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Fig. 1. Physically plausible spatially varying surface appearance estimated using the proposed SA-SVBRDF-net from a single photograph of planar spatially
varying plastic (a,b), wood (c) and metal (d) captured unknown natural lighting, and revisualized under a novel lighting condition.

We present a convolutional neural network (CNN) based solution for mod-
eling physically plausible spatially varying surface re�ectance functions
(SVBRDF) from a single photograph of a planar material sample under un-
known natural illumination. Gathering a su�ciently large set of labeled
training pairs consisting of photographs of SVBRDF samples and correspond-
ing re�ectance parameters, is a di�cult and arduous process. To reduce the
amount of required labeled training data, we propose to leverage the ap-
pearance information embedded in unlabeled images of spatially varying
materials to self-augment the training process. Starting from an initial ap-
proximative network obtained from a small set of labeled training pairs, we
estimate provisional model parameters for each unlabeled training exem-
plar. Given this provisional re�ectance estimate, we then synthesize a novel
temporary labeled training pair by rendering the exact corresponding image
under a new lighting condition. After re�ning the network using these addi-
tional training samples, we re-estimate the provisional model parameters
for the unlabeled data and repeat the self-augmentation process until con-
vergence. We demonstrate the e�cacy of the proposed network structure on
spatially varying wood, metals, and plastics, as well as thoroughly validate
the e�ectiveness of the self-augmentation training process.
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1 INTRODUCTION
Recovering the spatially varying bidirectional surface re�ectance
distribution function (SVBRDF) from a single photograph under un-
known natural lighting is a challenging and ill-posed problem. Often
a physically accurate estimate is not necessary, and for many appli-
cations, such as large scale content creation for virtual worlds and
computer games, a physically plausible estimate would already be
valuable. Currently, common practice, albeit very time-consuming,
is to rely on skilled artists to, given a single reference image, pro-
duce a plausible re�ectance decomposition. This manual process
suggests that given su�cient prior knowledge, it is possible to infer
a plausible re�ectance estimate for a spatially varying material from
a single photograph.

Data-driven machine learning techniques have been successfully
applied to a wide range of underconstrained computer graphics
and computer vision problems. In this paper, we follow a similar
route and design a Convolutional Neural Network (CNN) to estimate
physically plausible SVBRDFs from a single near-�eld observation
of a planar sample of a spatially varying material under unknown
natural illumination. However, recovering the SVBRDF from a single
photograph is an inherently ill-conditioned problem, since it is
unlikely that each pixel observes a signi�cant specular response,
making it impossible to derive a full spatially varying specular
component without enforcing spatial priors. We therefore estimate
a reduced SVBRDF de�ned by a spatially varying di�use albedo,
homogeneous specular albedo and roughness, and spatially varying
surface normals.

Training a CNN to estimate such a reduced SVBRDF from a sin-
gle photograph under unknown natural lighting requires a large
set of “labeled” photographs, i.e., with corresponding re�ectance
parameters. Gathering such a training dataset is often a tedious and
arduous task. Currently, except for specialized materials, very few
databases exist that densely cover all possible spatial variations of
a material class. Unlabeled data (i.e., a photograph of a spatially
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varying material) is typically much easier to obtain. Each unlabeled
photograph contains an instance of the complex spatially varying re-
�ectance parameters, albeit it observed from a single view and under
unknown lighting. This raises the question whether we can exploit
this embedded knowledge of the spatially varying distributions to
re�ne the desired SVBRDF-estimation CNN.

We propose, in addition to a CNN-based solution for SVBRDF esti-
mation from a single photograph, a novel training strategy to lever-
age a large collection of unlabeled data –photographs of spatially
varying materials without corresponding re�ectance parameters–
to augment the training of a CNN from a much smaller set of labeled
training data. To “upgrade” such unlabeled data for training, a pre-
diction of the unknown model parameters is needed. We propose to
use the target CNN itself to generate a provisional estimate of the
re�ectance properties in the unlabeled photographs. However, we
cannot directly use the provisional estimates and the corresponding
unlabeled photograph as a valid training pair, since the estimated
parameters are likely biased by the errors in the CNN, and hence it
misses the necessary information to correct these errors. Our key
observation is that for SVBRDF estimation, the exact inverse of the
desired CNN is actually known in the form of a physically-based
rendering algorithm, that given any lighting and view parameters,
synthesizes a photograph of the estimated re�ectance parameters.
Under the assumption that the initial CNN trained by the labeled
data acts as a reasonable predictor, the resulting provisional re-
�ectance estimates represent reasonable SVBRDFs similar (but not
identical) to the SVBRDFs in the unlabeled training photographs.
Therefore, instead of directly using the provisional re�ectance esti-
mates and unlabeled photographs as training pairs, we synthesize
a new training sample by rendering an image with the provisional
re�ectance estimates under random lighting and view. After re�ning
the CNN using this synthesized training data, we can update the
provisional re�ectance estimates and corresponding synthetic visu-
alizations, and repeat the process. The proposed self-augmentation
training process progressively re�nes the CNN to be coherent with
the known inverse process (i.e., rendering algorithm), thereby im-
proving the accuracy of the target CNN. We demonstrate the ef-
�cacy of our method by training a CNN for di�erent classes of
spatially varying materials such as wood, plastics and metals, as
well as perform a careful analysis and validation of the proposed
self-augmentation training strategy.

2 RELATED WORK

2.1 Single Image Reflectance Modeling
For conciseness, we focus this overview on single image re�ectance
modeling; for an in-depth compilation of general data-driven re-
�ectance estimation techniques we refer to the excellent overviews
by Dorsey et al. [2008] or Weinmann and Klein [2015].

In general, estimation of surface re�ectance from a single pho-
tograph is an ill-posed problem. A common strategy to make es-
timation more tractable is to control the incident lighting during
acquisition, often by limiting the lighting to a single directional light
source. Wang et al. [2016] recover shape, spatially varying di�use
albedo and a homogeneous specular component from a light �eld
observation under a single known directional light source. Xu et

al. [2016] describe a general framework for recovering (piecewise
constant) homogeneous surface re�ectance from near-�eld obser-
vations lit by a known directional light source. Aittala et al. [2016]
model the spatially varying surface re�ectance and surface normals
from a single �ash image of a stationary textured material. They
avoid the need for explicit point-to-point surface correspondences
by relying on a powerful CNN-based texture descriptor for assessing
the quality of the predictions. The Deep Lambertian Network [Tang
et al. 2012] is a full end-to-end machine learning approach, based on
belief networks, for jointly estimating di�use re�ectance, surface
normals, and the lighting direction. Finally, in contrast to the previ-
ous methods that rely on directional light sources, Wang et al. [2011]
recover the surface re�ectance and complex spatially varying sur-
face normals of a homogeneous glossy material using step-edge
lighting. All these methods rely on active illumination which limits
their practical use to fully controlled settings or environments with
minimal ambient lighting. The proposed method does not rely on
active illumination, and it does not make any assumptions on the
form of the incident lighting.

Oxholm and Nishino [2012; 2016] relax the requirement of active
illumination and recover the shape and homogeneous surface re-
�ectance from a single photograph under uncontrolled, but known,
lighting. Similarly, Hertzmann and Seitz [2003] recover spatially
varying surface re�ectance and surface normals under uncontrolled
lighting given a re�ectance map of each material (i.e., a photograph
of a spherical exemplar under the target lighting). While these meth-
ods recover the surface re�ectance from a single photograph, they
do require additional measurements to obtain the required light-
ing/re�ectance reference maps.

Romeiro and Zickler [2010] assume the incident lighting is un-
known, and propose to recover the most likely re�ectance of a spher-
ical homogeneous object under the expected natural lighting distri-
bution. Similarly, Lombardi and Nishino [2012; 2016] express the
re�ectance recovery of a homogeneous object under unknown light-
ing as a maximum a-posteriori estimation with strong priors on both
lighting and surface re�ectance. Barron et al. [2015] propose to �nd
the most likely shape, piecewise constant spatially varying di�use
re�ectance, and illumination that explains the input photograph
based on strong hand-crafted priors on each component. Rematas
et al. [2016] employ a convolutional neural network to extract ho-
mogeneous re�ectance maps under unknown lighting and shape.
All these methods are limited to either di�use or homogeneous
materials. The proposed method on the other hand, is speci�cally
designed for spatially varying materials.

Finally, AppGen [Dong et al. 2011] takes a di�erent approach to
separate the di�erent re�ectance components from a single pho-
tograph by putting the user in the loop. While AppGen greatly
accelerates the authoring process, it does not scale well to large-
scale content generation due to the required (albeit limited) manual
interaction. Furthermore, AppGen assumes the input image is illu-
minated by a single directional light.

2.2 Deep Learning with Unlabeled/Synthetic Data
Recent advances in deep learning have been successfully applied to a
wide variety of computer graphics and computer vision problems. A
full overview falls outside the scope of this paper, and we focus our
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discussion on prior work that combines deep learning techniques
with unlabeled and/or synthetic training data.

A common weakness for many deep learning methods is their
reliance on large training datasets which can be di�cult and/or
time-consuming to obtain. To alleviate the di�culty in gathering
such datasets, several researchers have looked at synthetic data to
�ll in the gaps. Synthetic data has been used to improve the training
of various tasks, for example for: text detection [Gupta et al. 2016],
hand pose estimation [Tompson et al. 2014], object detection [Gupta
et al. 2014], semantic segmentation of urban scenes [Ros et al. 2016],
etc. Gaidon et al. [2016] showed that pretraining on synthetic data
improves the overall accuracy of the regression. Narihira et al. [2015]
propose “Deep IntrinsicNet”, a CNN for single image intrinsic de-
composition; a subject closely related to re�ectance estimation, and
which decomposes an image in its “shading” and “re�ectance” com-
ponents. They observe that marrying synthetic training data with
CNNs is a powerful paradigm, and follow Chen et al. [2013] to train
their IntrinsicNet using the MPI Sintel dataset. We also rely on syn-
thetic training data, but instead of only synthesizing training data,
we also use it to complete non-synthetic unlabeled training data.

Shelhamer et al. [2015] also rely on CNNs to infer the intrinsics
from a single image. However, they note that CNNs cannot guaran-
tee physical coherence, and propose to combine and jointly train a
CNN for surface normal estimation together with a �xed inverse
rendering pipeline to compute the intrinsic decomposition (e.g.,
using the method of Barron et al. [2015]). The proposed method
also includes a rendering component, but instead of appending an
inverse rendering pipeline to the CNN, we employ a forward ren-
dering pipeline to aid in training by synthesizing new training pairs
from unlabeled data.

Breeder Learning [Nair et al. 2008] relies on a known generative
black-box function to generate novel training data by perturbing the
estimated parameters, and computing the resulting exemplar using
the black-box generator. In contrast, self-augmentation (where the
forward rendering component could be seen as a generative black-
box) relies on unlabeled data instead of perturbations to explore
and re�ne the search space. Furthermore, perturbations in the pa-
rameter space do not necessarily match the real-world distribution
of the underlying data, especially for high-dimensional parameter
spaces (e.g., a random perturbation on the di�use albedo or on the
surface normals does not necessarily yield a valid SVBRDF within
the targeted material class).

3 SVBRDF-NET

3.1 Convolutional Neural Network Configuration
Our goal is to estimate plausible appearance parameters from a
single photograph of a near-�eld observation of a planar material
sample under unknown natural lighting. Modeling both spatially
varying di�use as well as specular re�ectance from a single photo-
graph is an ill-posed problem. We therefore reduce the complexity
by assuming a homogeneous constant specular component on top
of a spatially varying di�use component and surface normals. We
introduce a convolutional neural network solution (SVBRDF-net)
to learn the mapping from a photograph of a spatially varying ma-
terial to appearance parameters, where the homogeneous specular

Width×Height×Channel Convolution (3×3 kernel, stride 1) + BN + ReLU

Width×Height×Channel Convolution (3×3 kernel, stride 2) + BN + ReLU

Width×Height×Channel Bilinear upsample + Convolution (3×3 kernel, stride 1) + BN + ReLU

FC Output Fully connected layer + ReLU

a) Homogeneous
reflectance parameter estimation

b)  Spatially varying
reflectance parameter estimation

Le
ge

nd

Fig. 2. Network structure. Le�: the network structure for homogeneous
reflectance parameters consists of an analysis subnetwork of convolution
and pooling layers, followed by a fully connected synthesis network with
1024 hidden variables. Right: the network for spatially varying reflectance
parameters consists of an identical analysis network of convolution and
pooling layers, followed by a synthesis upsampling network that mirrors
the analysis network. To reintroduce high frequency details during upsam-
pling, the feature maps from the analysis layers are concatenated to the
corresponding synthesis layers (illustrated by the red links).

component is represented by the Ward BRDF model [Ward 1992]
parameterized by its specular albedo ρs and specular roughness
parameter α , the spatially varying di�use component is modeled
by a per-pixel di�use albedo ρd (x), and the surface normals are
encoded as a 3D vector per pixel n(x):

fr (ωi ,ωo ,x) =
ρd (x)

π
+ ρs

e− tan
2 δ/α 2

4πα2
√
(ωi · n(x))(ωo · n(x))

, (1)

where δ the angle between the halfway vectorωh = (ωi +ωo )/| |ωi +
ωo | | and the normal n(x). Note that the proposed SVBRDF-net is
not married to the Ward BRDF model and any other BRDF model
can be used instead.

Due to the inherent scale-ambiguity between the overall intensity
of the lighting and surface re�ectance (i.e., scaling the intensity
of the lighting can be compensated by dividing the di�use and
specular albedo by the same factor), SVBRDF-net can only estimate
relative di�use albedos ρd rel and the relative specular albedo ρs rel .
We will assume without loss of generality that the average di�use
albedo (over all color channels) is �xed (avд(ρd ) = 0.5), and that the
relative di�use and specular albedo are expressed with respect to
this average di�use albedo: ρd rel (x) = ρd (x)/s , ρs rel = ρs/s and
s = 2avд(ρd ). Consequently, any uniform scaling applied to ρd and
ρs does not a�ect ρd rel and ρs rel . For stability, we use the logarithm
of the relative specular albedo (ρs loд−r el = log ρs rel ) to avoid huge
parameter values for the specular component in SVBRDF-net when
the absolute average di�use albedo (s) is small. Furthermore, to
ensure a more uniform distribution with respect to the error on
the appearance, a log-transformation is also applied to the specular
roughness encoded in SVBRDF-net: αloд = logα .

The proposed SVBRDF-net is a union of separate network struc-
tures; one for the homogeneous parameters (relative (log) specular
albedo and (log) roughness), and another for the spatially varying
parameters (relative di�use albedo and surface normals). Figure 2
depicts the network structure and lists the relevant dimensions of
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the layers. The number of layers and convolution/upsample �lter
sizes are similar to those used in prior work (e.g., [Rematas et al.
2016]). Both networks share the same analysis subnetwork structure
consisting of a series of convolution layers and pooling layers. Each
convolution layer is followed by a batch-normalization layer [Io�e
and Szegedy 2015] and a ReLU activation layer. This analysis sub-
network reduces the input photograph to the essence needed for
estimating the relevant model parameters. The analysis subnetwork
is followed by a di�erent synthesis subnetwork for each output
parameter type:

• Homogeneous Specular Albedo and Roughness: are syn-
thesized by adding a fully connected layer with 1024 hidden
variables, and 6 output nodes (i.e., relative (log) specular albedo
ρs loд−r el and (log) roughness αloд estimates per color channel).

• Spatially Varying Di�use Albedo: is synthesized by a set of
upsample+convolution layers (often misnamed as a “deconvolu-
tion” layer). Similarly as for analysis, each layer is followed by
a batch normalization and ReLU layer before a bilinear upsam-
pling step. As in [Rematas et al. 2016; Ronneberger et al. 2015],
we concatenate feature maps from the corresponding analysis
layers (marked by the red links in Figure 2) to help reintroduce
high frequency details lost in subsequent convolution layers
during analysis. The �nal output is mapped to the proper range
(i.e., [0, 1]) using a standard per-pixel �xed sigmoid function. As
batch normalization does not work well with a sigmoid output
layer, we omit the batch normalization at the �nal output layer.

• Spatially Varying NormalMap: is synthesized by an identical
(but separate) network as for the di�use albedo.

We train a separate analysis-synthesis network for each output
parameter type.

3.2 Training by Self-Augmentation
One of the main challenges in training the proposed SVBRDF-net,
is to obtain a su�ciently large training dataset that captures the
natural distribution of all spatial variations for the target material
class. For each spatial variation, we need, in addition, a su�cient
sampling of the di�erent viewing and lighting conditions. Essen-
tially, the search space we are regressing is the outer product of
the appearance variations due to spatial variations in re�ectance
properties, di�erent natural lighting conditions, and di�erences in
viewpoint. The latter two dimensions are common over di�erent
material classes and are relatively easily to sample. The former, on
the other hand, is highly dependent on the material type and is
ideally sampled through diversity in the training data.

The desired labeled training data in the case of SVBRDF-net is in
the form of a photograph of a planar sample of an spatially varying
material under an unknown natural lighting condition paired with
the corresponding model parameters (i.e., spatially varying relative
albedos, log-roughness, and surface normals). Note that the high
cost of obtaining labeled training data is solely due to the cost of
the necessary acquisition/authoring process to obtain the model
parameters. On the other hand, the cost to obtain unlabeled data
in the form of a photograph of a planar spatially varying material
is signi�cantly smaller. Similarly to labeled data, such unlabeled

data represents samples in the search space, except that the corre-
sponding model parameters are unknown. Now suppose we have
an oracle that can predict these model parameters from the un-
labeled data, then we can use the unlabeled data in conjunction
with the prediction to re�ne SVBRDF-net. Of course, this oracle is
exactly the network we desire to train. Now let’s assume we have
a partially converged SVBRDF-net, trained from a smaller set of
labeled training data. This partially converged network forms an
approximation of the desired oracle. Hence, we can use the network
itself to generate provisional model parameters for each unlabeled
exemplar. However, we cannot directly use these provisional model
parameters paired with the input unlabeled image for training since
the provisional model parameters are biased by the errors in the
partially converged network (and thus cannot correct these errors).

CNN

Predicted SVBRDF

Reference SVBRDF
Loss

Forward prediction

Back propagation

Input
with SVBRDF label

Input
without SVBRDF label

CNN

Forward prediction
Predicted SVBRDF from unlabeled data

Render a new image

CNN

Predicted SVBRDF from the augmented input

Loss

Forward prediction

Back propagation

Input
Self-augmented

Training with labeled training data pairs

Self-augmentation with unlabeled training data

Fig. 4. Summary of the Self-augmentation Training Process. First, an
initial approximative network is trained using only labeled data. Next, we al-
ternate between training on labeled and unlabeled data. For each unlabeled
exemplar, we estimate provisional reflectance parameters, and synthesize a
new (temporary) labeled training pair by rendering a corresponding exact
visualization. This new labeled training pair, is then used to further refine
the network.

Our key observation is that the exact inverse of the target net-
work is known in the form of a rendering algorithm, i.e., given the
lighting and view parameters together with the model parameters,
we can synthesize a photograph of the SVBRDF. Our goal is to
exploit this (inverse) knowledge of the search space to re�ne the
regression of the CNN. Assuming a locally smooth search space,
and assuming the unlabeled data lies in the search space covered by
the labeled training data (i.e., the labeled data covers the full target
search space), then the provisional model parameters should approx-
imately follow the target distribution. Hence the extracted spatially
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Fig. 3. Illustration of the Self-Augmentation Training Process. (a) Given su�iciently dense sampled training data, the target manifold can be well
modeled. (b) However, when insu�iciently sampled, the target network only provides a coarse approximation. (c) Self-augmentation exploits the fact that a
forward rendering algorithm provides an exact inverse of the target manifold. Given a coarse approximation of the manifold, we can make a provisional
estimate of the reflectance parameters of an unlabeled image (marked with ’U’). Rendering the estimated provisional parameters from a new viewpoint and
under novel lighting, produces a di�erent image (’R’) than the unlabeled image. However, unlike the unlabeled image, this rendered image is not biased by the
approximation error of the coarse network. When inpu�ing this rendered image to the target CNN, we obtain a di�erent estimate of the parameters than the
ones used for rendering. Self-augmentation a�empts to reduce the mismatch between the provisional and estimated parameters from the rendered image,
thereby indirectly improving the accuracy of the target network. (d) Repeatedly applying the self-augmentation process on a large set of unlabeled data points,
should yield a progressively more accurate approximation of the target network. (e) However, care must be taken that the unlabeled data points lie in or near
the search space covered by the labeled data points as the la�er determines the range in which the initial coarse approximative network is well-defined.

varying model parameters form a plausible SVBRDF (albeit not nec-
essarily the same as the ground truth physical parameters of the
unlabeled data exemplar). Thus, the provisional model parameters
and a corresponding synthesized visualization under either the same
or di�erent lighting and view conditions, provide a valid labeled
training exemplar that can be used to re�ne the CNN. This process
is illustrated in Figure 3. Given su�cient training data (a), we can ac-
curately capture the target search space’s manifold. However, when
a smaller labeled training set is used (b), the resulting regression
only forms a coarse approximation. Given unlabeled data (marked
by ’U’ on the vertical axis in (c)), we can estimate provisional model
parameters using the initial network as an oracle (the correspond-
ing projection on the CNN is marked by a triangle). The rendering
process takes these provisional model parameters and ’projects’
them back to image space over the exact manifold, resulting in a
di�erent rendered image (marked by ’R’ on the vertical axis). When
using this synthetic pair for training, we observe a discrepancy be-
tween the estimated model parameters from this synthetic image
(i.e., the projection of the synthetic rendering (’R’) over the CNN
(dashed line)) and the initial provisional model parameters. Hence,
the training process will minimize this discrepancy. Assuming local
smoothness over the search space and assuming that the initial CNN
prediction is relatively close to the target manifold, minimizing this
discrepancy should locally pull the CNN’s manifold approximation
closer to the desired search space’s manifold (d). However, care must
be taken to ensure that the unlabeled data resides in or near the
search space covered by the labeled training data (e), as there is no
guarantee about the extrapolation behavior of the CNN outside this
region, and thus the provisional model parameters are unlikely to
represent a plausible SVBRDF in the targeted material class and/or
potentially correspond to a folding of the manifold (thereby creating
ambiguities in the training).

We coin our training strategy “self-augmenting” since it relies on
the exactness of the inverse model (i.e., the rendering algorithm) to
guide the training, and the CNN itself to provide reasonable model
parameters. We integrate this self-augmentation in the training pro-
cess, and repeatedly apply it on the progressively re�ned network

Table 1. Summary of Training Hyperparameters. We use the default
Ca�e values for unlisted parameters.

Learning rate Weight Momentum Mini-batch
Inital Policy Gamma decay size
0.002 Inverse 10−4 10−4 0.9 16

(and thus with progressively improved provisional model parame-
ters). We will use the short-hand notation SA-SVBRDF-net to refer to
the self-augmented SVBRDF-net, and use SVBRDF-net to refer to the
regularly trained SVBRDF-net (i.e., without self-augmentation). Fig-
ure 4 summarizes the proposed self-augmentation training strategy.

4 RESULTS

4.1 Implementation
We implement the proposed SVBRDF-net detailed in Section 3 in
Ca�e [Jia et al. 2014] using a constant initialization strategy and
train it with ADAM [Kingma and Ba 2015]. We �rst produce an
initial CNN by training, from scratch, with labeled data only for 10
epochs. Next, we self-augment this initial SVBRDF-net using the
unlabeled training data. However, whereas labeled data provides
absolute cues to the structure of the search space, the unlabeled data
only constrains the local structure of the search space (i.e., it ensures
that the network is locally consistent with the rendering process).
Therefore, care should be taken to ensure that the self-augmentation
does not steer the network too far from the labeled data, and avoid
collapsing the network to a (self-coherent) singular point. Hence, we
interleave the training after each randomly selected unlabeled mini-
batch, with a random labeled mini-batch that biases the training to
remain faithful to the labeled data. Table 1 summarizes all relevant
training parameters. For all results in this paper, we trained the
proposed SA-SVBRDF-net for an input resolution of 256 × 256.

4.2 Data Collection & Preprocessing
We source SVBRDF-data for spatially varying wood, plastics, and
metals from an online material library [VRay 2016], supplemented
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Fig. 5. �alitative Comparison to Reference Reflectance Parameters. Reflectance parameters obtained with the wood, plastic, and metal SA-SVBRDF-
nets (odd rows) compared to reference reflectance parameters (even rows). Each row shows (le� to right), spatially varying relative di�use albedo, normal
map, the homogeneous relative specular albedo and roughness mapped on a sphere and illuminated by a directional light source, and a visualization of the
reference/estimated appearance parameters under a novel lighting condition.
ACM Transactions on Graphics, Vol. 36, No. 4, Article 45. Publication date: July 2017.
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by artist generated SVBRDFs. We average specular albedo and rough-
ness when the dataset provides spatially varying specular albedo
or roughness. The wood dataset contains 50 SVBRDFs, the plastic
dataset contains 60 SVBRDFs and the metal dataset contains 60
SVBRDFs. We randomly select 10 SVBRDFs from each dataset for
testing, and retain the remainder for training (thus 40 for wood, and
50 for plastic and metal). To generate labeled training/test data, we
furthermore gather 50 HDR light probes [HDRLabs 2016], and ren-
der (with a GPU rendering implementation that correctly integrates
the lighting from the full hemisphere of incident directions) each
SVBRDF under 40 selected light probes for the training set, and
the remaining 10 probes for the test set, for 9 randomly selected
rotations. Consequently, the lighting for each labeled training pair,
as well as the test set, is di�erent. During training, we randomly
crop and rotate a 256×256 window from the rendered images to suf-
�ciently sample the rich texture variations. As we aim for a practical
tool, we only use radiometrically linearized “low” dynamic range
images (i.e., all pixel values are clamped to the [0, 1] range). If the
input image is not radiometrically linear, we apply a gamma (2.2)
correction before feeding it to the proposed SA-SVBRDF-net.

Unlabeled data is gathered from OpenSurface [Bell et al. 2013], as
well as internet images collections. In total, the number of unlabeled
images are 1000, 1000, and 1200 for wood, plastic and metal SA-
SVBRDF-net training respectively. During self-augmentation, we
randomly pick and rotate a lighting environment for generating the
provisional labeled training pair using the same rendering algorithm
as was used for generating the training data. We assume that both
the labeled and unlabeled training data are drawn from the same
distribution. However, both (labeled and unlabeled) databases are
likely to be gathered from di�erent sources or created through a
di�erent authoring process. Consequently, their respective inherent
distribution through the search space might di�er. To avoid biasing
the training, we select a subset from the unlabeled data such that
it mimics the distribution of the labeled data. However, we do not
know the re�ectance parameters for the unlabeled data, and thus
also not their distribution. Instead, of matching the search space
distribution, we match the �rst order statistics of the images as a
proxy. Practically, we create the histogram of the average colors of
the labeled training images, and then randomly select the subset of
the unlabeled images such that the resulting histogram follows the
same distribution. While a crude approximation, we have found this
to work well in practice. Furthermore, we auto-expose the rendered
synthetic images before clamping pixel values to the [0, 1] range.
This allows us to directly use the relative albedos during rendering
instead of converting them to absolute parameters; any scale applied
to both the relative di�use and specular albedo is compensated for
by a corresponding change in the auto-exposure.

As noted in Section 3, to resolve the ambiguity between the inten-
sity of the lighting and the re�ectivity of the surface, we ensure that
the average di�use albedo over all color channels equals 0.5, and
express the specular albedo with respect to this average. However,
a related ambiguity still exists between the color of the lighting
and the material. We cannot simply set the average di�use albedo
for each color channel to 0.5 as this would result in a complete
loss of material color. Instead, when generating labeled training
samples, we white-balance the lighting such that the irradiance is

color neutral:

∀i, j ∈ [r ,д,b] : si = sj , and sr,д,b =

∫
Ω+

E(ωi ) cosθidωi , (2)

where E(ωi ) is the incident lighting. In addition, we also assume
that unlabeled data and/or input photographs are (approximately)
correctly white balanced. In other words, we assume that the dif-
fusely re�ected color observed in the input photograph has the same
color as the di�use albedo.

4.3 Results
Figure 1 shows a series of input photographs for the wood, plastic,
and metal SA-SVBRDF-nets and a revisualization under a novel
lighting condition for the recovered spatially varying re�ectance
parameters. Qualitatively, we argue that the appearance of the re-
visualizations exhibits the same visual qualities as the input pho-
tographs. This suggests that the proposed SA-SVBRDF-nets are able
to estimate plausible re�ectance parameters.

While our goal is to model plausible surface re�ectance from a
single photograph, it is nevertheless informative to explore how well
the estimated parameters match ground truth surface re�ectance
parameters. Figure 5 shows a comparison between ground truth
re�ectance parameters and the estimated parameters obtained with
the wood, plastic, and metal SA-SVBRDF-nets. For each example, we
show two rows, where the top row shows the ground truth and the
bottom row shows the recovered results. For each row, we show
(from left to right), the input photograph under an unknown natural
lighting condition, the recovered di�use albedo, the recovered nor-
mal map, the homogeneous specular component mapped on a sphere
and lit by a directional light, and a visualization under a novel light-
ing condition. Note that none of the input photographs/SVBRDFs
were included in the training set to avoid bias in the results. While
there are some di�erences, overall, the estimated re�ectance parame-
ters match the reference parameters well. This further con�rms that
the resulting re�ectance parameters estimated with SA-SVBRDF-net
are physically plausible.

Figure 6 compares the estimated re�ectance estimates of the wood
SVBRDF-net and SA-SVBRDF-net. In both cases, we use exactly the
same set of 40 labeled training samples. Compared to the regu-
lar SVBRDF-net, the proposed SA-SVBRDF-net trained with self-
augmentation produces qualitatively more plausible results with
less visual artifacts. For example, the top example includes rem-
nants of the specular highlight from the input photograph in the
di�use albedo while overestimating the specular roughness, and the
bottom example exhibits a faint “splotchy” structure in the di�use
albedo. This empirically shows that the proposed self-augmentation
strategy greatly helps the convergence of the training process, and
signi�cantly reduces the required number of labeled training sam-
ples. Both networks were trained on a NVidia Titan X (Maxwell)
for 20 epochs; 10 epochs to obtain the rough initial SVBRDF-net,
and then an additional 10 with-out/with unlabeled data for the
SVBRDF-net and SA-SVBRDF-net respectively. Total training time
without self-augmentation took 30 hours, and 38 hours with self-
augmentation. Evaluating the (SA-)SVBRDF-net is very fast and
only takes 0.3 seconds on a GPU.
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Fig. 6. Impact of Self-Augmentation. A qualitative comparison between
reflectance parameters estimated with SVBRDF-net trained with and with-
out self-augmentation. The SA-SVBRDF-net estimates appear more plausi-
ble and exhibit less artifacts than the results from the regular SVBRDF-net.

Fig. 7. Cross Estimation. Surface appearance of wood and metal estimated
using an SVBRDF-net trained on another material class (metal and wood
respectively) fails to produce physically plausible results.

Our SA-SVBRDF-nets are trained for a speci�c material type, and
there is no guarantee on the quality of the results when a input
photograph of a di�erent material is provided. Figure 7 shows a
result of feeding a spatially varying wood material in the metal
SA-SVBRDF-net, and vice versa. As expected, the resulting cross
estimation fails to produce physically plausible results. Similarly,
SA-SVBRDF-net expects spatially varying materials with a homoge-
neous specular component. We empirically observe (Figure 8) that
if the spatial variations in the specular component are modest, SA-
SVBRDF-net still produces a plausible result. However, when faced
with signi�cant spatial variations, the result is often unpredictable.

Fig. 8. Spatially Varying Specular Component While SVBRDF-net ex-
pects and estimates a homogeneous specular component, it can still robustly
estimate a plausible specular component when the spatial variations are
modest.

5 DISCUSSION
Our results show that the proposed SA-SVBRDF-net can decompose
a photograph of a planar spatially varying sample under unknown
distant lighting in its re�ectance components. Key to our method is
the self-augmentation training strategy. In this section, we further
explore the bene�ts, assumptions, and limitations of the proposed
self-augmentation procedure.

5.1 BRDF-net
To validate the proposed self-augmentation training strategy we
introduce a CNN-based solution to the related, but less complex,
problem of estimating the homogeneous BRDF from a single image
of a smooth spherical object under unknown natural lighting condi-
tions. For validation purposes, we limit the experiment to estimating
monochrome BRDFs from a single monochrome image under mono-
chrome lighting. The advantage of validating the self-augmentation
training strategy on a homogeneous BRDF-net is that we can easily
enumerate the full search space, allowing us to synthesize labeled
training data and visualize the learned and ground truth manifolds
and corresponding errors.

We employ the same network structure as the (log) roughness and
(log-relative) specular albedo prediction network in the previously
proposed SVBRDF-net. We express the relative specular albedo as
ρs rel = ρs/ρd instead of with respect to the average di�use albedo
as in SVBRDF-net.

We generate a training set by uniformly sampling 10 di�use
and specular albedos in the [0.05, 1.0] range, and 15 roughness
samples log-uniformly sampled in [0.02, 1.0], yielding a total of 1500
training samples. We also de�ne a test set for evaluating the errors
by selecting samples mid-distance between any two consecutive
training samples; these are the sample points furthest away from the
training samples, which are expected to contain the largest error.

Because the specular-di�use ratio estimated by the BRDF-net
cannot be used directly for synthesizing a provisional training image
during self-augmentation, we randomly select a di�use/specular
albedo pair for rendering such that the posterior distribution is
uniform.
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5.2 Validation
To quantify the impact of self-augmentation on the accuracy of
BRDF-net, we regress a reference baseline BRDF-net on the full
labeled training set that densely and uniformly covers the full search
space. We measure the reconstruction error as the mean squared
error between visualizations of the ground truth and estimated
re�ectance parameters under the same view and lighting conditions
as the input image. Reducing the size of the training dataset when
regressing the BRDF-net without self-augmentation, dramatically
decreases the accuracy (Figure 9 top row). We consider two di�erent
subsampling strategies: uniformly reducing the sampling rate of
(di�use and specular) albedo and roughness (i.e., e�ective sampling
rates: 5 × 5 × 7, 3 × 3 × 5, and 2 × 2 × 2), and randomly selecting a
subset from the full training set (of size: 12.5%, and 3.7%; see Figure 9
bottom row). Compared to the baseline we observe a correlation in
the error distribution with the subsampling scheme – regions with
low training data density exhibit larger error. When using the same
subsampled training sets in conjunction with self-augmentation,
where the unlabeled image set equals the images left out from the
labeled training set, we observe an error rate similar to the baseline
BRDF-net (Figure 9 middle row). Surprisingly, even in the extreme
case where we only provide the corners of the parameter space (i.e.,
2 × 2 × 2 sampling rate), the resulting SA-BRDF-net still achieves
accurate BRDF estimates.

In the above experiment the sum of the labeled and unlabeled
training data densely covers the full search space. To better under-
stand the trade-o�s between the number of labeled versus unlabeled
training data, we compare the error of di�erent BRDF-nets trained
on varying ratios of labeled and unlabeled training data (uniformly)
covering di�erent percentages of the densely sampled search space
(Table 2). Note, we consider 450 randomly selected lighting con-
ditions per labeled training exemplar, and only a single randomly
selected lighting condition per unlabeled training exemplar – in-
creasing the number of lighting conditions for each unlabeled train-
ing sample did not improve the error because self-augmentation
synthesizes a new provisional training exemplar under a random
lighting condition and thus automatically samples the di�erent light-
ing conditions already. From this experiment we can see that, as
expected, the accuracy improves for increased number of labeled
and/or unlabeled training exemplars. However, care must be taken
when comparing the percentages of labeled versus unlabeled train-
ing exemplars in Table 2 as these indicate coverage of the search
space and not number of images (450 lighting conditions versus a sin-
gle lighting condition for labeled and unlabeled training exemplars
respectively). Furthermore, we also observe that self-augmentation
is most advantageous when the number of labeled training images
is low; when the number of labeled training images is large, the
accuracy of SVBRDF-net is already good, and there is only limited
room for improvement. We argue that a signi�cant portion of the
training data in regular CNN training merely aids in re�ning the
approximation of the search space, and only a small portion is re-
quired to span the search space. Consequently, care must be taking
to ensure that the selection of the labeled training data exhibits su�-
cient diversity and fully spans the intended search space, especially
for very small labeled training sets.

5.3 Practical Implications of Assumptions
Self-augmentation assumes the search space is locally smooth, and
no “jumps” or discontinuities occur in the space. In other words,
the inverse of the targeted CNN should be well-de�ned. Intuitively,
unless the location of the discontinuity is precisely determined by
the labeled training data, the projection of the unlabeled data will
exhibit a large error depending to which side of the discontinu-
ity the estimate is biased toward. Depending on local gradients,
it is possible that self-augmentation drives the search space to an
(incorrect) local minimum. Figure 10 illustrates the e�ect of a non-
smooth search space on a simple 1D curve regression with only
two labeled training exemplars located the ends of the range, and
the unlabeled data distributed through the full space. As can be
seen, while self-augmentation signi�cantly improves the accuracy,
it tends to smooth out the discontinuity.

Self-augmentation also assumes that the unlabeled training data
lies in the region of the search space covered by the labeled training
data and no guarantees can be made on the accuracy outside the
covered search space (i.e., extrapolation). However, empirically we
found that in many cases, self-augmentation also improves accu-
racy beyond the covered region (Figure 11). Consequently, reliable
estimates can still be obtained in practice as long as we restrict
unlabeled data and queries to lie close to the region covered by the
labeled data.

5.4 Limitations
While the proposed SA-SVBRDF-net is able to recover plausible
re�ectance parameters from a single photograph under unknown
natural lighting, the network is limited by the training data. Each SA-
SVBRDF-net is trained for a particular material class. Consequently,
for each new material type, a new network needs to be trained.
Similarly, the quality of the appearance estimates obtained with the
proposed SA-SVBRDF-net are also limited by information contained
in the input photograph. If a particular re�ectance feature is not or
limited present in the input image (e.g., specular highlight), then the
corresponding estimated re�ectance parameters will deviate more
from the ground truth.

The proposed SA-SVBRDF-net is restricted to planar material
samples under distant lighting, and with a homogeneous specular
component. Generalizing SA-SVBRDF-net to unknown varying ge-
ometries and/or local lighting conditions and/or spatially varying
specularities is non-trivial due to the ill-posed nature of the problem
and the huge search space.

While we have shown empirically that self-augmentation can
greatly reduce the required amount of labeled training data, a formal
theoretical derivation on the conditions for convergence, and the
conditions on the distribution of labeled/unlabeled data are missing.

5.5 Relation to other Deep Learning Methods
The proposed method shares conceptual similarities to other recent
deep learning methods. Generative Adversarial Networks (GAN)
[Goodfellow et al. 2014] train two competing networks: a gener-
ating network that synthesizes samples and a discriminative net-
work that attempts to distinguish real and synthesized samples.
Self-augmentation also relies on a “synthesizer”, except that in our
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Table 2. Labeled-Unlabeled Training Data Ratio. The error for di�erent ratios of labeled and unlabeled data randomly sampled from the densely sampled
search space.

Percent. No Self- Percentage Unlabeled
Labeled augmentation 5 10 20 30 50 70 80 90 95

5 0.002549 0.001395 0.001141 0.000884 0.000689 0.000704 0.000651 0.000578 0.000592 0.000628
10 0.001252 0.001382 0.001027 0.000720 0.000760 0.000671 0.000584 0.000634 0.000592
20 0.000746 0.001155 0.000845 0.000751 0.000621 0.000619 0.000641 0.000513
30 0.000662 0.000714 0.000648 0.000694 0.000492 0.000548 0.000535
50 0.000562 0.000660 0.000559 0.000552 0.000506 0.000470
70 0.000619 0.000601 0.000462 0.000550 0.000499
80 0.000553 0.000542 0.000421 0.000413
90 0.000546 0.000505 0.000471
95 0.000550 0.000471
100 0.000499

Total Mean Squared Error
Subsample Rate BRDF-net SA-BRDF-net

Baseline 0.0004
5 × 5 × 7 0.0010 0.0004
3 × 3 × 5 0.0060 0.0005
2 × 2 × 2 0.1001 0.0005

Random 12.5% 0.0007 0.0004
Random 3.7% 0.0029 0.0004

Fig. 9. Self-augmentation Validation on BRDF-net. Error plots over the search space of (homogeneous) BRDF-net for di�erent subsampling rates for
the labeled training data. The reconstruction error is assessed on visualizations of the reference and estimated reflectance parameters. For visualization
purposes, we integrate the 3D search space over the specular albedo axis, and plot the resulting value for each di�use albedo / specular roughness combination.
Top-le�: baseline error on BRDF-net regressed over densely sampled training data. Top-row: the reconstruction error for di�erent subsampling rates (uniform
subsampling of di�use albedo, specular albedo, and specular roughness at 5 × 5 × 7, 3 × 3 × 5 and 2 × 2 × 2 sample rates, and randomly selecting samples that
cover 12.5% and 3.7% of the search space). Middle-row: corresponding reconstruction error for SA-BRDF-net (i.e., trained with self-augmentation). Bo�om-row:
visualization of the sampling pa�ern. Right: total error over the full search space for each subsampling case.

Fig. 10. Impact of Discontinuities in search space illustrated on a 1D curve regression with labeled
data only located the two ends. While self-augmentation assumes a locally smooth search space, it still
improves the overall accuracy on a discontinuous search space, albeit smoothing out the discontinuity.

Fig. 11. Extrapolation. The extrapolation behav-
ior improves for a BRDF-net trained with labeled
data constrained to the center region (green box)
when self-augmented with unlabeled data covering
the full search space.

case it is a �xed function. Similarly, Variational Auto-Encoders
(VAE) [Kingma and Welling 2014] train an end-to-end encoder and
decoder. The latent variables are parameterized with (Gaussian)
models, and variations of the search space are explored by sam-
pling these models. The proposed solution also explores the search
space by random sampling of parameters (i.e., lighting and view).
However, we desire parameters with a precise physical meaning;
the unsupervised nature of VAEs make it di�cult to generate mod-
els (i.e., parameters) with physical meaning, even with conditional

variants such as CVAE [Sohn et al. 2015] or CGAN [Liu and Tuzel
2016].

6 CONCLUSION
We presented SA-SVBRDF-net, a convolutional neural network for
estimating physically plausible re�ectance parameters from a sin-
gle photograph of a planar spatially varying material under un-
known natural lighting. Furthermore, we introduced a novel self-
augmentation training strategy to reduce the required amount of
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labeled training data by leveraging the embedded information in
a large collection of unlabeled photographs. Our progressive self-
augmentation training strategy relies on the availability of the exact
inverse of the desired SVBRDF-net in the form of a rendering algo-
rithm. We demonstrated the e�ectiveness of our trained SVBRDF-
net, and thoroughly validated the self-augmentation training strat-
egy on a homogeneous BRDF-net. For future work, we would like to
analyze the theoretical limits and conditions for self-augmentation,
as we believe that the proposed self-augmentation strategy is more
generally applicable beyond SVBRDF modeling. Furthermore, we
would like to investigate methods for generalizing the proposed
SVBRDF-net to non-planar material samples.
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