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ABSTRACT
In this paper we present CRF-net, a CNN-based solution for esti-
mating the camera response function from a single photograph.
We follow the recent trend of using synthetic training data, and
generate a large set of training pairs based on a small set of radio-
metrically linear images and the DoRF database of camera response
functions. The resulting CRF-net estimates the parameters of the
EMoR camera response model directly from a single photograph.
Experimentally, we show that CRF-net is able to accurately recover
the camera response function from a single photograph under a
wide range of conditions.
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1 INTRODUCTION
Radiometric calibration is a necessary pre-processing step for many
computer vision and computer graphics algorithms that rely on
a linear relation between pixel intensities and scene irradiance.
While the raw values returned by image sensors are radiometri-
cally linear to observed irradiance, a non-linear tone-mapping (i.e.,
camera response function) is applied by the camera to produce a
photograph that matches human perception of the scene. Many
existing radiometric calibration methods require direct control over
the capture process (e.g., adding a calibration target [4] or capturing
an exposure stack [5, 24, 26]). Once the camera response function
is known, radiometric linearization (i.e., undoing the non-linear
transformation of the camera response function) is trivial. However,
with the proliferation of computer vision methods that rely on com-
munity datasets without knowledge of the camera or control on the
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capture process, robust direct single image radiometric calibration
has become indispensable.

In the past decade several ingenious single image radiometric cal-
ibration methods have been proposed that rely on carefully selected
cues such as color mixtures at edges [22, 23, 28], the (a)symmetry
of noise distributions [25, 30], the reflectance properties of human
faces [21], and temporal changes during a single exposure [31].
However, these cues are not universally present in all images, and
therefore these methods are not practical for large scale image-
databases mined from community repositories. Current practice for
such large image sets is to apply a gamma correction during pre-
processing instead of a full radiometric calibration. While gamma
correction is better than directly using tone-mapped pixel inten-
sities, it is still a poor approximation for most camera response
functions [28].

In this paper, we propose a more robust single image radiometric
calibration method based on convolutional neural networks (CNN),
named CRF-net (or Camera Response Function net). The proposed
network takes as input a single well-exposed photograph, and out-
puts an estimate of the camera response function in the form of
an 11-parameter EMoR (Empirical Model of camera Response func-
tions) model [10]. For training CRF-net, we rely the DoRF (Database
of Response Functions) database of 201 measured camera response
functions [10] to synthesize a large set of tone-mapped images
from a much smaller set of radiometrically linear images. Moreover,
we introduce a simple oracle for predicting which image windows
are likely to produce good results. We experimentally validate the
accuracy and robustness of the proposed CRF-net.

2 RELATEDWORK
Radiometric calibration aims to recover the camera-dependent re-
sponse function that relates pixel intensities and their underly-
ing relative scene irradiance. Common representations for camera
response functions are gamma curves [24], generalized gamma
curves [28], non-parametric (i.e., tabulated) functions [5], polynomi-
als [26], a data-driven model [10], and a log-PCA model [16]. Early
work on radiometric calibration assumed full control over the cam-
era, and exploited the relative irradiance relation in a series of differ-
ently exposed images of a static scene [5, 24, 26]. Subsequent devel-
opments have relaxed the strict-alignment requirement [9, 14, 17],
allowed for non-static lighting [13], and estimated camera response
functions from community photo-collections [6, 7, 19, 27].

All these prior methods rely on multiple input images to estimate
the camera response functions. Lin et al. [22] were the first to
demonstrate radiometric calibration from a single image by finding
the camera response function that minimizes the deviation from
the expected linear mixture of colors at edges, and in follow up
work [23] on higher order edge information in grayscale images.
Ng et al. [28] observe that identifying good edges is difficult, and
instead rely on the more general and easier to identify locally planar
irradiance points. Similar to edge information, Wilburn et al. [31]
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Output Size Configuration Short-cut
114 × 114

[
7 × 7 × 64

]
, stride 2

57 × 57 max pool 3 × 3, stride 2

57 × 57


1 × 1 × 64
3 × 3 × 64
1 × 1 × 256


×1

[
1 × 1 × 256

]

57 × 57


1 × 1 × 64
3 × 3 × 64
1 × 1 × 256


×2 identity

29 × 29


1 × 1 × 128
3 × 3 × 128
1 × 1 × 512


×1

[
1 × 1 × 512

]

29 × 29


1 × 1 × 128
3 × 3 × 128
1 × 1 × 512


×1 identity

23 × 23 average pool 7 × 7, stride 1
11 fully connected

Table 1: Summary of the DeepDetect’s [1] ResNet-18 archi-
tecture used for CRF-net.

look at the temporal mixing of two irradiances (e.g., linear motion
blur). Instead of edge information, Matsushita et al. [25] exploit the
asymmetry in the distribution of camera noise introduced when
applying the camera response function. However, extracting noise
distributions for the whole pixel range is often difficult. Instead of
a noise profile, Takmatsu et al. [30] rely on the variance of image
noise estimated from uniform colored regions. Recently, Li et al. [21]
proposed to exploit the intrinsic properties of human faces –more
precisely, the low-rank nature of skin albedo gradients– to estimate
the camera response function from a single photograph containing
a human face.

The above single photograph radiometric calibration methods
require very specific cues to be present in the image in order to ac-
curately estimate the camera response function. These cues are not
universally present in all photographs and/or are difficult to reliably
detect, potentially resulting in a suboptimal (or failed) radiometric
calibration. The proposed CRF-net does not rely on a single specific
information cue, and therefore is more generally applicable.

A related, complementary, topic to radiometric calibration is
inverse tone-mapping, where the main goal is to recreate a high dy-
namic range photograph from low dynamic range input, including
oversaturated pixels. Concurrent work in inverse tone-mapping
has explored CNNs as a tool for inferring plausible radiance values
for oversaturated pixels [8, 33], assuming a known camera response
function or a particular type of input (e.g., panoramic images with
visible sun). The proposed CRF-net is complementary; it ignores
oversaturation while recovering the camera response function for
general scenes.

3 CRF-NET
3.1 Radiometric Calibration
The goal of radiometric calibration is to recover the camera response
function (f ) that translates measured scene irradiance (I ) to pixel
intensities (M):

M = f (I ). (1)

Given the inverse function д = f −1, the original radiometrically lin-
ear image I can then be recovered (up to a scale factor and ignoring
over and underexposed pixels) from the captured photograph.

Estimation of the camera response function from a single pho-
tograph is an ill-conditioned problem. We therefore simplify the
problem by assuming that the same camera response function is
applied to each color channel separately, and that it is the only
source of non-linear transformation between the measured scene
irradiance and the reported pixel intensities. While, this assumption
fails to account for any non-linear effects due to gamut mapping
of oversaturated pixels [2, 3, 15, 32], we found it to work well in
practice for photographs with a moderate dynamic range (and thus
a limited amount of under- and oversaturation). We target radio-
metric calibration of photographs typically encountered in online
photo-collections. The vast majority of these photographs are cap-
tured with consumer or cell-phone cameras with auto-exposure
and auto-white balancing enabled. We will therefore focus on well-
exposed and correctly balanced photographs, as these provide the
most useful information for typical computer vision and computer
graphics applications that rely on radiometric calibration.

In contrast to prior work that relies on very specific cues to
extract the camera response function from a single photograph, we
take a learning based approach to discover descriptive features that
can predict the camera response function (output) from a single
photograph (input). In particular, we leverage convolutional neural
networks to perform radiometric calibration. The resulting net-
work, named CRF-net, directly estimates the parameters (i.e., PCA
weights) of the EMoR camera response function model [10]. A CNN
based solution could also directly output a radiometrically linear
image instead of estimating the camera response function and com-
puting the radiometrically linear image in post-processing as we
propose. However, while directly generating the radiometric linear
image could potentially model other types of (spatially varying)
non-linearities, it would consequently also be more susceptible to
produce visually distracting spatial artifacts. While more restrictive,
estimating a camera response function guarantees a plausible and
consistent radiometrically linear image.

3.2 CRF-net Architecture
CRF-net follows the powerful ResNet-18 architecture [11] from the
DeepDetect library [1] implemented in Caffe [12]. This architecture
differs from the 18-layer ResNet introduced by He et al. [11]; Deep-
Detect’s ResNet-18 architecture is a cut-out of He et al.’s 50-layer
ResNet-50.We opt for this architecture because, based on prior work
in single image radiometric calibration, we expect mostly local pixel
relations (e.g., edge information) to inform radiometric calibration.
Furthermore, a shallow network with small filters also reduces
the amount of required training data, greatly facilitating training.
Table 1 summarizes the architecture. We also experimented with
other network architectures such as VGGnet [29] and AlexNet [18],
but these architectures did not produce good results. We add a fully
connected layer on top of ResNet-18 that outputs the weights of
the 11 largest PCA components of the EMoR model. While Gross-
berg and Nayar [10] report that a 3 parameter EMoR model already
covers 99.5% of the energy, we opt to use an 11 parameter model
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as this produces nearly perfect matches on the most challenging
camera response functions in the DoRF database (see [10], Fig. 7).

CNNs are often restricted to input images of limited resolution.
Likewise, the proposed CRF-net also only operates on 227 × 227
pixel windows. However, radiometric calibration typically deals
withmuch larger images.We therefore select and separately process
10 well-chosen 227× 227 windows from the input image, and aggre-
gate the corresponding estimates. Note that we cannot simply scale
the input images to a smaller resolution because the non-linearity
of the camera response function would destroy the relation between
the (averaged) pixel intensities and the corresponding (averaged)
scene irradiance: I1 + I2 = д(M1) + д(M2) , д(M1 +M2). However,
an ill-chosen 227×227window (e.g., covering only the sky) will also
not produce good results. We posit that a “good” window should
cover a large range of (union of) red, green, and blue intensities.
We therefore repeatedly select and test random candidate windows,
until we have found 10 windows whose pixel value histograms (i.e.,
a single histogram per window aggregating all color channel values
in 256 bins) contain at least 220 non-empty bins each. If after a cer-
tain number of attempts no such windows are found, then we select
the 10 windows that best covered the intensity range. However, in
such a case we expect a suboptimal radiometric calibration. Finally,
we aggregate the estimated camera response functions from the
10 well-chosen windows, by removing the outliers and averaging
the corresponding parameters of the remaining estimated camera
response functions.

3.3 Training
Radiometric calibration is significantly different from other prob-
lems, such as object recognition, intrinsic decomposition, etc., on
which CNNs have successfully been applied. Therefore, we cannot
refine an existing network. Consequently, we are forced to train
CRF-net from scratch, and thus we require an extensive training
dataset. Obtaining a large dataset of photographs for a large vari-
ety of scenes and capture conditions, together with corresponding
ground truth camera response functions from a diverse set of cam-
era models, is time-consuming and difficult. Instead we follow the
recent trend of using synthetic training data.

We have collected a set of 595well-exposed radiometrically linear
“RAW” photographs, captured with 3 different camera models (i.e.,
Canon EOS 600D, Nikon D800, and Nikon D300S), from a variety of
scenes (approximately 60% indoor scenes and 40% outdoor scenes)
captured under a variety of conditions (e.g., clear sky, overcast sky,
night time, etc.). From this set of radiometrically linear images, we
generate corresponding tone-mapped photographs for each of the
201 camera models in the DoRF database [10]. To reduce storage
requirements and minimize disk overhead during training, we scale
the radiometrically linear image first by an integer factor such that
the smallest dimension is just larger than 227. We deliberately only
apply an integer scale factor such that each (raw) image pixel is only
assigned to a single tone-mapped image pixel. Furthermore, since
CRF-net requires 227×227 pixel windows (and we cannot scale tone-
mapped images), we select 10 well-chosen pixel windows using the
same intensity criterion as detailed in subsection 3.2. Furthermore,
we desire to train CRF-net for reasonably exposed images, such as
those produced by using the auto-exposure function on a consumer

camera; severely underexposed or overexposed image are unlikely
to contain sufficient information to retrieve the camera response
function and/or to extract any meaningful image information. We
therefore precompute for each camera response curve in the DoRF
database a scale factor ’scr f ’ that generally produces well-exposed
images, roughly approximating the effect of ’auto-exposure’. To
further avoid biasing CRF-net to relate overall brightness and the
camera response function, we produce 5 slightly different exposed
versions by randomly sampling an effective exposure in the range:
[scr f − 0.4, scr f + 0.4]. In total, our training dataset consists of
595× 201× 10× 5 = 5, 979, 750 image windows with corresponding
camera response functions.

In addition to the training dataset, we also generate a validation
dataset, but using a different set of 20 radiometrically linear RAW
images captured with 3 different camera models, of which one is
shared with the training dataset (i.e., Canon EOS 600D), and two
are new camera models (i.e., Nikon D700 and Canon EOS 60D). We
generate synthetic photographs from this set of 20 images using
again all 201 camera models from the DoRF database and with 5
different exposures selected in a similar fashion as for the training
dataset.

As noted before, we train CRF-net from scratch. However, we
found that directly training CRF-net fails to converge to a suitable
minimum. To provide a better starting point for training, we first
train a slightly different variant that instead of outputting the EMoR
parameters, outputs a likelihood that a photograph was generated
by each of the camera response functions in the DoRF database (i.e.,
a classification network where the fully connected layer outputs
201 likelihoods instead of the weights of the 11 PCA components).
Due to the similarity of many camera response functions in the
DoRF database, the accuracy of this classification network is poor
(only 26% of the photographs are correctly classified). However,
it serves as a better starting point to refine the full CRF-net. We
train the classification network using the standard classification
loss function, and with the following hyperparameters: learning
policy “step”, base learning rate of 0.01, a step size of 500, 000,
2, 000, 000 maximum number of iterations, momentum 0.9, and a
weight decay of 0.0005. After convergence, we replace the fully
connected layer of the classification network, copy the trained CNN
parameters, and directly use the Euclidian distance between the
estimated and ground truth PCA weights of the camera response
function as the loss function. We use the same training images and
hyperparameters to refine CRF-net from the classification network,
except for: base learning rate 0.0001, step size 20, 000, andmaximum
number of iterations 25, 000.

4 RESULTS
We will employ two kinds of error metrics to gauge the accuracy
of the recovered camera response functions. The “estimation er-
ror” is defined as the L2 distance between two normalized curves
(discretized in 1024 relative radiance samples as in the EMoR PCA
basis). As we represent the camera response functions using the
EMoR PCA model, we can simply, due to the orthogonality of
the PCA basis, use the equivalent L2 distance between the corre-
sponding PCA weights. This error relates to RMSE of the camera
response functions as: L2 =

√
1024 × RMSE. While the estimation
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Figure 1: Three examples of photographs and corresponding ground truth (purple) and estimated (green) camera response
functions. The estimation errors are: 0.326, 0.267, 0.491, and the linearization errors are (×10−2): 0.649, 0.835, 1.482.

error indicates how similar both camera response curves are, it
does not take in account whether the whole range is meaningful
with respect to the target image. For example, the error outside the
range of pixel values present in the image has little influence on
the accuracy at which the image can be radiometrically linearized.
We therefore also consider the “linearization error” that is defined
as the RMSE between the images linearized by the ground truth
and estimated camera response functions. We ensure that the peak
signal in the ground truth image equals 1 (and scale the linearized
image accordingly). Hence, the reported RMSE relates to PSNR as:
−20 log10 (RMSE).

Figure 1 shows three images generated by applying a camera
response function from the DoRF database to a radiometrically
calibrated image not part of the training dataset. In addition we
show the ground truth (purple) and recovered camera response
functions (green) which are a close match.When the image contains
many oversaturated pixels or a large contrast, it becomes difficult
to find many good windows (Figure 2), resulting in a less accurate
radiometric calibration. Depending on the application, the resulting
camera response functions and/or radiometrically linearized images
might still be of sufficient quality. Over the full validation dataset,
the average estimation and linearization errors are 1.607 and 2.089×
10−2 respectively.

5 DISCUSSION
CRF-net only operates on a small 227×227window, and the content
of a window greatly affects the quality of the radiometric calibra-
tion. While we aggregate the estimates from 10 windows, it is still
instructive to know what kind of windows provide good estimates,
and how effective our selection criterion works in practice. Figure 3
compares the camera response curves estimated from a randomly
selected window (marked in red) and a window that matches our
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Figure 2: Examples of suboptimal radiometric calibration.
The left image exhibits many oversaturated pixels, whereas
the right exhibits a very high contrast. In both cases, it is dif-
ficult to find good windows that sufficiently (and uniformly)
cover the full pixel range. The respective estimation (and lin-
earization (×10−2)) errors are: 2.365 (3.037) and 3.925 (7.485).

selection criterion (marked in green). As expected, the random win-
dow that exhibits little pixel variations does not provide sufficient
cues to estimate an accurate camera response function.

To better understand the limitations of CRF-net, we furthermore
validate its robustness against the following factors: variations in
exposure, image/feature scale, color vs. grayscale, measurement
noise, sharpness/blur, and real photographs (i.e., non-synthetic
images).
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Figure 3: Estimated camera response curves from a single
window: a randomly selected one (red) and one selectedwith
the proposed selection criterion (green).

Exposure 0.6 0.8 1.0 1.2 1.4
Estimation 1.621 1.611 1.607 1.647 1.676
Linear. (×10−2) 2.551 2.331 2.089 2.792 2.999

Table 2: Estimation and linearization errors over the valida-
tion dataset for different exposures scaled relatively with re-
spect to the ’ideal’ auto-exposure.

5.1 Exposure
We scale the radiometrically linear input images of our valida-
tion set by [0.6, 0.8, 1.0, 1.2, 1.4] and compute the evolution of the
estimation and linearization errors for different exposure scales (Ta-
ble 2). From this we conclude that CRF-net is robust for moderate
deviations from the optimal exposure, as long as there are windows
that cover a sufficiently large range of pixel intensities uniformly.
Unless severe, oversaturation only affects local regions and thus
we can still find good windows for recovering the camera response
function. Undersaturation, on the other hand, typically affects the
overall brightness of the whole image, making it difficult to find
good windows. Consequently, CRF-net is more sensitive to under-
saturation. Camera response functions that tend to overly boost
the contrast of the image (e.g., Figure 2, right) suffer from a similar
problem as undersaturation. Unlike undersaturation, there exist
windows that fulfill our selection criteria. However, the histograms
for these windows exhibit a severely skewed distribution, and thus
provide insufficient information for certain regions of the intensity
range to reliably estimate the camera response function.

5.2 Scale
To ensure CRF-net is not overtrained for a specific image-feature
size, we compute the estimation and linearization error on the
validation dataset, with double and quadruple resolution. As the
images in the validation and training dataset are synthesized by
downscaling the original captured RAW images by at least a factor 8,
we can easily generate artifact-free higher resolution versions of the
corresponding validation images directly from the original captured
images (instead of upsampling the images from the validation set).
The average estimation (and linearization) errors (1.864 (2.701 ×
10−2) and 2.144 (3.029×10−2) for 2× and 4× respectively) compared
to the unscaled errors (1.607 (2.089 × 10−2)) increase slightly. We
suspect that the slight increase in error is due to a smaller coverage
of the relative scene area with increasing resolution (the window
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Figure 4: Radiometric calibration of colored versus grayscale
images. Grayscale images exhibit less variation in intensity
distributions, and are therefore less robust to calibrate. The
top row shows a successful calibration for both color and
grayscale; the bottom row shows an example where radio-
metric calibration on a colored image succeeds, but fails on
the same grayscale image.

becomes relatively smaller compared to the depicted scene), and
thus the variety in observed pixel intensities decreases.

5.3 Grayscale
Inspired by Lin et al. [23], we also validate whether CRF-net re-
quires colored input. By removing the color information, we also
remove a significant amount of information for CRF-net to exploit.
Furthermore, the training dataset does not contain monochromatic
images, and hence CRF-net needs to extrapolate from the learned
model to process grayscale images. Figure 4 shows a comparison
between two different response functions applied to the color and
grayscale version of two images. In both cases, a successful calibra-
tion is achieved for the color images. However, the calibration on
the grayscale versions of the same images with the same camera
response function is bimodal: succeeding in one case without loss
of accuracy, and failing on the second case. The average estimation
(linearization) error on the validation set are 1.607 (2.089 × 10−2)
for the color input, and 3.546 (4.028 × 10−2) for the corresponding
grayscale versions.

5.4 Measurement Noise
Inspired by prior work that exploits the symmetry of noise distri-
butions [25, 30], we also validate the robustness of CRF-net with
respect to noise. For each image in the validation dataset, we add
normal distributed noise before applying the camera response curve.
Table 3 shows the respective errors for increasing noise variances.
These results show a degradation of the calibration accuracy with
increasing magnitude of camera noise. In general we observe that
when the noiseless calibration is very accurate, camera noise im-
pacts the radiometric calibration to a lesser degree than for cases
where the noiseless calibration is less accurate.
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Figure 5: Comparison to between Lin et al.’s single image ra-
diometric calibrationmethod [22] and CRF-net on an image
for which the former works well.

5.5 Image blur
Depending of the aperture setting, or motion in the scene, certain
parts of the image might be blurred. To validate the robustness
against blur, we apply differently sized blur filters to the radiometri-
cally linear validation images before applying the camera response
function (Table 4). From this experiment we can conclude that our
method is not sensitive to moderate amounts of blur, and robust to
strong blurring. This seems to suggest that CRF-net only weakly
relies on edge information (in contrast to [20, 22, 23]).

5.6 Comparison Prior Work
Our experiments show that CRF-net can robustly estimate the
camera response function under a wide range of conditions. A fair
comparison to prior work is difficult as it is easy to find examples
on which prior single image radiometric calibration methods fail.
Nevertheless, even a partial comparison is still instructive to better
understand the advantages and limitation of CRF-net. Figure 5
compares the estimated camera response function using CRF-net
with that obtained using the method of Lin et al. [22] on a carefully
selected photograph for which the latter works well; we found that
Lin et al.’s method did not perform well for many examples in our
validation set. This example demonstrates that under conditions
favorable to Lin et al.’s method, the proposed CRF-net produces
comparable or better results.

Currently, for linearizing large image datasets, a simple but ro-
bust gamma correction is often favored instead of existing advanced
single image radiometric calibration methods. To compare the ac-
curacy of CRF-net to gamma correction, we compute the estima-
tion (and linearization) error using both methods on the validation
dataset. The average errors are 1.607 (2.089 × 10−2) for CRF-net
versus 3.132 (5.821 × 10−2) for gamma correction. The estimation
error of CRF-net was lower in 78% (or 86% for the linearization er-
ror) of the examples in the validation set compared to naive gamma
correction. This clearly demonstrates that CRF-net is a robust and
more accurate alternative to gamma correction.

5.7 Non-synthetic Photographs
All our training data and validation data are synthetically generated
from radiometrically linear photographs captured using 3 different
cameras. This raises the question whether CRF-net is overtrained
to the characteristics (e.g., noise) of the image sensors in these cam-
eras. Furthermore, all our synthetically generated images lack the

Noise σ 2 0 0.5 1 2 4
Estimation 1.607 2.302 3.036 4.726 6.069
Linear. (×10−2) 2.089 3.359 4.419 9.128 48.20

Table 3: Estimation and linearization error over the vali-
dation dataset for different amounts of normal distributed
camera noise.

Blur σ 2 0 1 2 4 8
Estimation 1.607 1.728 2.052 2.219 2.335
Linear. (×10−2) 2.089 2.821 3.398 3.594 3.544

Table 4: Estimation and linearization error over the valida-
tion dataset for different amounts of blur.

typical post-processing steps camera manufacturers apply to make
the photograph “look good”. This also raises the question whether
CRF-net is robust to such post-processing steps. We validate its
robustness to these issues by demonstrating the recovery of the cam-
era response functions from 8 well-exposed captured photographs.
The “ground truth” camera response functions are computed from
a 3-photograph exposure stack (1 F-stop separation) for each scene
using a commercial implementation of the method of Debevec
and Malik [5]. To offer a fair comparison (i.e., same dynamic range,
samewhite-balancing, etc.), we compute the corresponding “ground
truth” linear image by applying the ground truth camera response
function to the selected well-exposed captured photograph. Since
we directly use the camera-produced tone-mapped photographs
as an input, unknown post-processing is included. Furthermore,
none of the camera models are present in the DoRF database. As
demonstrated in Figure 6, CRF-net exhibits a similar performance
on post-processed non-synthetic photographs as on the synthesized
images in the training and validation datasets

While CRF-net is primarily aimed at photographs captured with
auto-settings (e.g., exposure, aperture, white-balance, etc.), it is
nevertheless instructive to analyze the robustness of CRF-net with
respect to variations in these camera parameters. For simplicity,
we perform this analysis on a fixed scene (Figure 7 and Figure 8)
captured with a single camera (i.e., Nikon 700D). In particular, we
validate the robustness with respect to aperture (3.2 to 16.0) , ISO
(100 to 6000), lenses (50mm vs. 105mm), exposure (1/200 to 0.8
seconds) and white balance. Variations in aperture, ISO, and lenses
did not affect the estimation of the camera response functions.

As expected, CRF-net failed to produce good estimates from
severely underexposed and overexposed photographs. This con-
firms our earlier analysis on the impact of exposure on synthetic
data (subsection 5.1). However, we also noted slight variations in
accuracy for well-exposed images (Figure 7). There was no specific
pattern or correlation between the exposure and the error on the
corresponding estimated camera response function (besides over-
and underexposure). We attribute these slight differences between
the distribution of brightness values in the 227 × 227 windows; a
slight change in exposure can potentially result in a better distri-
bution. Nevertheless, CRF-net produced acceptable estimates for a
significant exposure range (1/8 to 0.8 seconds ≈ 3 F-stops).
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Figure 6: Results from CRF-net applied to a single well-exposed photograph from an exposure stack captured with different
camera models (Canon 60D (a), Nikon D700 (b,c), Canon 350D (d), Canon Powershot SX110 (e,f), Nikon D750 (g), and scanned
color print film (Fuji 100 ASA, scanned with a Kodak PhotoCD film scanner) obtained from prior work [5] (h). The respective
estimation (and linearization (×10−2)) errors are computed with respect to the response function estimated from the full ex-
posure stack: (a) 2.1758 (2.753), (b) 0.4221 (2.300), (c) 0.7224 (1.558), (d) 1.0366 (1.623), (e) 0.8234 (2.999), (f) 0.7927 (2.044), (g) 0.7517
(2.579), and (h) 1.7897 (6.730).
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Figure 7: Impact of camera exposure on estimation error.
Top: three selected exposures. Bottom Left: estimation error.
Bottom Right: estimated camera response functions of the
three images shown at the top.

We found that white balance settings significantly impact the
ability of CRF-net to estimate the camera response function. CRF-
net failed to produce a meaningful estimate for white balance set-
tings that produced an overall cooler tone (Figure 8: “Incandescent”
and “Sodium Lamp” ). However, neutral and warmer toned pho-
tographs (Figure 8: “Flash” and “Cloudy” ), which typically also
encompasses auto white balance settings, did not aversely impact
the accuracy of the estimates. As with all methods based on CNNs,
the accuracy of the result is related to how well the training data
spans the target space. When CRF-net is applied to an image-type
not represented by the training data (e.g., with different overall
color tone), an incorrect camera response function estimate is pro-
duced. Grayscale images are another example of applying CRF-net
outside the learned space.

5.8 Limitations
CRF-net makes the a-priori assumption that the camera response
curve is the only source of non-linearity. This is not the case when
non-linear gamut mapping of overexposed pixels occurs; a problem
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Figure 8: CRF-net fails to recover a meaningful camera response function for white balance settings that produce an overall
cooler (i.e., bluish) tone such as the “Incandescent” and “Sodium Lamp” white-balance settings on this test scene. In contrast,
CRF-net produces accurate estimates for white balance settings that produce an overall warmer tone (i.e., reddish) such as the
“Flash” and “Cloudy” white-balance settings.
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Figure 9: Non-linear gamut mapping of overexposed pixels
aversely affects the accuracy of CRF-net. However, ignoring
the upper 20% of the pixel range, and scaling the estimated
camera response function appropriately, still produces a rea-
sonable approximation.

more common in photographs of scenes with a large dynamic
range [2, 3, 15, 32].

Figure 9 shows an example of a scene with a large dynamic
range1. The estimated camera response curve (green) differs sig-
nificantly from the ground truth (purple) camera response curve
recovered from the exposure stack. However, we observe that es-
timation of the ground truth camera response function from the
exposure stack is unstable, and different results are obtained based
on different subsets of the stack. The instabilities seem to be most
prominent in the upper 10 to 20 percent of the pixel intensity range.
We posit that this is mainly due to non-linearities introduced by
gamut mapping of oversaturated pixels. Since the x-axis represents
relative irradiance, we can rescale the camera response function
along this axis to obtained a better match over the lower 80% of the
pixel range (cyan curve). This example suggests that, despite the
large dynamic range and non-linear gamut mapping, CRF-net can
potentially recover an accurate partial camera response function

1Source: http://resources.mpi-inf.mpg.de/hdr/calibration/pfs.html

for a large portion of the range. However, a more extensive analysis
is needed to confirm this thesis.

6 CONCLUSION
In this paper we presented a CNN-based solution for radiometric
calibration from a single input photograph. We have experimentally
verified the robustness of CRF-net for a wide range of conditions.
We believe CRF-net can serve as a valuable pre-processing step for
computer vision and computer graphics algorithms that require a
linear relation between pixel intensities and scene radiance on large
datasets mined from uncalibrated repositories. For future work, we
would like to generalize CRF-net to robustly handle variations in
white balance, as well, as grayscale exemplars, by either training
CRF-net on single channel images or by extending the training
set with different white-balanced versions of the training images
similar to how we currently include variations in exposure.
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