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Abstract

In this paper we present a new method to reconstruct reflectance functions for image-based relighting. A re-
flectance function describes how a pixel in a photograph is observed depending on the incident illumination on
the depicted object. Additionally we present a compact representation of the reconstructed reflectance functions.
The reflectance functions are sampled from real objects by illuminating the object from a set of directions while
recording photographs. Each pixel in a photograph is a sample of the reflectance function.
Next, a smooth continuous function is reconstructed, using different reconstruction techniques, from the sampled
reflectance function. The presented method maintains important high frequency features such as highlights and
self-shadowing and ensures visually pleasing relit images, computed with incident illumination containing high
and low frequency features.
The reconstructed reflectance functions and incident illumination can be expressed by a common set of basis
functions, enabling a significant speed-up of the relighting process. We use a non-linear approximation of higher
order wavelets to preserve the smoothness of the reconstructed signal while maintaining good relit image quality.
Our method improves on visual quality in comparison with previous image-based relighting methods, especially
when animated incident illumination is used.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three dimensional Graph-
ics and Realism I.4.1 [Image processing and Computer Vision]: Digitization and Image Capture

1. Introduction

Image-based relighting is the visualization of real objects
with novel incident illumination. This illumination can be
captured from the real world or from a virtual environment.

Over the recent years, several image-based relighting
methods have been developed, covering a wide range of ap-
plications such as special effects in movies and visualiza-
tions for archaeology and forensics. Another important ap-
plication is illumination dependent textures, used in the gam-
ing industry where real-time relighting is required.

Existing image-based relighting techniques produce visu-
ally pleasing results for static illumination but suffer often
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from poor visual performance on rendering animations with
changing incident illumination, or restrict the reflectance
properties of the object, or the incident illumination, to con-
tain only low frequencies. The subject of this paper is to
overcome these problems.

We conducted a thorough analysis on existing signal
reconstruction techniques applied to reflectance functions
for image-based relighting. A reflectance function describes
how a pixel in a photograph is observed depending on the
incident illumination on the depicted object. From our anal-
ysis, we conclude that a multilevel B-Spline technique per-
forms best, in terms of visual quality and the ability to rep-
resent all features in reflectance functions.

To capture the sampled reflectance functions, the view-
point is fixed relative to the object and a set of photographs
is recorded while the object is illuminated by a light source

c© The Eurographics Association 2004.



Masselus et al. / Smooth Reconstruction and Compact Representation of Reflectance Functions for Image-based Relighting

positioned at a different direction for each photograph. This
approach is similar to previous image-based relighting tech-
niques.

The reconstructed reflectance functions, using the multi-
level B-Spline technique, can be used to compute relit im-
ages of the objects, lit with all-frequency illumination. Fur-
thermore, changing the incident illumination results in a set
of relit images, visually coherent over time.

To enable fast relighting and minimize storage require-
ments, the reflectance functions and the illumination maps
can be approximated by a common set of basis functions.
The computation for each relit pixel is reduced to multi-
plying corresponding coefficients of the reflectance function
and the incident illumination. We propose to use a non-linear
approximation of the reflectance functions using higher or-
der wavelets for this set of common basis functions. This
approximation introduces an error of less than 1% during
relighting, and allows to compute a relit image with a low
average number of coefficients per reflectance function.

2. Previous Work

Relighting has been widely researched over the recent years.
We will restrict the following survey of previous work to
recent image-based relighting techniques which do not make
any assumption involving geometry or reflectance properties
and sample the reflectance functions directly by means of
point samples.

Debevec et al. [DHT∗00] introduced a gantry, called the
Light Stage, which enables to illuminate a real object from a
regular set of directions. The resulting basis images are lin-
early combined to produce an image of the object lit by an
arbitrary light map. Subsequent versions of the Light Stage
improve on acquisition time [HCD01] or generalize on a
non-regular sampling of directions [MDA02]. Matusik et
al. [MPN∗02, MPZ∗02] extended the Light Stage for view-
point independent relighting.

Wong et al. [WHON97] extended existing image-based
rendering techniques [GGSC96, LH96] with controllable il-
lumination. For a single viewpoint, a set of images of the ob-
ject, illuminated from different directions is rendered using
a global illumination renderer. For each pixel the apparent
BRDF at that pixel is stored and compressed using spherical
harmonics. To visualize the relit object, the apparent BRDF
of each pixel is evaluated for a specific illumination direc-
tion. The concept of apparent BRDFs was also used to visu-
alize panoramas with variable illumination [WHF01].

Lin et al. [LWS01] also extended the Lumi-
graph [GGSC96] and Light Field Rendering [LH96]
methods, but to a tri-planar technique. A point light source
is positioned on a grid and for each position a light slab is
recorded. Afterwards, the object can be rendered from any
position illuminated with a point light source positioned on
the original grid.

Polynomial Texture Mapping (PTM) [MGW01] is a tex-
turing technique that enables hardware rendering of illumi-
nation dependent textures. A PTM is synthesized by record-
ing a series of photographs with the view direction orthogo-
nal to the surface plane and illuminated from different direc-
tions. For each texel, the set of the reflected intensities of the
different light sources are fitted to a biquadric polynomial.

The following section (3) overviews our method to obtain
point samples of the reflectance functions of the pixels. The
paper then surveys our two main contributions: reconstruct-
ing smooth reflectance functions from the captured data (sec-
tion 4) and a compact and efficient representation for these
reconstructed reflectance functions (section 5). Finally, we
conclude the paper and outline some future work.

3. Sampling Reflectance Functions

3.1. Relighting

Let Ω be the space of all light directions over a hemisphere
centered around the object to be illuminated. Angular de-
pendent incident illumination can be expressed as a function
Lin(ω) of radiance, with ω ∈Ω. The viewpoint to the object
is fixed, since we are only interested in the effect of chang-
ing the incident illumination on the object, not changing the
viewpoint. The radiant illumination through a pixel (x,y) un-
der incident illumination Lin can be expressed as:

Lout(x,y) =
Z

Ω
R(ω,x,y)Lin(ω)dω, (1)

with R(ω,x,y) representing the amount of radiance from di-
rection ω that is reflected into pixel (x,y) (Figure 1). This
function R, introduced by Debevec et al. [DHT∗00], is
called the reflectance field.

Lin(ω)

(x,y)

Lout(x,y)

Figure 1: An object (shown in red) is illuminated by Lin. The
reflected radiance towards pixel (x,y) is Lout.

Once the reflectance field R(ω,x,y) is acquired, the object
can be visualized by evaluating equation 1 for all pixels with
any incident illumination Lin.

For a specific pixel, the reflectance field R(ω,x,y) is de-
noted by R(ω) and is called the reflectance function of that
pixel. The image of the relit object can be calculated by tak-
ing the inner product of the incident illumination, and the
reflectance function of each pixel.
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3.2. Data Acquisition

The reflectance functions R(ω) need to be captured, in order
to relight an object. A reflectance function is a discontinu-
ous function over Ω, due to self-shadowing boundaries. This
makes the exact measurement of R(ω) difficult. However,
the object can be illuminated from a discrete set of directions
ωi, while a High Dynamic Range (HDR) image is recorded
for each direction. Each recorded photograph results in one
sample value of the reflectance function for each pixel. We
denote a sample value resulting from positioning the light
source at direction ωi as sωi . Note that sωi can include mea-
surement errors.

Using this set of samples, a discrete-to-continuous recon-
struction can be performed to obtain the reflectance function
R(ω) for each pixel separately.

Figure 2: The setup for our data acquisition. The scene, a
set of stones, and the camera are placed on a turntable. A
semi-circular brace with 40 light sources is mounted over the
turntable. By rotating the turntable 180 degrees in 32 steps
and switching on one light source at a time, the object can
be illuminated from 64 × 20 regularly sampled directions.

The data acquisition setup is similar to the one de-
scribed in [HCD01]. The object and camera are placed on
a turntable. A semi-circular brace with 40 light sources is
mounted over the turntable. The tilt angle of the light di-
rection is defined by the light source used, the azimuth an-
gle can be changed by rotating the turntable. Using 40 light
sources and rotating the turntable 180 degrees in 32 steps,
allows to illuminate the object from 64 × 20 (= 1280) reg-
ular sampling directions and record a HDR image for each
direction. Note, that in this setup the camera can block a light
source. An image of the setup can be seen in figure 2.

4. Reconstruction Methods

Throughout the paper, we use a miniature race car to illus-
trate the discussed methods. This object was especially cho-
sen because it contains many specular surfaces and fine ge-
ometrical details, causing numerous self-occlusion features

2 4

3 1

Figure 3: A miniature race car featuring diffuse, glossy and
specular material properties along with fine detail in ge-
ometry. The reflectance functions of this object are sampled
at 1280 illumination directions and reconstructed using the
zero-order hold technique. Reflectance functions of the se-
lected pixels are shown in the top left and bottom right.

(figure 3). The reflectance functions of this object were sam-
pled from 1280 directions. Four pixels were selected and the
accompanying sampled reflectance functions are depicted as
well. To visualize a reflectance function defined on a hemi-
sphere, we project it onto a disk.

These four reflectance functions include a wide range of
features: a diffuse red pixel on the side of the helmet of the
driver, as can be seen in figure 3.1. A yellow pixel on the
top of the helmet features a soft highlight (figure 3.2). We
also selected two pixels containing high frequency features:
a pixel on the side of the car with a sharp highlight and a
pixel on the rear of the car complexly occluded by the rear
wing (figure 3.3 and 3.4 respectively). At the bottom of the
reflectance functions, a dark spot can be seen. This is the
camera occluding the light sources.

Several techniques were analyzed to create a continu-
ous function on a hemisphere from a discrete set of sam-
ples. In the following sections we review these reconstruc-
tion techniques. Previously published techniques comprise
zero-order hold, fitting to a biquadric polynomial and using
spherical harmonics. Additionally, interpolation of the sam-
pled data, using the wavelet transform and using B-Splines
are presented in this paper as techniques to reconstruct re-
flectance functions. An estimate of the errors of each method
are discussed and compared in section 4.1. Some results are
discussed in section 4.2.

Zero-order Hold

The set of illumination directions used during data acqui-
sition are plotted on a hemisphere and an angular Voronoi
diagram is created using the angles between different direc-
tions as a distance measure. A piecewise constant reflectance
function for each pixel can be found by assigning the sam-
pled reflectance value of each direction to the corresponding
Voronoi cell. Similar methods were used by [DHT∗00] for
regularly sampled directions and by [MDA02] for irregularly
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5/3 LeGall Wavelet, 320 samples

9/7 Daubechies Wavelet, 320 samples

Bicubic B-Spline on Lattice, 320 samples

Zero-order Hold, 1280 samples

Zero-order Hold, 320 samples

Linear Interpolation, 320 samples

IDW Interpolation, 320 samples

Fitting to a Biquadric Polynomial, 320 samples

25 Spherical Harmonics Coefficients, 320 samples

225 Spherical Harmonics Coefficients, 320 samples

625 Spherical Harmonics Coefficients, 320 samples

Figure 4: Reflectance functions of the pixels selected in fig-
ure 3, reconstructed using different techniques.

sampled directions. In figure 4.A, the reflectance functions
are reconstructed using all 1280 samples and in figure 4.B
using a subset of 320 regular samples.

Interpolation

By interpolating the recorded reflectance values, a C0 con-
tinuous reflectance function can be created.

A Delaunay triangulation is constructed on the hemi-
sphere using the sampled directions. Each point in a triangle
is interpolated using spherical barycentric coordinates. The
resulting reflectance functions are depicted in figure 4.C.
They are visually smoother than the results computed by the
zero-order hold technique.

Inverse Distance Weighted interpolation (IDW), also
called Shepard’s method uses all samples to reconstruct the
function in a single direction. Again, the angle between di-
rections was used as a distance measure and the weights of
the values of the sampled directions are inverse proportional
to the distance of the sampled directions. A variation on this
technique calculates interpolated values by only taking into
account a pre-defined number of nearest neighbor directions.
In figure 4.D a result is shown using only the 32 nearest
neighbors.

Fitting to a Biquadric Polynomial

The captured data can also be fitted to a single biquadric
polynomial. The resulting reflectance functions, are C∞

continuous and defined on a global support. This reconstruc-
tion method significantly blurs out the high frequency fea-
tures such as highlights and self-shadowing boundaries. Re-
sults of the selected pixels can be seen in figure 4.E. Using a
biquadric polynomial can result in negative values for some
directions, which are clamped to zero in the visualization.

The method is similar to Polynomial Texture
Maps [MGW01]. Although this technique was intended for
illumination dependent texture maps, it can be applied to
relight objects as well. A major advantage is that only 6
coefficients have to be stored per texel.

Spherical Harmonics

The sampled data can be fitted through a set of spherical
harmonic basis functions. This results in a continuous ap-
proximation of the reflectance function. However, spherical
harmonics are defined on a sphere, posing a problem when
using only a hemisphere. We solved this by mirroring the
data to the other hemisphere.

Wong et al. [WHON97] applied this technique on sam-
pled reflectance functions of synthetic scenes and used 16 or
25 coefficients, corresponding with four or five bands of the
spherical harmonic basis functions respectively. The recon-
structed reflectance functions using the first five bands, are
very smooth but do not capture all the details, similarly as
using a biquadric polynomial (see figure 4.F).
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In figure 4.G and 4.H, the reflectance functions are de-
picted using 225 and 625 spherical harmonic coefficients,
for each color channel. The reconstructed reflectance func-
tions are able to capture all features to some extent, but suf-
fer from severe Gibbs ringing or aliasing artefacts. Negative
values in the visualizations in figure 4 are clamped to zero.

Wavelet Transform

Wavelets are a flexible tool used in many domains includ-
ing computer graphics. A good survey can be found in
[SDS96, SSC∗96].

A sampled signal can be reconstructed to a continuous
signal using wavelets, by repeatedly inserting additional
samples halfway between each sample point. The magnitude
of each new sample point is characterized by the scale func-
tion of the wavelet. Intuitively this can be seen as compos-
ing a signal using the wavelet transform in which the added
wavelet coefficients (high frequency features) are set to zero.

A logical choice would be to use spherical wavelets
[SS95]. The highly irregularly spaced samples in the spher-
ical domain are a disadvantage and require a resampling
step. The recorded samples, however, are regularly spaced
in the latitude-longitude parameterization, due to the setup.
We therefore opt for using the wavelet transform in the
latitude-longitude parameterization. An additional advan-
tage is that common wavelet implementations can be used
without much trouble.

We use two different types of wavelets. The first wavelet
is the 5/3 LeGall, or Integer 5/3, which is the shortest sym-
metrical biorthogonal wavelet with two vanishing moments.
Its scaling function is a linear B-Spline. The second wavelet
is the well known 9/7 Daubechies wavelet, which is the
shortest symmetrical biorthogonal wavelet of order four, and
is by construction a cubic B-Spline. Both wavelets are part
of the JPEG2000 standard, and are therefore widely imple-
mented. Traditionally these wavelet are mirrored around im-
ages boundaries. However, in our implementation we opted
for repeating the signal on vertical boundaries, since this fits
better to the original spherical domain. We still mirror the
wavelets on horizontal boundaries.

Results of using these wavelets can be seen in figure 4.I
and figure 4.J. The 5/3 LeGall wavelet gives similar results
as linear interpolation. The 9/7 Daubechies wavelet, how-
ever, result in a very smooth reflection function, but suffers
from aliasing artefacts, which become noticeable when ani-
mated incident illumination is used.

B-Splines

Bicubic B-Splines can be used to create a continuous func-
tion. These functions are a good trade-off between smooth-
ness (C2 continuous) and the ability to represent the features
in the captured data. The error analysis in section 4.1 will

...

Number of

1 (1× 1)

64 (8× 8)

reflectance function4×4 support marked

256 (16× 16)

4096 (64× 64)

B-Splines
Lattice with a single Resulting

Figure 5: The influence of number of B-Splines on the cover-
age of a 4×4 support and the resulting reflectance function.
The red dashed rectangle shows the size of a 4×4 support
for each lattice.

show that reconstruction reflectance functions using multi-
level B-Splines performs best with respect to the other recon-
struction techniques. Therefore, we will discuss this method
in more detail.

B-Splines are not easily defined on a sphere. Therefore we
opt for representing the sampled data using the paraboloid
map parameterization [HS99]. This representation offers
a continuous projection of the hemisphere, in which the
boundaries are identical as on a hemisphere and the pole is
defined in a single point. Furthermore, The solid angle to
projected area ratio is close to constant.

A bicubic B-Spline can be fitted on the data by creating
a 4×4 grid of control points on the projected data, as can
be seen in the first row of figure 5. The resulting reflectance
function is poorly reconstructed because a single bicubic B-
Spline cannot represent all features, similarly as using a sin-
gle biquadric polynomial (section 4). A possible solution re-
constructs the reflectance function using a set of independent
B-Splines, each defined on a different 4×4 grid of control
points, which are defined on a lattice over the projected data.
Figure 5 demonstrates the influence of the resolution of the
lattice and the resulting reflectance function. Using few B-
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Splines results in a good global fit of the data, but with al-
most no local detail (figure 5, first three rows) while using
more B-Splines produces a reflectance function with a good
local fit but lacking global smoothness (figure 5, last row).
This problem was also noted by [LWS97].

...
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Figure 6: The construction of the multilevel B-Splines. For
each level, the 4×4 grid of control points is subdivided on
which a set of B-Splines is defined. These B-Splines are fit-
ted through the difference of the already reconstructed set
of B-Splines and the measured values sωi . The difference is
displayed dark for negative and bright for positive values.

Multilevel B-Splines, presented by [LWS97], allows to
fit a smooth approximation through the projected samples
without these problems. Multilevel B-Spline interpolation is
a hierarchical method that first tries to fit a set of globally
smooth B-Splines through the sampled data each defined on
a distinct 4×4 grid of control points with large coverage.
In each successive step the number of control point in the
grid of each B-Spline is doubled in each direction and a new
set of B-Splines is created on the four smaller 4×4 grids
of control points. These new B-Splines on the smaller grids
are fitted through the difference of the sum of the already
computed B-Splines and the measured sample values sωi , as
defined in section 3.1. The method is demonstrated in fig-

ure 6. The hierarchy of B-Spline sets can then be reduced to
a single set of B-Splines defined on the 4×4 grids of control
points with the smallest coverage used (i.e. highest hierarchy
level).

In our implementation we used four starting grids, which
produce a smooth global fit of the measured data and we re-
fine to six levels in the hierarchy, which allows for a good
local fit. The number of levels in the hierarchy was empiri-
cally determined by the magnitude of differences of the mea-
sured values and the values of the sampled directions in the
already constructed reflectance function. Using six levels al-
lows to fit the data values, while not fitting noise on the data.
This method results in a set of 64×64 B-Splines. The recon-
structed B-Spline reflectance functions can be seen in fig-
ure 4.K.

4.1. Comparison

Suppose we reconstructed the reflectance function RN(ω)
using N sampling directions. Reconstructing a reflectance
function by a discrete-to-continuous technique introduces an
approximation error defined as:

E2
avg =

R
Ω (R(ω)−RN(ω))2 dω

R
Ω (R(ω))2 dω

, (2)

with Eavg the average error on the reconstructed reflectance
function. Eavg cannot be exactly computed, since R(ω)
is unknown. However this error can be approximated by
sampling an additional large set of M (� N) directions
{ω1,ω2, ...,ωM}. Using the M captured samples, denoted as
sωi , E2

avg can be approximated as:

E2
avg ≈ ∑M

i=1 (sωi −RN(ωi))
2

∑M
i=1 sωi

2
. (3)

We illuminated the objects from 1280 (= M) regularly
sampled directions and take a subset of 320 (= N) samples
to estimate the error on each reconstructed reflectance func-
tion.

Eavg will mainly depend on the used reconstruction tech-
nique and the kind of reflectance function. Most of the recon-
struction techniques will perform well if a pixel represents a
diffuse un-occluded surface, thus a low frequency function,
and consequently result in a low value for Eavg. However,
the error can be high for some reconstruction methods when
the reflectance function features a highlight or complex self-
shadowing.

Instead of comparing Eavg for a single reflectance func-
tion, we compute the average of Eavg over a set of pixels
with similar occlusion and material properties. We compare
these errors for different reconstruction techniques.
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Figure 7: The average relative error of the reconstructed re-
flectance functions for the object from figure 3 for four differ-
ent sets of pixels using different reconstruction techniques.

We use four sets of pixels: a set of pixels representing
the complete object, pixels representing diffuse un-occluded
surfaces, pixels representing diffuse surfaces with complex
self-shadowing and pixels located on glossy and specular
materials.

The average relative errors Eavg of these four sets are plot-
ted in figure 7. The four sets are visualized as a false color
images in which the accounted pixels are shown in white.

In general, the error for un-occluded diffuse reflectance
functions is low, while reflectance functions featuring high
frequency details result in larger errors. Ramamoorthi and
Hanrahan [RH01] noted that diffuse unblocked reflectance
functions can be represented by the first three spherical har-
monics bands, yielding an error of less than 1%. In our ex-
periments, we come to a similar conclusion, having noisy
real data (including camera occlusion) and using 5 bands.

Reconstructing the reflectance functions by fitting the data
to a biquadric polynomial or using spherical harmonic ba-
sis functions results in large errors. This is due to the loss
of high frequency features and the use of a set of globally
smooth functions. Using the zero-order hold reconstruction
technique produces a mediocre result. It preserves most fea-
tures, but also introduces new high frequency features in the
reflectance functions. Our proposed methods have relatively
low errors, because the resulting reconstructed reflectance
functions are smooth while maintaining most of the features.

The standard deviation on the calculated errors was small
for pixels representing diffuse or occluded surfaces. Pixels
representing a specular surface produced a large standard
deviation which was expected due to the high frequency fea-
tures in the reflectance functions.

Although these errors give a good indication of the perfor-
mance of the introduced reconstruction methods, it is still the
effect of incident illumination on the object which is most
important, not the reflectance function itself. In figure 8, the
miniature race car is illuminated by a vertical sliver of light.
Using a line of illumination results in images containing

both low frequency illumination features such as long soft
shadows (along the direction of the line of illumination) and
high frequency illumination features such as very short soft
shadows (orthogonal to the line). The reflectance functions
were reconstructed using several reconstruction techniques
and using 1280 sampled directions.

B−Spline

Biquadric fitting 25 SH Coefficients

Zero−order Hold Linear Int.

9/7 Daubechies

Figure 8: The miniature race car from figure 3, relit with
a vertical sliver of light, using different reconstruction tech-
niques for the reflectance functions.

Using a zero-order hold reconstruction technique results
in a pleasing image, however, the shadows and highlights
move in a jittered way when the illumination is changed, as
can be seen in figure 12 and the accompanying video. Fitting
the data with a biquadric polynomial or using 25 spherical
harmonics coefficients does not result in a satisfying image.
The shadows, especially close to the object, are distorted and
the highlights are completely lost. These aliasing effects are
due to Gibbs ringing. However, these methods require very
few coefficients to represent the data which is of importance
for real time relighting. The linear interpolation, B-Spline
and wavelet reconstruction techniques deliver a good visual
result (IDW interpolation performed almost identical to lin-
ear interpolation). The shadows are faithfully recreated, as
are the highlights. Multilevel B-Spline reconstruction out-
performs linear interpolation and wavelet interpolation when
considering dynamic incident illumination (figure 12 and the
video).

Since the reconstruction of the reflectance functions is a
pre-process to the actual relighting and needs to be done only
once, we did not include the pre-processing time of the dif-
ferent reconstruction techniques in the comparison.

Also note that all reconstruction techniques except for the
wavelet interpolation can also be applied on irregular sam-
pled measured data.
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4.2. Reconstruction Results

The top left of figure 11 displays a set of stones, a scene
featuring a lot of self-shadowing effects. This can be noted
in the reflectance functions depicted around the figure. On
the bottom left of figure 11, a set of coins, together with
some selected reflectance functions are shown. This scene
was chosen for the highly specular material properties. As
can be seen, the highlights have all kinds of shapes which are
preserved in the reconstructed reflectance functions. These
two scenes are also included on the video.

The right of figure 11 shows a jade statuette. A series of
selected reflectance functions, reconstructed using the mul-
tilevel B-Spline technique with all 1280 captured samples,
are depicted on both sides, containing a whole range of dif-
ferent reflectance features: specular highlights (figure 11.A),
diffuse reflection (figure 11.B), subsurface scattering (fig-
ure 11.D) and complex occlusion (figure 11.C, G and H).

In these scenes, the multilevel B-Splines technique also
performs best in terms of both error and reconstruction
smoothness.

5. Fast Relighting

In this section, we assume that the reflectance functions are
already reconstructed using one of the techniques presented
in the previous section. The reconstructed reflectance func-
tions are provided in an algebraic form. However evaluating
the reflectance functions using this algebraic form may re-
quire a significant amount of processing time. Additionally,
computing an image of a relit object requires to evaluate:

Lout =

Z

Ω
R(ω)Lin(ω)d(ω), (4)

for each pixel (equation 1). The time required to compute
this inner product for a single pixel is proportional to:

1. The time required to evaluate a reflectance function.
2. The number of samples in Lin.

The computational effort is large for densely sampled in-
cident illumination (such as high resolution environment
maps) and can be impractical for real-time or interactive ap-
plications.

In the following subsections we speedup this computation
by reducing the weight of both factors. The time required to
evaluate a reflectance function can be reduced by expressing
the algebraic form of the reflectance functions and the inci-
dent illumination in a common set of basis functions (sec-
tion 5.1). Further speedup can be attained by a lossy ap-
proximation of Lin and R using this same common set of
basis functions (section 5.2) and also reducing storage re-
quirement.

5.1. Common Basis Approximation

The functions Lin(ω) and R(ω) can be expressed using a
common set of basis functions Bi(ω) and a dual set Bi(ω)
on Ω:

Lin(ω) = ∑i liBi(ω)

R(ω) = ∑i riBi(ω),

where li and ri are the projections of the dual basis functions
Bi(ω) onto Lin(ω) and Bi(ω) onto R(ω) respectively.

Equation 4 can be rewritten using these approximations
as:

Lout =
Z

Ω
R(ω)Lin(ω)dω

=
Z

Ω

(
∑

i
riBi(ω)

)(
∑

j
l jBj(ω)

)
dω

= ∑
i

∑
j

ril j

Z

Ω
Bi(ω)Bj(ω)dω.

This can be further simplified using the definition of dual
basis functions (

R
Ω Bi(ω) Bj(ω) dω = δi, j) to:

Lout = ∑
i

rili. (5)

This reduces the inner product computation to multiplying
the corresponding coefficients from the reflectance func-
tion and the incident illumination. The incident illumination
needs to be projected only once on the dual basis functions
and the resulting li can then be re-used for each pixel. Note
that both the incident illumination and the reflectance func-
tions can be expressed in the same basis when Bi is an or-
thonormal set of basis functions.

Incident illumination is usually represented as an environ-
ment map with a finite resolution of N samples. Therefore,
Lin can be represented by a finite number of N dual basis
functions Bi (i.e. N coefficients li). From formula 5 follows
that, if R is expressed using the N corresponding basis func-
tions Bi, then Lout can be exactly computed without intro-
ducing an approximation error.

In practice, a reflectance function is first expressed in
a discreet representation. The resolution and parameteriza-
tion of this discreet representation should be equal to the
resolution and the parameterization of the incident illumi-
nation. This discreet representation can now be more eas-
ily expressed in a specific basis (e.g. spherical harmonics,
wavelets, ...). The coefficients for each reflectance function
can be pre-computed, reducing the evaluation of the re-
flectance functions to a simple lookup operation instead of
evaluating the algebraic form.
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5.2. Lossy Approximation

Expressing R and Lin in a common set of basis functions
does not reduce the number of multiplications in the inner
product computation, which is equal to the number of sam-
ples in Lin. A solution is to select a common basis set in
which many coefficients are near-zero. A lossy approxima-
tion is then applied by leaving out these near-zero coeffi-
cients, introducing a small error. Using a lossy approxima-
tion method makes it possible to reduce the number of coef-
ficients dramatically without introducing too much error.

In the following sections we discuss spherical harmonics
and wavelets as a candidate for such a common set of basis
functions to be used with lossy approximation.

Spherical Harmonics

Spherical harmonics can be used to represent reflectance
functions of a pixel in a compact way. The main idea is to
use a number of low frequency bands to represent the data,
leaving out high frequency “details”.

Low frequency reflectance functions can be well approx-
imated using spherical harmonics [RH01], if only the lower
bands are used. Using more bands will allow to add more
detail in the resulting reflectance functions. A significant
drawback of spherical harmonics is Gibbs ringing or alias-
ing which occurs around high frequency features, such as
highlights and self-shadowing boundaries. The resulting re-
flectance functions are similar as when reconstructing the
reflectance functions directly with spherical harmonics (fig-
ure 4.G and figure 4.H).

Kautz et al.[KSS02] used the first 15 bands to represent
synthetic reflection properties without taking into account
self-shadowing effects. Sloan et al.[SKS02] extended this
technique to include self-shadowing for synthetic scenes by
using two sets of spherical harmonics, one for the reflectance
properties and one for the self-occlusion features. Using two
sets is only possible if the geometry is known in advance.

Wavelet Compression

Wavelets are well known for their use in image compres-
sion and have also been used for representing and compress-
ing incident illumination. Ng et al.[NRH03] used a cube-
parameterization and a non-linear Haar wavelet approxima-
tion [DeV98] on the incident illumination in an image-based
relighting context. Using a non-linear approximation of the
incident illumination significantly speeds-up the computa-
tion of formula 5. However, it does not reduce the stor-
age requirements for the reflectance field. A more logical
choice would be to use non-linear wavelet approximation on
the reflectance functions itself, reducing computational and
storage requirements. Furthermore, we do not restrict our-
self to only the Haar wavelet. Higher order 5/3 LeGall and
9/7 Daubechies biorthogonal wavelets are also considered.
These wavelets have better properties with respect to image
compression [UB03] than the Haar wavelet.
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Figure 9: Sobolev H1-norm versus the number of wavelet
coefficients.

We performed a non-linear approximation in the same pa-
rameterization as was used for the wavelet reconstruction in
section 4 and a resolution of 256×64. An increase in resolu-
tion will not alter the compression ratio much, since the in-
crease in information is limited. For all examples, we started
from the reflectance functions reconstructed with the pro-
posed multilevel B-Spline technique.

For error measurements we used the scene from figure 3.
To include both spatial as well as temporal errors, we created
an image in which each column represents the same column
in a relit image of the miniature race car but at different mo-
ments during relighting with animated incident illumination
(a sliver of light rotating around the object (figure 12)).

In figure 9 the relative Sobolev H1-error is plotted in func-
tion of the number of wavelet coefficients. The relative L2-
error resulted in a simular graph and was therefore omit-
ted. In general, the Haar wavelet needs more coefficients
to achieve the same relative error. For example, 4096 Haar
wavelet coefficients are needed for a ±2% error, as opposed
to only 256 5/3 LeGall or 9/7 Daubechies wavelet coeffi-
cients. The 9/7 Daubechies wavelet slightly outperforms the
5/3 LeGall wavelet in terms of error: for 256 coefficients the
Haar wavelet results in a 7.05% relative error, the 5/3 LeGall
wavelet in a 2.12% relative error and the 9/7 Daubechies
wavelet in a 1.88% relative error.

Using the same number of coefficients for each re-
flectance function in the reflectance field is not optimal.
Some reflectance functions can be compressed using less
coefficients and still result in an acceptable error during re-
lighting. To determine the number of wavelet coefficients to
be used for a specific reflectance function, our algorithm se-
lects the largest wavelet coefficients such that the error on
the L2-norm on the compressed reflectance function itself is
bounded by an error-threshold. This L2-norm can be easily
computed by decomposing the reflectance function into the
primal and dual wavelet space and summing the multiplied
corresponding coefficients. The L2-norm is sufficient for de-
termining the number of wavelet coefficients, although it is
only an indication of the error on the inner product of the
reflectance function and the (at processing time) unknown
incident illumination.
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It is important that the non-linear approximation, for both
fixed and variable number of coefficients, maintains as much
as possible the smoothness of the original reflectance func-
tions. Introducing additional discontinuities will result in vi-
sually disturbing features when animating the incident illu-
mination. This can be seen in the last three rows in figure 12
and in the accompanying video, both relit from reflectance
functions compressed with a variable number of coefficients
(0.1% error-threshold). It is clear from this figure and the
video that, although the Haar wavelet achieves very good
compression ratios, it fails to maintain smoothness. The rea-
son is the low number of vanishing moments in the Haar
wavelet. The 5/3 LeGall and 9/7 Daubechies wavelet per-
form much better and still have very good compression ra-
tios. See figure 10 for a comparison of the Sobolev H1-
norm versus different error-threshold values and the respec-
tive number of wavelet coefficients. The correlation between
the number of coefficients for a specific wavelet and the er-
ror threshold is hard to predict. When using a variable num-
ber of coefficients, more wavelet coefficients are assigned to
high-detail reflectance functions, whereas low-detail func-
tions are compressed using less wavelet coefficients. These
details contribute little to the error, hence the small differ-
ence in error between compressing reflectance functions us-
ing a variable number of wavelet coefficients and using a
fixed number of wavelet coefficients.

In terms of error and smoothness the 9/7 Daubechies
wavelet is preferred (followed by the 5/3 LeGall wavelet),
achieving a compression ratio of 1 : 34 for a 0.2% error-
threshold and a H1-error of less than 1% on a 256× 64
discretization of a multilevel B-Spline reconstruction. Non-
linear approximation using the Haar wavelet will only be
better suited when compressing reflectance functions that
are non-smoothly reconstructed (e.g. zero-order hold tech-
nique).

6. Conclusion

In this paper, we propose a set of techniques to reconstruct
continuous reflectance functions from a set of measured re-
flectance samples. Several existing methods to reconstruct a
continuous reflectance function, such as zero-order hold, fit-
ting the sampled data to a biquadric polynomial or to spher-
ical harmonic basis functions have been compared to these
new techniques.

Interpolation of the sampled data ensures that the re-
flectance function goes through the sampled values at the
sampled directions. We analyzed linear interpolation, inverse
distance weighted interpolation and wavelet interpolation.
Fitting the data samples to a set of bicubic B-Splines defined
on a lattice produces a C2 continuous reflectance function
which maintains all sampled features such as highlights and
self-shadowing and allows to change the illumination while
the resulting images form a coherent series of images over
time.
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Figure 10: Sobolev H1-norm versus the error-threshold on
the inner product for non-linear approximation using a vari-
able number of coefficients per reflectance function.

From our experiments, we found interpolation, multilevel
B-Spline reconstruction and wavelets interpolation to per-
form better than existing methods. In case the incident illu-
mination is animated, the resulting series of relit images is
most coherent when using multilevel B-Spline reconstruc-
tion. However, multilevel B-Spline reconstruction may re-
sult in small ringing effects in case of very high frequency
reflectance functions. As an alternative, linear interpola-
tion techniques (linear interpolation and 5/3 LeGall wavelet
interpolation) guarantee no ringing effects at the cost of
smoothness.

In order to relight the object faster, a common basis ap-
proximation can be created, introducing an approximation
error. This error can be reduced by selecting an appropriate
set of basis functions and by increasing the number of ba-
sis functions. We found 9/7 Daubechies wavelets using an
average of 481 coefficients reduces the approximation error
to less than 1% percent. The 5/3 LeGall wavelet performs
well, but does not reach the same compression ratios as the
9/7 Daubechies wavelet. The Haar wavelet introduced new
temporal discontinuities and should therefore not be used to
compress smooth reflectance functions.

As a conclusion, we propose to reconstruct a continu-
ous reflectance function from a sampled reflectance func-
tion, using the multilevel B-Spline technique. This enables
to preserve all features in the sampled reflectance func-
tion and allows coherent relighting when the incident illu-
mination varies. Using non-linear approximation with 9/7
Daubechies wavelets, the reflectance functions can be stored
with a low average number of coefficients. This enables fast
relighting, without loosing image quality in the relit images
and minimizes storage requirements.

7. Future Work

The computational time needed to generate a relit image of
an object can be reduced by selecting an appropriate set of
common basis functions. At the same time, the data is also
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compressed, enabling us to cache all data simultaneously. In
the near future, we will research how relighting can be per-
formed on graphics hardware, enabling real-time high detail
relighting.

Our proposed technique allows to reconstruct a continu-
ous reflectance field from a set of samples and represent it
in a compact way. Although we presented it for real objects,
the method can also be applied to synthetic objects for rep-
resenting radiance transfer.

In our work, we mathematically compared the different
techniques by computing an error on the reconstructed re-
flectance functions and a visual comparison was conducted
on the resulting relit images. However, the spatial and tem-
poral aliasing of the series of relit images should be com-
pared with a mathematical error as well. This is a direction
for future research.

The wavelets used for interpolating are not necessarily
the best choice. We intend to look at other wavelets specif-
ically designed for interpolation. We also intend to investi-
gate completely other reconstruction techniques such as the
push-pull method, as described in [GGSC96].
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Figure 12: A column of pixels is selected from an image
of the miniature race car. The incident illumination rotates
while the resulting consecutive relit columns of pixels are
displayed for different reconstruction and compression tech-
niques.
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