can be used to com-
bine and enhance their results.

Our method is also related to radiometric calibration
methods that rely on a calibration object such as a color
checker card [CR96], except that in our solution the scene
itself acts as the calibration object and no restrictions are
imposed on the lighting.

At the heart of our method is the observation that the vari-
ations in appearance between corresponding patches can be
modeled by a 1D linear subspace. Low-rank structures have
been explored in the context of radiometric calibration be-
fore. Lee at el. [LMS∗13] propose a general minimization
framework for radiometric calibration based on low-rank
structures. Oh et al. [OLTK15] build on this and propose to
utilize low-rank structures to improve the reconstruction of
high dynamic range images (assuming a linearized exposure
stack).

At a high level, the proposed method also shares similar-
ities with other methods that transfer artistic properties be-
tween photographs such as color (e.g., [RAGS01,HSGL13])
or style (e.g., [SPB∗14]) by establishing a local or global
color transformation based on sparse feature matching.
However, instead of transferring artistic properties, the pro-
posed method seeks to revert camera-driven intensity trans-
formations to recover the intrinsic radiometric linear image
while retaining scene dependent qualities such as lighting
and view-dependent effects.

3. Radiometric Transfer

Problem Statement The image formation process in a dig-
ital camera can be abstracted as: I = f (E), where I is the re-
sulting image and E is an image that is linearly proportional
to the time-average of the incident radiance on the camera’s
sensor. The exact scale between incident radiance and E de-
pends on various camera characteristics such as exposure
time, aperture, light efficiency of the sensor and lenses, etc.
The camera response function f , a non-linear mapping be-
tween E and the image I, is designed to remap and compress
the dynamic range in order to produce visually pleasing im-
ages. The goal of radiometric calibration is to undo the ef-
fects of f and to recover a radiometrically linear image that
is proportional (up to an unknown scale factor) to the time-
average image irradiance E.

Radiometric transfer takes as input two images; a radio-
metrically linear source image Es, and a regular target im-
age It = f (Et). Both images depict the same subject, but
viewed from different viewpoints and under different light-
ing conditions. The goal of radiometric transfer is to recover
Et = f−1(It) by exploiting the knowledge that Es depicts the
same subject.

Fixed Viewpoint We will first consider the case where the
viewpoint is the same for both images, but the lighting condi-
tions can differ. In this case, the relation between the known
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Figure 1: Top Row: two radiometrically linear photographs
captured under different lighting conditions (office lighting
and LCD-panel illumination respectively). Bottom Left: ra-
tio κ(x) of the input images. Bottom Right: False color
plot of the error on a 1D linear subspace approximation
(κ(x) ≈ κx) for a 33× 33 window around each pixel loca-
tion x.

source irradiance Es and the unknown target irradiance Et
can be expressed by their ratio: Et(x) = κ(x)Es(x). The ratio
κ can potentially vary with pixel position x due to changes
in the underlying surface normal, material properties, and/or
angular variation in lighting (Figure 1, bottom-left). This
makes it difficult to directly estimate κ for every pixel from
Es and It only. However, we observe that κ is locally slowly
varying: Et(x′)≈ κxEs(x′) for x′ ∈ N (x), a small neighbor-
hood around x. Hence, we can approximate the ratio κ(x) by
a constant ratio κx for a small neighborhoodN (x) around x:

f−1(It(x′))≈ Es(x′)κx, x′ ∈N (x). (1)

In other words, the appearance space of a small neighbor-
hood of pixels, can be well approximated by a 1D linear sub-
space, as illustrated in Figure 1, bottom-right. Equation (1)
is similar in form to that of classic radiometric calibration
from multiple exposures [DM97, KP04], except that in our
case the “exposures” (κx) are unknown instead of the irra-
diance image (Es). Similar as in prior work, we reformulate
this expression in the log domain:

g(It(x′))≈ logEs(x′)+ logκx, (2)

where g = log( f−1). We characterize the log-inverse of the
camera response function using the log-PCA model of Kim
and Pollefeys [KP04]:

h′0(It(x
′))+

n

∑
i=1

cih
′
i(It(x

′)) = logEs(x′)+ logκx, (3)

where n = 25 is the number of log-PCA terms, h′i repre-
sents the i-th PCA term of the space spanned by the log-
inverse camera response functions contained in the DoRF
database [GN04], and h′0 is the mean log-inverse camera

response function. While n = 3 log-PCA terms already ex-
plain 99.6% of the energy [KP04], we use 25 terms to better
model irregular and uncommon camera response functions.
Each x′ ∈ N (x) in Equation (3) provides a linear equation
in terms of the unknowns logκx and the n = 25 log-PCA
coefficients ci. Combining the linear equations in a single
system, and assuming sufficient variety in pixel values in
each patch, allows us to solve for the n+ 1 unknowns us-
ing a linear least squares solver. To improve the stability and
to ensure sufficient coverage of the available pixel range, we
consider the neighborhoods around m different pixel loca-
tion xk, k ∈ {0..m− 1}, and solve for the n+m unknowns:
the n = 25 coefficients and the m different logκxk scale fac-
tors (one for each patch).

The final camera response function can then be com-
puted by exponentiating and inverting the obtained function:
f = (expg)−1. However, this is only a partial camera re-
sponse function since the full range of pixel values might
not be covered in the the m patches (or even in the target
image I). Furthermore, there exists an ambiguity between
the partial camera response function and the scale factors κ:
(g+ γ)− (logκ+ γ) = logEs for any γ. Hence, the partial
camera response function is only determined up to an un-
known scale factor. To expand the range of the recovered
partial camera response function, we linearly extrapolate the
camera response function below the recovered lower limit of
the range to the origin. However, due to the unknown scale
factor, we cannot extrapolate beyond the upper limit, and
simply cut of the response function at the upper limit of the
range.

In some sense, our solution can be seen as inferring the
camera response function and “exposures” (i.e., scale fac-
tors) from a set of m tiny “image-pairs” (i.e., patches).

Different Viewpoint The above algorithm easily extends
to the case where the viewpoint between the source Es and
target image It (and thus Et ) differ by introducing an addi-
tional function φt→s that maps pixels in a target patch to the
corresponding pixels in the source patch. We can then re-
formulate the local approximation: Et(x′)≈ κxEs(φt→s(x′))
for x′ ∈ Nt(x), a small neighborhood around x in the target
image, which can be solved using a similar strategy as for
the fixed viewpoint.

The direction of the mapping (from target coordinates to
source coordinates) is critical, since such a mapping will
remap integer pixel coordinates to fractional coordinates, re-
quiring an interpolation to obtain the corresponding pixel in-
tensity. Consequently, such a warping operation will only be
correct when executed on radiometrically linear pixel inten-
sities (i.e., the source image).

Patch Selection and Mapping A critical component in the
above algorithm is the selection of the patches and the corre-
sponding mapping functions. We desire patches with a rich
variation in pixel values that can be reliably corresponded
between the source and target images. We propose to use
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Figure 2: Outlier Rejection. Recovered camera response
function (red) with corresponding reference camera re-
sponse function (black) from the Desk example shown in
Figure 1 before and after outlier rejection. The false color
cloud represents the recovered pixel radiance for each pixel
in the patches (times the corresponding patch scale factor).

33× 33 pixel-neighborhoods (approximately 1% of the im-
age resolution) around the 200 best matching SIFT corre-
spondences [Low04]. Such correspondences are naturally
selected in areas of rich texture, ensuring a rich variety in
pixel values in the selected patches. We found that a 33×33
window offers a good balance between providing sufficient
linear equations (Equation (3)), providing sufficient overlap
between the different patches (in terms of pixel values) to tie
the different scale factors together, and minimizing the error
introduced by the 1D linear subspace approximation (i.e.,
larger patches exhibit larger approximation errors). Further-
more, we allow different 33× 33 windows to overlap, and
include each in the linear system (Equation (3)) with their
respective logκxk factor.

To obtain a subpixel accurate alignment and to compen-
sate for any non-linear mapping between the source and tar-
get patch, we compute SIFT flow [LYT∗08] between double
sized (i.e., 65×65) windows in the source and target image,
and warp the source patch to the target patch. We reject cases
for which the inner 33×33 neighborhood contains pixels for
which SIFT flow failed to find a corresponding source pixel.
We employ a 65× 65 initial window to support shifting (to
compensate for misalignments) and scaling (due to differ-
ences in camera distance) of pixel values from outside the
targeted 33×33 window.

Outlier Rejection The above algorithm assumes that the
change in pixel values in a small patch can be explained by
a 1D linear subspace. However, this is not always the case
(see Section 5). Patches that cannot be well represented by
the proposed model can adversely affect the quality of the
recovered partial camera response function. To remove such
outliers, we employ the following two-step strategy. Initially,
we compute a candidate camera response function using all
patches. We then compute for each patch the fitness of the

proposed camera response function:

ε
2(x) = ∑

x′∈Nt (x)

(
h′0(It(x

′)+
n

∑
i=1

cih
′(It(x′)

− logEs(φt→s(x′))− logκx)
)2

. (4)

Next, we reject any patches for which its corresponding fit-
ness ε

2(x) exceeds v times the variance, where v ranges from
2 to 3 depending on how conservative we want outlier rejec-
tion to be. Finally, we recompute the camera response func-
tion using only the inliers. The key assumption is that the in-
liers outnumber the outliers, and thus that the initial camera
response function can serve as an indicator whether a patch
follows the model. Figure 2 shows an example of a recov-
ered camera response function (red) compared to a reference
camera response function (black) before and after outlier re-
jection for the Desk example shown in Figure 1. Because
we can only recover the partial camera response function up
to an unknown scale factor, we apply a global scale factor
that minimizes the difference between both. Furthermore,
we also plot the recovered relative radiance values of each
pixel in each patch (times the scale factor κxk ). Ideally, the
recovered relative radiance should fall on the reference cam-
era response function, but instead it forms a “cloud” around
the reference camera response function due to the 1D sub-
space approximation, alignment errors, and camera noise.
The (horizontal) extent of the “cloud” depends on the pixel
values present in the patches, and thus this scale depends on
the scene and camera settings (e.g., exposure).

4. Validation & Results

Results We demonstrate our method on a variety of scenes
(Figure 6). For each example in Figure 6, we show (from
left to right): the radiometrically calibrated source image,
the resulting radiometric transfer result, a ground truth lin-
earized image, a false color difference image of the former
two, and a comparison of the recovered partial camera re-
sponse function (red) to the ground truth camera response
function (black). Pixel values that fall outside the range of
the partial camera response function are set to white; we
also highlight the discarded pixels in the inset. The refer-
ence linearized image is computed by applying the ground
truth camera response function to the target uncalibrated im-
age. We compute the ground truth camera response function
from an exposure stack using the method of Kim and Polle-
feys [KP04]. For all of our results, we assume all three color
channels share the same camera response function, allowing
us to triple the number of equations per patch. To provide a
meaningful qualitative and quantitative comparison, we op-
timize for the optimal global scale factor that minimizes the
differences between the reference and recovered camera re-
sponse function; we also apply the same global scale factor
to the radiometric transfer result.

Both the source and target images for the examples in Fig-
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Table 1: Summary of the absolute and relative RMSE of the
results in Figure 6

Name Absolute Relative
Brick Building 0.000961 1.6%
White House 0.000708 1.3%

Store 0.002698 6.2%
Church 0.001638 2.6%
Desk 0.001827 11.1%

Magazines 0.002920 6.5%
Magazines II 0.002214 7.0%

Flash 0.000585 6.0%

ure 6 are captured with a Nikon 700D camera. We briefly
summarize the different scenes (from top to bottom; see also
Table 1):

1. The Brick Building scene exhibits significantly differ-
ent lighting and viewpoint between source (sunrise with
strong shadows on the building) and the target image
(noon on a clear day). The RMSE and relative error of the
radiometric transfer are 0.000961 and 1.6% respectively.

2. The White House photographs are captured with a greater
difference in viewpoint than the Brick Building, and un-
der different lighting conditions: overcast sky (source)
and clear sky (target). The RMSE and relative error are:
0.000708 and 1.3%.

3. The Store example is captured at approximately the same
time of the day, but from a different viewpoint. The tar-
get image contains a significant portion not visible in
the source image, which is correctly radiometrically lin-
earized. The RMSE is 0.002698, and the relative error is
6.2%.

4. The Church is captured at different times of the year (Fall
versus Spring). Note that the target image also contains
a parked car not present in the source image. With the
exception of the pixels outside the recovered range, this
new object’s radiance is recovered correctly. Additionally,
this demonstrates that our method can handle significant
changes between the input and target scene. The RMSE of
the radiometric transfer is 0.001638, and the relative error
is 2.6%.

5. The Desk source image is illuminated only by the LCD
panel in the background, and the target is illuminated by
office lighting. Note that besides differences in lighting
and view, the directly visible pixels on the LCD panel are
also different. This demonstrates that our method is robust
to some degree in change to the scene. The RMSE and rel-
ative error of the radiometric transfer result are: 0.001827
and 11.1%. Note, the large relative error is mainly due to
the many dark pixels.

6. The Magazines are captured under identical lighting con-
ditions, but from different viewpoints. This result shows
that the proposed method also works for non-diffuse ma-
terials (i.e., glossy magazine covers). The RMSE of the

Source A Source BTransfer from A Transfer from B
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Figure 3: Stability Validation. False color difference image
between the radiometric transfer results from two different
source exemplar images with significantly different lighting
and view conditions.

radiometric transfer is 0.002920, and the relative error is
6.5%.

7. The Magazines II example is captured under similar con-
ditions as the Magazines, except that the order of the mag-
azines is different between the source and target images.
The RMSE of the result is 0.002214, and the relative error
is 7.0%.

8. The Flash example demonstrates a radiometric transfer
from a scene under ambient lighting to a scene illumi-
nated by the camera flash only, illustrating the robustness
of our method to drastic changes in lighting. The RMSE
and relative error are: 0.000585 and 6.0%.

Stability To validate the stability of radiometric transfer,
we compute the radiometric linear version of the target im-
age of the Brick Building from two different source images
with vastly different view, distance, and lighting conditions.
The resulting radiometric linear images are compared in Fig-
ure 3. We rely on SIFT flow to compensate for the differ-
ences in distance and thus global scale of the image features.
As can be seen, the recovered transfer from both source im-
ages are visually similar, indicating that our method is robust
to different inputs.

Robustness to Camera Model We validate the robust-
ness of the proposed method with respect to different cam-
era models by simulating the acquisition of the target im-
age for each of the camera response functions in the DoRF
database [GN04] on the Brick Building and Magazines
scenes from Figure 6. We then use the proposed radiomet-
ric transfer method to linearize the simulated target im-
ages, and compare the resulting images with the ground
truth reference. The mean and variance of the RMS errors
over the different camera response functions are 0.0022 and
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Figure 4: Transfer between Different Camera Models. Robustness validation of radiometric transfer between three different
camera models: Nikon D700, Canon 600D, and Canon 60D.

4.19×10−6 for the Brick Building example, and 0.0036 and
8.66× 10−6 for the Magazines example. This shows that
the proposed method is robust to a wide variety of camera
response functions.

Figure 4 shows a cross-validation of captured radiomet-
rically linear/non-linear photographs obtained with three
different camera models (Nikon D700, Canon 600D, and
Canon 60D) of the Brick Building for a wide variety of view-
points and lighting conditions. As can be seen, our method is
able to accurately recover the camera response functions and
linearize the target photographs for various combinations of
camera-pairs; the relative error is below 3% on all examples.

Robustness to Lighting We validate the robustness of our
method with respect to varying lighting conditions using the
WILD database [NWN02] which contains a large selection
of radiometrically linearized images of an urban scene under
a wide variety of weather (and thus lighting) conditions. We
select 70 random image pairs from the clear weather sub-
set and simulate capture of the target image with a randomly
selected camera response function from the DoRF database.
Next, we recover the partial camera response function and
radiometrically linearize the target image using the other im-
age as the source. We show four selected pairs and the corre-
sponding recovered camera response functions in Figure 5.
Of the 70 image pairs, 50 yielded a successful transfer re-
sult (Figure 5, first three columns). 20 image pairs did not
result in a successful transfer; the last column in Figure 5
shows such a case. The majority of the failure cases is due
to an insufficient number of reliable SIFT matches, mainly
caused by large dark regions (and thus little texture) due to
shadows. The average and variance of the RMS errors are

0.0082 and 2.79× 10−4 for the full 70 cases, and 0.0053
and 7.55×10−6 for the 50 successful transfers.

5. Discussion

1D Linear Subspace Model A key assumption in our
method is that the change in appearance of a small image
patch (viewed from different viewpoints and under different
lighting conditions), spans a 1D linear subspace (after un-
warping to correct for geometrical distortions). To better un-
derstand under which conditions this assumption holds, we
express the appearance of a patch’s pixel E(x,ωo) in terms
of the underlying surface normal n(x), material properties
fr(x,ωo,ωi), and incident lighting L(x,ωi) at the surface lo-
cation x viewed from a direction ωo:

E(x,ωo) =
∫

Ω

fr(x,ωo,ωi)L(x,ωi)max(n(x) ·ωi,0)dωi.

(5)
The 1D linear subspace assumption essentially factors the
patch’s appearance in a spatially dependent component P(x)
and a position-independent component κ =

∫
K(ωi,ωo)dωi:

E(x,ωo)≈ P(x)
∫

ω

K(ωi,ωo)dωi. (6)

To derive the exact form of the terms κ and P(x), and to
better understand the conditions under which this approxi-
mation is valid, we consider each of the three components in
in Equation (5) separately:

• Material properties fr(x,ωo,ωi): Assuming that the out-
going direction is constant within a patch, we can fac-
tor the material properties in a position dependent albedo
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Figure 5: Robustness validation of radiometric transfer under different lighting conditions. Four selected results from
transfers between simulated captures from the WILD database [NWN02] and a random camera response from the DoRF
database [GN04]. The first three columns show successful transfer results under vastly different lighting conditions between the
source and target image. The last column shows a failure case where insufficient SIFT features were found.

function α(x) and a normalized bidirectional reflectance
distribution function ρ(ωi,ωo). While such a factorization
is exact for any monochromatic material model such as
the common Lambertian surface reflectance model (e.g.,
with spatially varying albedo), it is only valid for a re-
stricted form of the more general dichromatic surface re-
flectance model (i.e., a linear combination of diffuse and
specular surface reflectance). In particular, this factoriza-
tion is only valid if relative ratio of diffuse and specular
albedo remains constant over the patch: r ≡ αs/αd , then
α(x) = αd(x), and ρ(ωi,ωo) = ρd(ωi,ωo)+ rρs(ωi,ωo).
• Lighting L(x,ωi) can be made position independent by

assuming distant lighting: L(x,ωi) ≈ L(ωi). Hence, the
lighting is the same for all points in a patch. This excludes
situations where a shadow edge crosses the patch or other
strong position-dependent changes in the incident light-
ing. However, this does not imply identical incident light-
ing over all patches.
• Geometric Term max(n(x) · ωi). Except for the case

where the surface normal is constant over the patch (i.e.,
n = n(x)), the geometric term has both angular as well as
positional (surface normal) dependencies. Consequently,
the 1D subspace assumption only holds when the surface
normals are constant within a patch.

Based on the above analysis, we can refine the the terms K

and P in Equation (6) as:

P(x) = α(x), (7)

K(ωi,ωo) = ρ(ωi,ωo)L(ωi)max(n ·ωi). (8)

While theoretically only valid under the above assump-
tions, we found that in practice, small deviations from these
assumptions can still be resolved in a least squares sense
over many patches. Figure 1 (bottom-right) shows the ap-
proximation error for an office scene under different light-
ing conditions: for each pixel in the image, we compute
the RMS error for the optimal scale factor κ in a 33× 33
pixel-window. The majority of large errors occur in areas
with strong deviations from the assumptions such as geomet-
ric discontinuities (e.g., edge of blanket) and across shadow
boundaries (e.g., monitor stand).

Limitations The proposed method relies on a sufficient
number of reliable SIFT correspondences that cover the ma-
jority of the pixel-intensity range in the target image, and
SIFT-flow for fine-scale alignment. For scenes with little tex-
ture or for scenes recorded from radically different views
or under extremely different lighting conditions, radiomet-
ric transfer can fail due to an insufficient number of reliable
correspondences or inaccurate fine-scale alignment.

While our method is theoretically only valid when the sur-
face normal does not vary within a patch, in practice it is ro-
bust to minor variations in surface normal (and thus depth)
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due to the least squares fitting of the partial camera response
function. However, our method can fail for scenes that con-
sist mostly of fine details with significant depth discontinu-
ities such as photographs of flower beds.

Additionally, the recovered camera response function
is limited to the pixel-intensity range contained in the
patches. Clearly, oversaturated and undersaturated pixels
cannot be linearized; we exclude pixel-intensities outside the
[0.04,0.96] range for both partial camera response curve re-
covery as well as linearization. Furthermore, the obtained
camera response function might only cover a small portion
of the intensity domain. However, we found that our algo-
rithm typically finds a valid response function for most of
the pixel range in the target image, and hence even with a
partial camera response function, we can still obtain a good
radiometric linearization.

Finally, we assume that the camera response function is
invariant over the image, and that it is the only non-linear
transformation applied to the target image. Other non-linear
transformations introduced by chromatic aberrations, edge
sharpening or adaptive demosaicing can bias the recovery of
the camera response function. We currently, rely on statis-
tical averaging over the various patches to mitigate the im-
pact of such additional non-linear enhancements. However,
this is not guaranteed and a skewed error distribution could
aversely affect the accuracy of the recovered response func-
tion.

6. Future Work & Applications

The proposed method assumes that the appearance of an im-
age patch can be well explained by a 1D linear subspace.
Expanding this to 2D linear subspaces to better character-
ize the effects of general dichromatic reflectance functions
would be an interesting avenue for future research. Further-
more, the proposed solution is akin to classical radiomet-
ric calibration from exposure stacks. This suggests that the
proposed method could be adapted to fit in the robust low-
rank framework of Lee et al. [LMS∗13]. Finally, the pixel-
accurate alignment requirement of small image patches is
the main source of errors and failure cases. For future work,
we would like to investigate methods, such as histogram-
based strategies, to alleviate this requirement.

We believe our method paves the way for a number
of novel radiometric calibration applications. Most existing
work in radiometric calibration focuses on recovering the
camera response function from multiple images of a scene
taken from similar viewpoints and under similar lighting
conditions. This implies direct access to the camera and full
control over the target scene. However, this is not the case for
large community photo-collections or historical photographs
where the set of camera models is too large to fully sample
or where the original camera model does not exists anymore,
but where the depicted scene is still accessible. We briefly

describe how radiometric transfer could be applicable in two
such future applications:

• Large Photo-collections have recently been recognized
as a unique big data source of visual information. Typ-
ically, the majority of the information in such photo-
collections is not radiometrically linear, and prior work, in
the absence of convenient and robust linearization meth-
ods suited for large photo-collections, has relied on ad-
hoc methods to linearize the images (e.g., a gamma-
correction [LBP∗12]). However, we observe that for large
image collections depicting a particular landmark it is
likely that a small subset of the dataset is already radio-
metrically linear (e.g., single image radiometric calibra-
tion, known camera model/response function, etc.). Prior
work on radiometric calibration of large image collec-
tions [DS11b, DS11a, KAGN08] has ignored this poten-
tially rich source of information. One possible strategy for
leveraging such information is to gradually grow the set of
radiometrically calibrated images using the proposed ra-
diometric transfer method which is robust to changes in
view and lighting typically observed in such large photo-
collections.

• Historical Photographs offer a window into the past.
However, the cameras used to capture these images are not
available anymore, or the exact process used to develop
the film has been lost. Knowledge of the camera response
function could help in identifying the camera model or
process used to create these photographs. In the case when
the scene still exists (e.g., a scenic subject or building),
HDR rephotography combined with the proposed radio-
metric transfer method could recover the historical cam-
era response function.

7. Conclusions

We presented a lightweight method for radiometrically lin-
earizing an uncalibrated target image based on an exemplar
calibrated photograph of the same scene recorded from a dif-
ferent viewpoint and under different lighting conditions. Key
to our method is the observation that for many patches, their
change in appearance (from different viewpoints and light-
ing) forms a 1D linear subspace. This allows us to refor-
mulate the problem in a form similar to classic radiometric
calibration from an exposure stack.
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Figure 6: Radiometric Transfer Results. Left to right: radiometrically calibrated source image, radiance transfer result (pixels
outside the recoverable range are marked in white – also highlighted in the inset), reference linearized target image obtained by
applying the (inverse) ground truth camera, false color difference, and camera response curve (recovered in red, ground truth
in black). In addition, the recovered pixel radiance (times scale factor) for each pixel value is included in the right plot. Ideally
this should form a tight ’cloud’ around the ground truth camera response curve.
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