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Abstract

We present a new weakly supervised learning-based
method for generating novel category-specific 3D shapes
from unoccluded image collections. Our method is weakly
supervised and only requires silhouette annotations from
unoccluded, category-specific objects. Our method does
not require access to the object’s 3D shape, multiple obser-
vations per object from different views, intra-image pixel-
correspondences, or any view annotations. Key to our
method is a novel multi-projection generative adversarial
network (MP-GAN) that trains a 3D shape generator to be
consistent with multiple 2D projections of the 3D shapes,
and without direct access to these 3D shapes. This is
achieved through multiple discriminators that encode the
distribution of 2D projections of the 3D shapes seen from
a different views. Additionally, to determine the view in-
formation for each silhouette image, we also train a view
prediction network on visualizations of 3D shapes synthe-
sized by the generator. We iteratively alternate between
training the generator and training the view prediction net-
work. We validate our multi-projection GAN on both syn-
thetic and real image datasets. Furthermore, we also show
that multi-projection GANs can aid in learning other high-
dimensional distributions from lower dimensional training
datasets, such as material-class specific spatially varying
reflectance properties from images.

1. Introduction

Learning to synthesize novel 3D shapes from a class of
objects is a challenging problem with many applications in
computer vision, ranging from single image 3D reconstruc-
tion [6, 9, 25, 32, 37], to shape completion [36], to 3D shape
analysis [34]. Typically, such methods are trained on ref-
erence 3D shapes, or on images from different viewpoints
with labeled pixel-correspondences and/or with viewpoint
information. Creating such training sets for new object cat-
egories is labor-intensive and cumbersome. In this paper

we propose a novel weakly supervised method for learning
to generate 3D shapes from unoccluded silhouette image-
collections without relying on reference 3D shapes, corre-
spondences, or view annotations.

A key challenge in learning to synthesize 3D shapes
from image-collections gathered from uncontrolled sources
is that we cannot count on having multiple observations of
the same object from different viewpoints; we only have
samples from the distributions of images of the objects from
different views. We overcome this practical problem using
a novel generative adversarial network (GAN) architecture
that learns the high dimensional distribution of 3D shapes
from multiple independently sampled low dimensional dis-
tributions of silhouette images of the objects. The relation
between each low dimensional distribution of silhouette im-
ages and the high dimensional 3D shapes is characterized by
a “projection”, and the resulting multi-projection GAN ar-
chitecture employs, for each projection, a different discrim-
inator that encodes the characteristics of the corresponding
projection’s silhouette image distribution. Intuitively, the
proposed multi-projection GAN learns the distribution of
3D shapes for which the visualizations for each viewpoint
matches the corresponding (independent) distributions of
the training silhouette images for that same view.

A second key challenge is that the viewpoint information
is often not available for the training images that are gath-
ered “in the wild”. To address this challenge, we utilize a
view prediction network for inferring the view information
for each of the training images. Ideally, the view prediction
network should be trained by the types of 3D shapes syn-
thesized by our generator. However, this creates a circular
dependency, because the 3D shape generator needs the view
prediction network to train from silhouette images. We re-
solve this dilemma by jointly training both networks in an
iterative alternating fashion, resulting in a 3D shape learn-
ing pipeline that is robust to non-uniform viewpoint distri-
butions over the training data (i.e., we make no assumptions
on the viewpoint distribution).

Our method facilitates training of a 3D shape genera-
tor from weakly supervised real-world image collections
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with silhouette annotations, thereby greatly reducing the
cost for learning a 3D shape generator for new object
categories. We demonstrate the strengths of our multi-
projection GAN with a jointly trained view prediction net-
work on both synthetic datasets and real-world silhouette
image-collections. Furthermore, we demonstrate that multi-
projection GANs can be generalized to aid in learning other
types of high-dimensional (non-image) distributions from
low-dimensional image observations such as learning the
distribution of spatially-varying material reflectance param-
eters.

2. Related Work
In the past few years, various deep learning based meth-

ods have been proposed for 3D shape generation. These
methods can be roughly categorized in three classes. A first
class of methods relies on a large set of reference 3D shapes
for training (e.g., for generating 3D voxel shapes with a
VAE-GAN [34], for shape completion [36], or for 3D re-
construction from a 2D image [6, 9, 11, 16, 25, 32, 37]).
Of particular note is the method of Zhu et al. [37] that
jointly reconstructs a single 3D voxel shape and camera
pose. A second class of methods foregoes the need for ref-
erence 3D shapes, and uses annotated images with corre-
spondences [18] or exploit consistency over different views
of objects [28, 29, 35]. Of particular note is the method of
Tulsiani et al. [28] who predict both shape and viewpoint.
Closest related to the proposed method is a third class of
methods that learns the 3D shape distribution from unanno-
tated images. Gadelha et al. [10] train a voxel GAN using
a single discriminator with 2D silhouette images from pre-
defined discrete view distributions. Henderson et al. [14]
utilize a variational auto-encoder (VAE) for generating 3D
meshes from unannotated images with uniform distributed
viewpoints. In contrast to Gadelha et al., we use multiple
discriminators for each of the different views, resulting in a
better generation quality. Unlike Henderson et al., we build
on GANs as opposed the VAEs. More importantly, we do
not require a uniform viewpoint distribution over the train-
ing dataset, which is difficult to enforce in internet-mined
datasets. As we will show in section 5, for similar shape
representations, the proposed method produces higher qual-
ity results compared to both prior methods.

Recently, Bora et al. [4] generalized the method of
Gadelha et al., and showed that a generative model (for
images) can be trained from different types of lossy pro-
jections. However, Bora et al. use a single discriminator,
resulting in a suboptimal synthesis for projections with dif-
ferent distributions. To handle multiple projection distribu-
tions, our method relies on multiple discriminators, i.e., one
for each projection. We are not the first to consider com-
bining multiple discriminators to train GANs [8, 23, 17].
However, all these prior methods require access to the high

dimensional training data, and focus on improving either
the efficiency or the stability of the training process. In con-
trast, we do not have access to the high-dimensional dis-
tributions (i.e., 3D shapes), and train it directly from the
lower-dimensional projections (i.e., images).

3. Shape Distributions from Silhouette Images
We aim to learn a 3D shape distribution X, in the form of

a generator, for a class of objects from a collection of uncor-
responded silhouette images that follows a distribution Y.
Our solution (Figure 1) consists of two key components:
a novel multi-projection GAN (subsection 3.1) that learns
the 3D distribution X using multiple discriminators that en-
sure that the corresponding 2D “projections” from the 3D
distribution follow the distribution of the training silhouette
images, and a view prediction network (subsection 3.2) for
estimating the viewpoints of the input 2D silhouette train-
ing images. The training of both networks depends on the
availability of the other. We will therefore first introduce
multi-projection GANs assuming that estimates of the view-
points are available. Next, we introduce our view prediction
network and the joint training strategy for training both net-
works iteratively.

3.1. Multi-Projection GAN

GAN overview A Generative Adversarial Network
(GAN) [2, 12, 24] consists of a generator network G and
a discriminator network D. The generator G takes as in-
put a vector of latent variables z sampled from uniformly
distributed noise Z and generates samples from a learned
distribution X. The discriminator D judges whether a sam-
ple belongs to the distribution X or not. Training both net-
works is performed in competition, until the discriminator
cannot distinguish the generated samples from the data dis-
tribution. The loss for the discriminator D is defined as:

LD(X,Z) =
∑
x∼X

log(D(x)) +
∑
z∼Z

log(1−D(G(z))),

(1)
and the loss for the generator is defined as:

LG(Z) =
∑
z∼Z

log(D(G(z))). (2)

In the case of 3D shape generation, we represent each object
in X by a binary 3D voxel grid.

Projection In order to train a 3D shape GAN, a large col-
lection of exemplars from the 3D shape distribution X are
needed. However, such collections only exist for a few ob-
ject classes. In our case, we only have silhouette images
of the class of objects that follow a distribution Y. The
dimensionality of Y (2D images) is lower than the dimen-
sionality of X (3D voxel grid). We assume that the relation



between the low dimensional distribution Y and the high
dimensional distribution X can be modeled by a differen-
tiable (potentially non-linear) projection:

Y = P(X,Φ), (3)

where Φ are the latent parameters of the projection (e.g.,
the intrinsic and extrinsic camera parameters), which model
any external factors unrelated to the target distribution X.

For learning 3D shape distributions, the projection P
generates a silhouette image from a 3D voxel shape. Prac-
tically, we follow the method of Tulsiani et al. [29] exactly:
Given a 3D voxel shape and viewpoint, we first compute a
ray intersection probability for each voxel using ray-casting.
Next, the silhouette is computed as the expected value of the
intersection probability along the z axis.

Multi-projection GAN Generally, unless the high di-
mensional distribution X occupies a low dimensional em-
bedding, a single low dimensional projection will incur a
loss of information, and thus cannot unambiguously deter-
mine the target distribution X. For example, without ad-
ditional priors, we cannot reconstruct the distribution of 3D
shapes from silhouettes from a single view. Even when con-
sidering multiple views (modeled through the latent param-
eters of the projection Φ), a single discriminator is unlikely
to be able to model the joint distribution over all views with
sufficient accuracy. We therefore consider multiple projec-
tions Pi with corresponding projected sample distributions
Yi and associated discriminators Di. We define the com-
bined loss function for each discriminator as:

LDi(Yi,Z) =
∑
y∼Yi

log(Di(y))+ (4)

∑
z∼Z,ϕ∼Φi

log(1−Di(Pi(G(z), ϕ))). (5)

Similarly, we define the loss for the generator as:

LG(Z) =
∑
i

∑
z∼Z,ϕ∼Φi

log(Di(Pi(G(z), ϕ))), (6)

where we randomly draw the latent variables z from Z , and
the latent projection parameters ϕ from a distribution Φi.
In the case of 3D shape generation from silhouette images,
the distribution Φi encompasses the set of viewpoints that
project to similar silhouettes (i.e., to account for errors in
the view calibration). Figure 1 (a) overviews our 3D shape
generation multi-projection GAN, named MP-GAN.

Independence of Yi An advantage of our multi-
projection approach is that the loss function for the i-th
discriminator (Equation 5) only depends on samples drawn
from Yi. Hence, each discriminator can be trained from in-
dependently draw samples from each Yi. Consequently, the

Figure 1. (a) A multi-projection GAN consists of a generator
G that takes as input a vector of latent variables z sampled from
a uniform distribution Z, and generates samples from the target
distribution X. The generator G is trained in competition with
multiple discriminators Di that assess if the projection Pi of a
sample belongs to the projected target distribution Yi. The pro-
jection Pi relates a high dimensional sample from X (e.g., voxel
shape) to a lower-dimensional sample Yi (e.g., silhouette image),
and which can feature its own latent parameters (ϕi) to model pa-
rameters independent of X (e.g., viewpoint variations). (b) The
view prediction network V estimates the viewpoints ϕ from a sil-
houette image Y, that are subsequently clustered and merged, (c)
and assigned to the training set of the corresponding discriminator.
We iteratively alternate between training both networks.

samples for the different discriminators do not need to cor-
respond to the same objects or latent projection parameters.
The choice of which samples to draw for the training for
each discriminator does not affect the loss function of the
generator either. From a practical perspective, this allows
us to train a 3D shape generator with image collections of
different objects from different viewpoints, without requir-
ing any explicit correspondences.

Distinct Discriminator Requirement We also observe
that a good choice of projections for training multi-
projection GANs are those whose projected data distribu-
tions are significantly different. Indeed, if two projections
Pa(X,Φa) and Pb(X,Φb) are similar to each other, then
the corresponding discriminators will learn the same distri-
bution. Hence, according to Equation 5, the two discrim-
inators will similarly affect the training of the generator.
Therefore, the two similar projections should act as a sin-
gle projection:

P(X,Φ) = Pa(X,Φa) ∪Pb(X,Φb), Φ = Φa ∪Φb.
(7)

Concretely, for 3D shape modeling, a large difference in
viewpoint can yield a significantly different silhouette im-
age distribution. Hence, different discriminators are needed



for large viewpoint differences. In contrast, small view-
point changes produce very similar silhouette distributions,
and thus we can combine discriminators of similar views to-
gether, and model the viewpoint variations by the latent pro-
jection parameters Φ. As a result, a multi-projection GAN
for 3D shapes does not require perfect viewpoint estimates;
we will exploit this property when training the generator
and viewpoint predictor (subsection 3.2).

3.2. View Prediction and Clustering

The multiple discriminators Di and projections Pi in
MP-GAN require knowledge about which silhouette images
belong to which distribution Yi as well as the correspond-
ing viewpoints modeled by the latent projection parameters
ϕ ∼ Φi. Prior work in deep viewpoint estimation relied on
labeled training data or synthetically rendered images from
known 3D shape collections [20, 26, 33], or on multi-view
correspondences [28]. None of these methods are directly
applicable to our input training dataset.

To estimate the viewpoints, we utilize a view prediction
network trained on a large number of reference silhouette
images (with viewpoint) obtained by projecting 3D shapes
synthesized by the generator G. For robustness, we dis-
cretize the space of possible viewpoints into 16 predefined
“view-bins” and treat the view prediction as a classification
problem that outputs a vector of view probabilities.

Viewpoint Clustering Ideally, each view-bin corre-
sponds to a projection and an associated discriminator
(Equation 5). The silhouette images assigned to the view-
bin serve as a training set for the respective discriminator.
However, depending on the viewpoint distribution over the
training data, not all of the view-bins will contain a suf-
ficient number of training images to train a discriminator.
Therefore, instead of using all view-bins, we exploit the ob-
servation expressed in Equation 7, and merge nearby views
to a pre-determined fixed number of view clusters.

Practically, we perform a K-means clustering on the pre-
dicted discretized view probability vectors of the training
silhouette images. We use the view probability vectors in-
stead of the estimated viewpoints to better handle ambigu-
ous cases (e.g., front and back view produce identical sil-
houettes). The result will be a set of viewpoint distributions
(as cluster centers) and a unique cluster id for each train-
ing image. We directly use the estimated viewpoints of the
silhouettes images assigned to the ith cluster as the latent
projection viewpoint distribution Φi to ensure that the (syn-
thesized) projected distribution follows the intrinsic distri-
bution of the training silhouette data.

Joint Training Both the multi-projection GAN and the
viewpoint prediction classifier require the other for training
(i.e., multi-projection GAN requires viewpoint estimates,

Figure 2. Overview of VP-MP-GAN training. Starting from a sin-
gle discriminator GAN, we iteratively alternate between training
a viewpoint classifier (based on training images produced by the
generator G), and training MP-GAN (based on predicted view-
points for the silhouette images using the viewpoint classifier V).

and the view prediction classifier requires GAN-generated
3D shapes for training). We resolve this conundrum by
jointly training both in an iterative fashion where we alter-
nate between training one network while keeping the other
fixed. We bootstrap this iterative joint approach by training
an initial generator using a single-discriminator 3D shape
GAN assuming uniformly distributed viewpoints for train-
ing the discriminator. We will refer to the multi-projection
GAN trained with joint viewpoint predictions as VP-MP-
GAN. Figure 2 summarizes our full pipeline.

4. Implementation and Training
Network Structure We follow the 3D voxel generator
network structure of Wu et al. [34] which takes a input vec-
tor sampled from N(0, 1) and outputs a 64× 64× 64 voxel
grid via a sequence of 3D convolution and upsample lay-
ers. We employ batch normalization after each convolution
and upsample layer and use the ReLU activation function.
The discriminators take a 64 × 64 binary silhouette image
as input, and output a single scalar probability value. Each
discriminator contains 4 convolutional blocks with a stride
of 2, followed by a single fully-connected layer. We share
the first convolutional layers among the different discrimi-
nators, and use spectrum normalization [22] for each layer
with the LeakyReLU activation function. The view predic-
tion network shares the same convolutional structure as the
discriminators, but with using batch normalization instead
of spectrum normalization, and outputting the probability
for the 16 discretized view-bins. We refer to the supple-
mental material for the detailed network structures.

Training Data We demonstrate our method on four dif-
ferent datasets: a synthetic dataset for validation and abla-
tion study, and three different real-world datasets. The syn-



thetic dataset consists of 40, 000 rendered silhouette images
for 6,000 3D shapes of chairs from the ShapeNet dataset [5].
All silhouettes are rendered from viewpoints with no el-
evation angle and uniformly distributed azimuth angles
in [0, 2π]. The three real-world datasets are: ∼22,000
chair images mined from internet image repositories and
Pix3D [27], a dataset of∼36,000 car images mined from in-
ternet image repositories plus the Stanford car dataset [19],
and a dataset of ∼12,000 bird images (CUB-Birds-200-
2011) [30]. For Pix3D and CUB-Birds-200-2011 we di-
rectly use the silhouette masks provided in the database
(but we do not use the additional labels). In addition, for
CUB-Birds-200-2011, we also remove close-up views and
occluded images as their silhouettes do not provide com-
plete shape information, as well as images with birds with
open wings due to the scarcity of such images. For the im-
ages from other sources, we extract the silhouettes with an
off-the-shelf segmentation network [13] and manually re-
move instances with corrupted masks.

Implementation Details We implemented our multi-
projection shape GAN framework in TensorFlow [1]. For
all experiments, the resulting networks are trained with the
ADAM optimizer with a 10−4 learning rate, β1 = 0.5,
β2 = 0.9, a 1 : 1 training ratio between the generator and
the discriminators, and a batch size of 32. For each train-
ing iteration, we generate one batch of voxel shapes, and
for each generated shape and projection discriminator com-
pute a silhouette image with randomly sampled viewpoint
(∼ Φi). In addition, we also sample one batch from the
training set corresponding to each projection. During back-
propagation, the gradients from each of the discriminators
are averaged to drive the generator training (Equation 6).

We limit viewpoint prediction in VP-MP-GAN to az-
imuth angles, since most collected images are dominated
by viewpoint changes in the azimuth angle. We split the
azimuth range [0, 2π] into 16 uniformly distributed view-
bins. For the view classifier training, we randomly synthe-
size 10,000 3D shapes, and generate a silhouette image for
a random view within each of the view-bins, yielding a to-
tal of 160,000 training data pairs in each epoch. We clus-
ter the view distributions in 8 clusters for all experiments
and store the view distributions Φi for each discriminator
in histograms. To avoid outliers, we remove all bins with a
probability less than 10% and renormalize the distribution.

Due to the intrinsic ambiguity of silhouette images for
many viewpoints (e.g., front and back silhouettes look the
same), the generated shapes may not align. Although the
multi-projection GAN can still learn the 3D shape distri-
bution without alignment, such ambiguities make the sil-
houette images from different views less distinct, thus re-
ducing the effectiveness of the multiple discriminators. For
datasets with known symmetry, we can leverage this prior

Table 1. FID score [15] of MP-GAN trained on synthetic train-
ing data of chairs with reference viewpoint estimates for varying
numbers of projections.

Num. of
Discriminators 1 2 4 6 8 16 24

FID Score 79.61 49.93 36.22 34.22 33.27 32.45 29.45

knowledge by explicitly modeling the symmetry. In prac-
tice, we enforce symmetry by only generating half of the
voxel shape and mirroring the remaining half over the sym-
metry axis. In our experiments, we enforce symmetry for
the chair and car dataset; but not for the bird dataset which
exhibits non-symmetric poses.

Training VP-MP-GAN at a resolution of 643 takes on av-
erage 40 hours on 4 Nvidia GTX 1080Ti cards.

5. Experiments
To validate our 3D shape generator, we perform an abla-

tion study to demonstrate the impact of the number of pro-
jections and view clusters (subsection 5.1). In addition, we
perform a comparison against three related methods (sub-
section 5.2). Finally, we show that our solution works well
on non-synthetic image collections (subsection 5.3).

5.1. Ablation Study

We perform our ablation study on the synthetic chair
dataset (section 4) for which we also have reference 3D
shapes (not used for training). In this study, we evaluate the
quality of the generated results quantitatively using the FID
score [15] with an existing voxel classification network [21]
trained on the ShapeNet dataset [5] as the feature extractor.

Impact of Number of Projections To analyze the quality
of the generator, we train MP-GAN on a pre-defined number
of view distributions and pre-assign the training images to
the correct view clusters created by merging nearby view-
bins. Table 1 summarizes the FID scores of MP-GAN for
a varying number of projections (and thus discriminators).
Note that MP-GAN reverts to a regular single projection
GAN for the single discriminator case. We observe that
the FID score decreases, and thus the generator quality im-
proves, as the number of projections increases. However,
we also observe a diminishing return (e.g., at 16 and 24
projections) when increasing number of projections for a
fixed number of training data as the differences between the
projection distributions decreases.

Impact of Number of View Clusters We repeat the
above experiment, but this time on VP-MP-GAN (i.e., with
view prediction) on unannotated training silhouette images.
Table 2 lists the FID scores for a varying number of view
clusters, which also changes the number of projections and
discriminators (i.e., each projection is assigned to a view



Table 2. FID score for VP-MP-GAN trained on the synthetic train-
ing data of chairs (with unknown viewpoints) for varying number
of view clusters.

Num. of
Clusters 1 2 4 6 8 16 24

FID Score 79.61 53.83 39.23 35.22 34.32 34.10 33.95

Table 3. Evolution of view classification accuracy during training
of VP-MP-GAN for 8 view clusters. Each (alternating) iteration
includes 40,000 GAN training iterations, and 40,000 view predic-
tor training iterations. The “reference” column refers to the view
predictor accuracy trained on silhouette images with exact view-
point estimates.

Num. of
Iterations Ref. 1 2 3 4 5

Accuracy 83.2% 42.7% 66.5% 69.9% 73.3% 75.6%

Table 4. View classification accuracy of VP-MP-GAN for a vary-
ing number of view clusters after 5 (alternating) iterations. The
“reference” column refers to the view predictor accuracy trained
on silhouette images with exact viewpoint estimates.

Num. of
Clusters Ref. 1 2 4 6 8

Accuracy 83.2% 42.7% 52.1% 54.5% 66.1% 75.6%

cluster). The upper-bound for the FID scores is set by the
MP-GAN (Table 1) as these are trained with the exact view-
point. Compared to the upper-bound, we can see that the
scores for VP-MP-GAN are similar or slightly larger. As
the number of view clusters increases, the inevitable inac-
curacies introduced by the view prediction weigh more on
the accuracy, resulting in a slightly larger FID score.

As detailed in subsection 3.2, we iteratively refine the
viewpoint classifier (on 16 pre-defined bins). Table 3 shows
the improvement in view prediction accuracy with each
joint training iteration for VP-MP-GAN with 8 view clus-
ters. The improvement in view prediction accuracy does
not only indicate that the view prediction improves, but also
that the learned shape distribution is closer to the target dis-
tribution. Table 4 further demonstrates this by listing the
accuracy for varying number of view clusters (for 5 itera-
tions); more view clusters result in a more accurate genera-
tor, which in turn yields a more accurate view prediction.

Finally, Figure 3 illustrates the view prediction distri-
bution accuracy on the synthetic chair dataset. Note that
VP-MP-GAN is able to learn the correct distribution with
non-uniformly distributed views focused at 8 peaks of the
16 bins. For images gathered from internet repositories,
our view prediction also produces plausible results; Fig-
ure 4 shows viewpoint classification results for the real-
world chair and bird datasets for selected views and images.

5.2. Comparison

Figure 5 compares the results of our VP-MP-GAN to 3D-
GAN [34] and PrGAN [10] on the synthetic chair dataset.

Figure 3. Accuracy of the estimated view distribution (blue) com-
pared to a reference non-uniform distribution of viewpoints (or-
ange) for the synthesized chair dataset.

Figure 4. Selection of view-classified training images for the unan-
notated real-world chair and bird image datasets.

For a fair comparison, we apply the symmetry constraint
to both methods and train both networks with our train-
ing data. We also list the FID score (in parentheses) of
authors’ original implementations for reference. 3D-GAN
is directly trained on the reference 3D data, and therefore
scores a slightly higher FID score. Nevertheless, our gener-
ated shapes exhibit a similar visual quality. Similar to our
method, PrGAN is also trained on silhouette images without
the reference 3D data. However, PrGAN assumes known
viewpoints and relies on a single discriminator only, result-
ing in a less accurate shape generator.

Recently, Henderson et al. [14] introduced a method for
learning 3D shape distributions from shaded images using
a VAE approach. Their method uses a 3D mesh represen-
tation instead of a voxel grid, making a direct comparison
difficult. We therefore, adapt and retrain their method with
a voxel generator instead of a mesh generator on silhouette
images with a uniform view distribution and added symme-
try constraint. Figure 5 shows that VP-MP-GAN produces
higher quality voxel shapes and exhibits a lower FID score
on the synthetic chair dataset.



Figure 5. Quantitative and qualitative comparison of four gener-
ators: VAE-based generator [14] (top), 3D-GAN [34] (2nd row),
PrGAN [10] (3rd row), and VP-MP-GAN (bottom). The corre-
sponding FID scores are shown on the left. We also report the FID
score of the authors’ original implementation in parenthesis.

Figure 6. Results generated by VP-MP-GAN trained on the bird
dataset.

5.3. Results on Real-world Datasets

We demonstrate our method’s ability to learn the 3D
shape distribution from real-world image datasets on three
real-world image collections. Figure 6 shows examples of
generated bird shapes. Note that there currently does not
exist a database of 3D bird shapes, and thus the only way
to learn a bird-shape generator is directly from images. Fig-
ure 7 and Figure 8 show results of generated chairs and cars,
respectively, trained from photographs mined from online
photo-collections (without using any synthetic images gen-
erated from ShapeNet). As can be seen, in all cases, VP-
MP-GAN is able to produce high quality voxel shapes from
unannotated silhouette images. We also refer to the supple-
mental material for more results on these datasets.

Figure 7. Results generated by VP-MP-GAN trained on the
internet-mined chair dataset.

Figure 8. Results generated by VP-MP-GAN trained on the car
dataset.

Limitations: VP-MP-GAN infers the distribution of 3D
shapes from unoccluded silhouette images. Similar to clas-
sic computer vision methods that infer a single shape from
silhouette images, our method can also not model concavi-
ties, and it requires a complete unoccluded view of the ob-
jects in the images. Using depth images instead of silhou-
ette images can resolve the concavity issue. However, we
deliberately did not go this route as depth images are not
readily available and need to be specially captured.

6. SVBRDF Modeling
Our multi-projection GAN framework is not restricted to

3D shape modeling only, and it can potentially be applied
to other applications that model high-dimensional data for
which easy access to low-dimensional projections is avail-
able. We demonstrate the generality of the multi-projection
framework by learning the distribution of spatially-varying
material appearance in the form of property maps for
spatially-varying bidirectional reflectance distribution func-
tions (SVBRDF) for certain kinds of natural materials such



Diffuse Specular Roughness Normal Rendering
Figure 9. A selection of SVBRDFs generated with our multi-projection GAN (bottom) compared to samples drawn from the training
dataset (top).

as wood, metal, and plastics. A SVBRDF is a 6D func-
tion that describes how the appearance varies with position,
view angle, and incident lighting direction. We model the
SVBRDF by a set of four 2D parameter maps that describe
the Cook-Torrance BRDF model’s [7] reflectance param-
eters for each surface point (i.e., diffuse albedo, specular
albedo, specular roughness, and surface normal).

Unlike textures which can be acquired with a single pho-
tograph, accurate characterization of the full SVBRDF and
surface normal details of a material is a complex and time-
consuming process [31]. However, it is relatively easy to
collect uncorresponded example maps of certain parameters
(e.g., photometric stereo for normal maps, diffuse albedo
via cross-polarized photographs, etc). Furthermore, it is
easy to obtain photographs of materials under unknown
lighting from internet photo-collections. Both of these types
of images represent projections of the 6D SVBRDF. An im-
age of a property map (diffuse or specular albedo, specular
roughness, or normal maps) corresponds to a trivial projec-
tion that “selects” a single property map. A photograph
under unknown lighting corresponds to a “rendering” pro-
jection where the unknown natural lighting distribution is
modeled by the latent projection parameter Φ.

Figure 9 shows (corresponded) generated appearance
property maps obtained with our multi-projection GAN,
trained on a dataset containing partial appearance property
maps as well as real photographs from the OpenSurfaces
dataset [3]. The last column in Figure 9 shows a rendering
of the generated material under a novel lighting condition.
As can be seen, the generated materials produce a plausible
wood material appearance. We refer to the supplemental
material for additional SVBRDF results, a didactic exam-

ple using the MNIST dataset, as well as the technical de-
tails including the training process, network structure, and
the collection and preparation of the training data.

7. Conclusion
We proposed a novel weakly supervised method for

learning the distribution of 3D shapes for a class of objects
from unoccluded silhouette images. Key to our method is
a novel multi-projection formulation of GANs that learns a
high-dimensional distribution (i.e., voxel grid) from multi-
ple, easier to acquire, lower-dimensional training data con-
sisting of silhouette images from different objects from
multiple viewpoints. Our method does not require that
the silhouettes from multiple views are corresponded, nor
that the viewpoints are known. The generator network is
trained with cues from multiple discriminators in parallel.
Each discriminator operates on the subset of the training
data corresponding to a particular viewpoint. Our second
contribution is a novel joint training strategy for training
the view prediction network in an iterative fashion with
the multi-projection GAN. We demonstrated the effective-
ness of our 3D voxel generator on both synthetic and real-
world datasets. Furthermore, we showed that our multi-
projection framework is more generally applicable than to
3D shape modeling only, and demonstrated this by training
a SVBRDF generator from 2D images.
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