Free-form Acquisition of Shape and
Appearance

Pieter Peers

Vincent Masselus
Philip Dutré

Report CW 403, February 2005

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A — B-3001 Heverlee (Belgium)

Free-form Acquisition of Shape and
Appearance

Pieter Peers

Vincent Masselus
Philip Dutré

Report CW 403, February 2005

Department of Computer Science, K.U.Leuven

Abstract

This report focuses on the acquisition of shape and appearance
of real objects under static illumination without the need for an
elaborate calibration process or an expensive setup. Emphasis is
placed on ease of use and obtaining visually pleasing results. Using
recent advances in matting techniques, an opacity hull of the object
is computed from an un-calibrated sequence of photographs.

User interaction is limited to drawing trimaps for a small subset
of the recorded photographs. These trimaps indicate which parts
of the photographs represent the object, background or unknown.
From these trimaps the mattes of the photographs can be extracted,
and subsequently a coarse intermediate opacity hull can be com-
puted. The opacity hull is iteratively refined by computing a trimap,
and thus a matte, for the remaining photographs using the already
computed mattes and the coarse intermediate opacity hull.

We illustrate our method on a wide range of objects, ranging
from ordinary objects and human heads to large outdoor statues.

Keywords : Shape Acquisition, Appearance Acquisition, Opacity Hull.

1 Introduction

The acquisition of the shape and appearance of real objects has been widely researched
in recent years. Most techniques require an elaborate calibration process or an ex-
pensive setup. In this report we start from the concept of capturing the shape and
appearance of a real object by free-form camera movement. Additionally we would
like to impose minimal restrictions on the kind of objects that can be captured, but still
be able to re-render them from arbitrary new viewpoints. Emphasis is placed on ease
of use, minimal calibration during acquisition and obtaining visually pleasing results.

During the acquisition phase an object is photographed from arbitrary positions.
For this set of photographs, the intrinsic and extrinsic camera parameters are estimated.
Each of these recorded images with their respective camera parameters, help to define
the shape and appearance of the object.

For a selected subset of the recorded photographs, trimaps are manually drawn. A
trimap defines which parts of the photograph represents the object, the background or
a weighting of both (denoted as ’unknown’). From these trimaps and the respective
photographs, an a-matte can be computed [RT00, CCSS01, SJTS04]. Based on the a-
mattes and camera parameters a coarse intermediate opacity hull [MPN*02] is created.

For each photograph for which no trimap was hand-drawn, a trimap is automatically
generated from the already constructed intermediate opacity hull and the hand-drawn
trimaps. Next, an a-matte is computed and used to refine the opacity hull. Once
all recorded images are processed, the full detail opacity hull can be viewed from an
arbitrary viewpoint.

Decoupling the acquisition process from a fixed setup opens up a whole new range
of possibilities for on-field 3D photography. Human faces (including hair) and large
outdoor objects can now be captured and represented as opacity hulls. Additionally,
the sampling density can be more easily adapted to the complexity of the objects.

2 Reated Work

Numerous techniques exist to acquire the geometry of an object, without the need for an
expensive calibrated setup (e.g. [Pol99, RHHLO02]). Although important, shape alone is
not sufficient to create realistically looking objects. Texture, micro-geometrical detail,
self-shadowing, opacity and the view-dependency of reflections play an important role
in providing a believable visualization. We denote these factors plainly as *appearance’.
Image-based rendering techniques try to capture an object solely by appearance. These
techniques regard the object as a black box system, and capture enough information
to let the system appear like the object ([GGSC96, LH96]). Image-based rendering
techniques only acquire the global shape of the object implicitly, since the object can
be viewed from any position. Due to the lack of an explicit global geometrical model,
ghosting artefacts can occur during rendering.

Since exclusively capturing either shape or appearance fails to provide visually
pleasing results, many techniques have been developed to capture both simultaneously.
[Deb96] captures the geometry of buildings and employs view-dependent texturing to
model fine details. Similarly, [YSK*02] requires a global geometrical model augmen-
ted with micro-billboards to represent fine geometrical details. Many Surface Light
Field techniques have been proposed to represent the appearance of an object on a

given polygon model [WAA*00, CBCGO02]. The unstructured Lumigraph rendering
technique [BBM*01] generalized image-based rendering techniques which use a coarse
geometrical model. Shum et al. [SSY*04] introduced “Pop-up Light Fields”, which
models a Light Field using a set of planar layers. These layers pop up depending on
the scene complexity. In [MPN*02], objects are represented using opacity hulls. Un-
like the previous techniques, opacity hulls do not use a polygon mesh to model the
shape of the object, but a surfel representation. This method enables to capture and
represent a wide variety of effects, including fuzzy edges and complex fine geometry.
As a downside, most of these techniques require expensive setups, or massive amounts
of photographs, or are only usable in lab conditions.

Recently, techniques have been developed to acquire the shape and appearance of
geometrically ill-defined objects in a very practical manner. However, these methods
are specifically geared towards one type of object. An example of such a technique is
the capture and visualization of trees [RMMDO04].

In this report we represent the shape and appearance of a real object by an opacity
hull [MPN*02]. The advantage of using opacity hulls is that it is a flexible solution
which can represent a wide range of object types. The opacity hull is a surfel model of
the visual hull augmented with view-dependent opacity and color. More formally, an
opacity hull is defined as the intersection of the view-cones defined by the a-mattes of
each photograph and their respective camera parameters.

Matusik et al. [MPN*02] extract an a-matte by displaying multiple sine wave pat-
terns on plasma screens placed behind and below the object. Although very effective,
this requires an elaborate setup and multiple photographs to extract an a-matte for a
single viewpoint. Recent advances in natural image matting allows to extract an a-
matte from a single image using a user defined trimap [RT00, CCSS01, SJTS04]. We
will employ these techniques to pull an a-matte for each photograph. Another lim-
itation of the technique introduced by Matusik et al. is that the setup constrains the
size of the objects which can be acquired. Furthermore, building such a setup requires
elaborate calibration.

In this report we address these acquisition issues by using a free-form acquisition
approach. We only focus on the acquisition of opacity hulls of real objects under static
illumination.

3 Overview of the Technique

Our technique consists of four steps to acquire and compute an opacity hull of a real
object:

1. Acquisition: The object is photographed from freely chosen camera positions.
For each photograph the intrinsic and extrinsic camera parameters are estimated
(section 4).

2. Initial Coarse Hull: Next, a coarse opacity hull is constructed from a sparse
subset of photographs for which the user manually draws trimaps. For each
photograph/trimap couple an a-matte is extracted. An iterative algorithm (sec-
tion 5.1) is used to compute a coarse visual hull. This step is schematically
depicted in figure 1.

> Camera
Parameters

y

S

s&@‘ i 4
Photographs — ‘Jﬁ' # 2>
Co#?ﬁbcity

Hull

Hand-drawn
Trimaps

a-mattes

Figure 1: A schematic overview of the construction of an opacity hull. For each photo-
graph an a-matte is extracted using a hand-drawn trimap (if available). These a-mattes,
together with the corresponding camera parameters are used to define a coarse opacity
hull.

3. Refinement: For each unprocessed photograph for which no trimap is hand-
drawn, a novel trimap is computed from the already computed visual hull and
trimaps (section 5.2). For each generated trimap an a-matte is computed, which
is subsequently used to refine the visual hull (using the iterative visual hull al-
gorithm of section 5.2). A schematic overview is shown in figure 2. This process
is repeated until all a-mattes are computed and added to the visual hull.

4. Adding Color and Opacity: Finally, the computed visual hull is converted into
an opacity hull by adding the view-dependent opacity values and color informa-
tion (section 5.3).

The resulting opacity hull is a surfel model, which for each surfel has an associated
appearance vector. This appearance vector contains view-dependent color and opacity
information.

4 Acquisition and Camera Calibration

The acquisition process consists of recording photographs of the object from freely
chosen positions, which is a simple and easy task. We record 50 to 300 photographs
depending on the desired accuracy and the complexity of the shape or appearance of
the object.

The intrinsic and extrinsic camera parameters are then automatically estimated [HZ04]:

o If the scene contains enough feature points (i.e. identifiable points between two

- Camera
Parameters

For each
—_—

&

Processed photographs and a-mattes

Figure 2: A schematic overview of the refinement of the opacity hull. For each un-
processed photograph a trimap is computed based on the coarse opacity hull and the
already computed a-mattes and their respective photographs. From this generated
trimap and the corresponding photograph an a-matte is extracted. This a-matte is then
used to further refine the opacity hull. This process is repeated until all photographs
are used.

or more images), then the camera parameters can be automatically computed
from the raw images.

o If the scene does not contain enough feature points (i.e. when the automatic
camera calibration fails) then we resort to placing marker objects in the scene
during the photo-shoot. From these markers the extrinsic camera parameters are
estimated. A similar approach was used in [RMMDO04].

Once the camera parameters are estimated, the opacity hull can be computed.

5 Opacity Hull Construction

In this section we discuss the computation of the opacity hull, given the photographs
and the user-defined trimaps.

In our technique we use Bayesian matting [CCSS01] to compute an a-matte for
each photograph given a trimap (see appendix A for short overview of Bayesian Mat-
ting). Bayesian matting computes an a-matte directly from the trimap, without re-
quiring additional user interaction. Recently Poisson matting [SITS04] has been intro-
duced. However it is not suited for our application because it requires significant user
interaction to fine-tune each individual a-matte.

Surfel
'?' Interval (S, }

Visual hull

(A) (B) b ©

Figure 3: An illustration of the iterative construction of a visual hull. In sub-figure (A),
the sampling of an object to a surfel model is depicted. The surfel model (blue dots) of
the object can be equivalently represented by a set of intervals {Sg-} (red lines) along
the sample lines L, (green lines). Since the exact geometry of the object is unknown
in our application, an interval representation of the visual hull is used (sub-figure (B)).
This representation can be easily updated, given a novel a-matte If‘, by intersecting the

intervals {S, } and the back-projected matte intervals {MP } (sub-figure (C)).
K

Since the user only draws trimaps for a subset of the photographs, an algorithm is
required to generate trimaps for the remaining photographs. We present an algorithm
that uses a coarse visual hull and the already computed trimaps to derive new trimaps
(section 5.2).

An iterative algorithm is developed to avoid recomputation of the visual hull each
time a new trimap (and consequently an a-matte) is available. The details of this iter-
ative algorithm are discussed in section 5.1.

Finally, the computation of the opacity hull from the iteratively constructed visual
hull is detailed in section 5.3.

5.1 Iterative Algorithm for Shape Reconstruction

In this section we develop an iterative algorithm to compute a visual hull from a set of
o-mattes and corresponding camera parameters. To facilitate the iterative computation
of the visual hull, a specialized representation is required. Additionally, this repres-
entation must be easy to convert into a surfel-sampled visual hull and thus an opacity
hull.

Our representation is inspired on the sampling of a polygon geometry (in our case
the visual hull) into a surfel model. In [PZvBGO0O0] a polygon model is regularly
sampled along the directions parallel to the three major axes. Each sample (surfel)
is the intersection of the object and a half line with origin on a regular grid perpendic-
ular to the sample direction. We call such a half line *sample line’ and denote it by L,.
The set of intersections associated with a sample line L, can be seen as a set of inter-
vals {Sﬁ} indicating the interior of the object along L. Each interval Sk] is equivalent
to two surfels (one at the begin point and one at the end point of the interval located
on the sample line L,). An overview of this is illustrated in figure 3A. We will show
that keeping the intervals along a sample line is a suitable representation for iteratively
constructing a surfel-sampled visual hull. This representation is equivalent to a great

Init: A set of sampleslines {L, }, each with an
maximal interval {ﬁq} associated.

for each photograph | i
{

compute the a-matte IJ?‘ (Bayesian matting)
for each sampleline L,

{
project L, on If‘ and compute the set of intersections {MK }

compute {M{ }, the back-projection of {M JonLy
update the set of intervals {S, } onL, by {M,’%} RCY

}
}

Figure 4: A high level description of the iterative algorithm for constructing the shape.

extent to the LDC representation of [PZvBGO0Q].

Suppose we have an interval representation of the coarse visual hull of an object
(figure 3B). Given an a-matte, If‘, and the corresponding camera parameters, each
sample line L, is projected onto the a-matte If‘. The intersecting intervals {Mki} of the

projection of L, with the a-matte If‘ are determined and subsequently back-projected
onto the sample line L, (denoted as {MEi 1). Each interval Sﬁ needs to be adjusted so
that it is contained in {ME} to keep the visual hull consistent with the new a-matte I{'.

More formally we compute {ME} N {Sﬁ}. The refinement process is illustrated in
figure 3C and a high level algorithm is shown in figure 4. We repeat this process for all
sample lines.

To bootstrap the algorithm, the initial (very) coarse visual hull is set to the bounding
box of the object and a sample line density is selected (e.g. 256 x 256) depending on
the desired opacity hull quality.

5.2 Automatic Trimap Generation

To compute an a-matte from a photograph, a trimap is needed. Drawing a trimap for
each photograph is time consuming. Therefore, we would like to minimize the number
of trimaps that the user has to draw.

In video matting [CAC*02], a technique is presented to derive a trimap from other
trimaps. This method is based on optical flow, which works optimally when the change
between consecutive images is equally distributed (i.e. constant time steps) and small.
However, in our free-form approach the change between photographs is not necessarily
equally distributed or small, and thus another solution needs to be found.

Shum et al. [SSY*04] introduced coherence matting, a method similar to Bayesian
matting, except that the background color is determined by reconstructing the back-
ground from multiple photographs. However, this method does not work well when

Source Destination

ls e
. Find |
similar !
Compute Compute
reference seti trimap

Set of reference Compute
points.” a-matte

Figure 5: Given a source image Isand respective trimap T, a trimap T, can be computed
for a destination image I ;. The key idea is to construct a set of reference points . of
Is that are representative for the foreground pixels in Is. All pixels of I that match a
reference point in .7, are marked as foreground in the destination trimap T.

the background contains non-lambertian surfaces, or surfaces with a high frequency
texture. In our free-form approach, no assumptions can be made on the properties of
the surfaces in the background. Furthermore the camera positions in [SSY*04] are
positioned on a plane, which greatly eases the reconstruction of the background, as
opposed to our method.

We can make four observations concerning trimaps and opacity hulls:

1. Matting techniques can usually handle small "holes’ (unknown regions) in the
foreground (representing the object) or background markings of the trimap as
long as there is enough information left in the fore- or background markings
around the hole.

2. Avisual hull encapsulates the object. It is always larger than the real object. The
outside of a visual hull projected onto the image plane is guaranteed to contain
only background pixels.

3. If two photographs (recorded at different viewpoints) of the same scene have
pixels that are similar, then there is a large probability that they will have the
same trimap classification. Furthermore a one-to-one mapping of similar pixels
is not required, as long as all similar pixels have the same trimap designation.

4. The coarse visual hull gives a reasonable idea (neighborhood) where a pixel from
one image maps into another image.

Using these four observations, we can now formulate our trimap computation al-
gorithm. Assume we have two images, a source image |s and a destination image | .
We want to derive the trimap T, of I, given a trimap Ts of Is. We start by initializ-
ing T, as background. Next, the intermediate visual hull is projected onto T, and each
covered pixel is marked as unknown (observation 2). Since the visual hull encapsulates
the object, a number of these unknown marked pixels can be designated as foreground.

To find these pixels, we first create a set . of foreground marked points of | that
are not similar to any unknown marked pixels in Is. Next, we mark any unknown point
in T, as foreground, if its corresponding pixel in I is similar to a point in the set .’
(observations 1 and 3) (figure 5).

The search process of finding a similar pixel in . can be expedited in two ways:

e . can be pruned to only include points that are not similar to each other, which
reduces the size of the search space (see also figure 5: the blue dots in .&).

e The coarse hull provides a reasonable guess in which area we can find a similar
pixel. We used an area of 32 x 32 pixels around the projected position of the
pixel from |, to Is (observation 4).

Two questions remain: how do we define *similar’ and which source trimaps Ts and
photographs Is do we use given a specific destination photograph | ;.

There are different ways to determine if two pixels are similar to each other. In our
implementation we used the pixel consistency method proposed by Sand and Teller [ST04],
but other methods such as cross-correlation can also be used.

For Ts and |5 we use the photographs recorded from the nearest N viewpoints for
which a trimap is manually drawn by the user, since we have most confidence in the
quality of a-matte of these photographs. To further enhance the quality of T, we also
use the nearest photograph for which a trimap is already computed.

We do not directly use the originally hand-drawn or generated trimaps for I, but
extract a new trimap from the corresponding a-matte. This new trimap will have fewer
pixels marked as unknown. To extract a trimap from a matte we mark a pixel as fore-
ground if o > 95%, background when a < 5% or otherwise as unknown.

A high level desciption of the algorithm is shown in figure 6.

5.3 Assigning Opacity and Color

Once all a-mattes are computed and added to the visual hull, the final opacity hull can
be computed. First, a point cloud is created by converting each interval into two surfels
(begin and end point of the interval). The normals of the surfels can be computed by
taking the smallest principal component of the N closest distance weighted neighboring

Input: Sourceimage ls and a-matte 12
Destination image | .
Output: Thetrimap T, and a-matte | § associated with | ;.

foreground if as > 95%
(1) compute Ts from1&: { background if as < 5%
unknown otherwise
(2) compute.” asthe set of pixelsfrom Is, marked foreground in Tg
and not similar to apixel in I marked unknown in Ts.
(3) prune.¥ by removing al pixels which are similar to eachother.
(4) mark T, completely background.
(5) project the visual hull on T, and mark covered pixels as unknown.
(6) for each pixel pinl, and marked unknownin T,
{
(6a) compute ps by projecting p to Is using the visua hull.
(Bb) mark pforegourndin T if pissimilar to apixel in
the neighborhood of psin.7.
}

(7) computel§ from T, (Bayesian Matting).

Figure 6: A high level description of the automatic trimap generation algorithm.

points ([ABCO*03, section 3.2]). Next, the appearance and opacity are found by
projecting each surfel back into the foreground image and respective a-matte. These
color and opacity values are stacked into a vector and stored per surfel. Thus each
surfel contains an appearance vector defined by the view-dependent color and opacity
values.

6 Compression and Visualization

To visualize the opacity hull, any suitable surfel rendering algorithm can be used, but
instead of having a fixed color per surfel, an appearance function needs to be evaluated.
A spherical Delaunay triangulation based on the sampled directions (i.e. viewpoints
for which a photograph is recorded) is created. To evaluate an appearance function
for a viewpoint, a barycentric weighting based on this triangulation is computed. This
weighting is similar to [PCD*97]. To retain rendering speed, the spherical Delaunay
triangulation is precomputed using the algorithm described in [PWHO04]. This precom-
putation is possible since all appearance vectors have an identical Delaunay triangula-
tion. Using a precomputed Delaunay triangulation is only correct for distant cameras.

Special care has to be taken when dealing with models that were acquired by an
incomplete sampling of the set of camera positions (e.g. a single circular pass around
the object). The renderer can restrict the user to view the object only from view dir-
ections that lie within a maximum range of the measured sample directions. Alternat-
ively, if the distribution of sample directions is large enough, the renderer can switch
to a constant color (the color of the closest sample direction or the average color of
the appearance function) when the user deviates too much. Our visualization runs at

interactive speeds (3 to 12 fps) on a budget graphics card (NVidia Geforce FX 5200).

The storage requirements of the models obtained by our methods range from 250 to
1000 megabytes, depending on the number of surfels used (100.000 to 300.000), and
the length of the appearance vectors (50 to 300). We would like to reduce these storage
requirements without quality loss. Furthermore, we would also like to minimize the
memory requirements during visualization. To retain fast rendering, a compression
scheme is needed that can be decompressed on the fly during rendering without much
overhead.

In [MPN*02] the appearance of each surfel is computed during visualization. Each
surfel is back-projected in the 4 photographs recorded from the viewpoint closest to the
current visualization viewpiont. The weighted sum of the 4 values corresponding to
the back-projected pixels are used to splat the surfel. The photographs are compressed
using a PCA scheme. There are two problems with this approach. First, each surfel
needs to be back-projected during rendering, requiring additional overhead. Second,
using PCA on a single image neglects inter-image relations to increase the compression
ratios.

In “Opacity Light Fields” [VPM*03], hardware accelated techniques are presen-
ted for rendering the opacity hulls of [MPN*02]. Impressive compression ratios are
obtained, but at the cost of reduced rendering quality and increased sensitivity with re-
spect to inaccuracies in the geometry. The calibration condition in which our technique
can be applied are less optimal then the conditions in [MPN*02]. Thus, the probability
of having a less accurate calibration is larger, forcing us to use a more robust rendering
and compression method.

Clustered principal component analysis (CPCA) [KL97], first introduced in the
field of computer graphics by Sloan et al. [SHHSO03], is a non-linear dimension reduc-
tion technique that builds a locally linear model of the data. CPCA is an ideal tool
for compressing the appearance vectors of the captured data, because it can achieve a
significant reduction in storage requirements and still is very fast to decompress. We
cannot transform our appearance functions into a local coordinate system or use spher-
ical harmonics as is done by Sloan et al., because of the irregular sampling. However,
we can still use CPCA directly on the appearance vectors. A compression ratio of 1/20
still gives good visual results. The average reduced modelsize is 20 to 50 megabytes.

Storing the appearance vectors explicitly at each surfel has a number of advantages.
First, no back-projection is needed, allowing faster visualization. Second, an extra
dimension is taken advantage of during compression by using CPCA directly on the
appearance vectors. The cost of decompressing is about the same as in the approach
of [MPN*02].

7 Resaults

In figure 7, a visualization of an opacity hull of a large statue is shown for two new
viewpoints. Although it does not contain many opaque features, it illustrates that our
method is not limited by the size of an acquisition setup. The statue itself is quite
large and had to be captured outdoors. We only circled the statue once and recorded
approximately 150 photographs. For only 20 of these photographs, a trimap was drawn
manually. The constructed opacity hull contains 100.000 surfels.

10

| Example | Figure | #Photographs | #Hand-drawn trimaps | #surfels |

Statue 7 150 20 100.000
Kachina Doll 8 125 25 200.000
Duck 9 300 50 80.000
Head 10 30 30 300.000

Table 1: A summary of the results in figures 7, 8, 9 and 10

The necessity for appearance capture is demonstrated in figure 9. This duck model
has a simple macro-geometry, but a complex micro-geometry (i.e. the bumps on its
body). For capturing these micro-geometrical features exactly, a very accurate 3D
scanner is required. The opacity hull represents the micro-geometry by means of the
view-dependent appearance functions. We captured the complete model in approxim-
ately 300 photographs. For a small subset of 50 photographs, a trimap was drawn by
hand. The opacity hull contains 80.000 surfels, which are sufficient to represent the
simple macro-geometry.

The Kachina doll in figure 8 would have been difficult to capture using a geometry-
based method. The model features many fine opaque details such as hair. Details of
the opacity values are depicted on both sides. We captured this model by a single
sweep around the objects in approximately 125 photographs. The resulting opacity
hull contains 200.000 surfels.

In figure 10 different visualizations of the opacity hulls of two human heads are
shown. Note that extruding strands of hair and the fine details of the glasses are cap-
tured faithfully. For each head we recorded a low number of photographs (approx-
imately 30). We moved a single camera around to capture the heads. The recording
process is short enough, since no calibration is required during the photoshoot, for the
subjects not to move. Because we only recorded such a low number of photographs, all
trimaps needed to be drawn manually. Both computed opacity hulls contain 300.000
surfels.

Table 1 summarizes the results.

8 Discussion and Comparison

A key component of our system is the automatic creation of trimaps. As a rule of thumb
we draw trimaps for viewpoints 20 to 30 degrees apart. This results in acceptable
trimaps and extracted a-mattes. We also found that the pixel consistency method of
Sand et al. [STO04] is less effective when the rotation axis and the view axis are not
orthogonal, i.e. when the rotation occurs in the view plane. Therefore more trimaps
are drawn for photographs recorded from above the object. Automatic generation of
the trimaps will most likely fail on objects which are hard to matte using hand-drawn
trimaps (e.g. objects for which opaque parts have a different color than the solid parts).
As a backup, it is always possible to draw more or even all trimaps when the automatic
generation fails or does not deliver the desired quality. Note that this would only affect
the amount of manual work but does not influence the acquisition process.

To capture fine geometrical details, exact camera parameter estimation is required.
A slight inaccuracy in the camera calibration can result in small features being cut

11

away. A similar problem can occur when the object is not completely static (e.g. the
wind blowing on a tree). Nevertheless, we found the method to be robust with respect
to inaccurate calibration. Only very small features are cut away when the calibration
is not perfect. Large details are only cut away when the miscalibration is significant
(error of +10%).

Opacity hulls were originally introduced in the seminal work of Matusik et al. [MPN*02].
We summarize the main differences between our method and theirs:

e The presented method requires only 1/6 of the photographs to achieve the same
sampling density. [MPN*02] need 6 photographs of the object backlit by differ-
ent sine wave patterns to extract an a-matte. In our technique, we use Bayesian
matting [CCSS01] which only requires a single photograph. The quality of the
o-mattes extracted by Bayesian matting is good, but less compared to the quality
achieved by the approach of Matusik et al..

e The appearance vectors are explicitly associated with each surfel. No back-
projection is required during visualization, as opposed to [MPN*02], which re-
quires a back-projection of each surfel during visualization.

e By using CPCA for compressing the opacity hull, interviewpoint relations are
taking in account.

e Our method does not require the construction and calibration of a data acquisition
setup, resulting in a more flexible acquisition process.

e Due to the free-form data acquisition, a wider range of objects can be captured.
Outdoor or large objects can be captured on location. Additionally the sampling
density can be locally adapted to the captured object.

e [MPN*02] are also able to capture opacity hulls which can be re-illuminated.
Our method only works under static illumination.

9 Conclusion and Future Work

In this report we presented a free-form acquisition method for capturing the shape and
appearance of real objects. We use opacity hulls in order to limit the required number
of photographs and to maximize the kind of objects that can be captured. To minimize
user input, we developed a novel technique for generating trimaps from a sparse set of
hand-drawn trimaps.

A novel algorithm was introduced to automatically compute trimaps from a sparse
set of handdrawn trimaps. Additionally, an iterative method for computing a surfel
representation of the visual hull directly was presented. The main advantages of the it-
erative method are modest memory consumption, not all photographs need to be loaded
into the memory at once, and the possibility to use the coarse intermediate visual to do
additional computations. Finally, associating the appearance vectors explicitly to a
surfel, allows faster visualizations and better compression.

In future work we would like to improve the computation of the trimaps by using
cross-image information more efficiently. We also would like to use this cross-image
information to create better a-mattes.

12

We would like to extend our method to include relighting. To keep the acquisition
practical in such a case is a major challenge.

Acknowledgments

We would like to thank Frank Verbiest for his help with the camera calibration of some
of the scenes. Furthermore, we thank Karl vom Berge and Saskia Mordijck for allowing
us to create an opacity hull of their head.

References
[ABCO*03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S., LEVIN D.,

[BBM*01]

[CAC*02]

[CBCGO2]

[CCSS01]

[Deb96]

[GGSCY6]

[HZ04]

[KL97]

SiLvA C. T.: Computing and rendering point set surfaces. |IEEE Trans-
actions on Visualization and Computer Graphics 9, 1 (2003), 3-15.

BUEHLER C., BOosse M., MCMILLAN L., GORTLER S., COHEN M.:
Unstructured lumigraph rendering. In SGGRAPH '01: Proceedings of
the 28th annual conference on Computer graphics and interactive tech-
niques (2001), ACM Press, pp. 425-432.

CHUANG Y.-Y., AGARWALA A., CURLESs B., SALEsIN D. H,,
SzELISKI R.: Video matting of complex scenes. In SGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and
interactive techniques (2002), ACM Press, pp. 243-248.

CHEN W.-C., BOUGUET J.-Y., CHU M. H., GRzESzczuK R.: Light
field mapping: efficient representation and hardware rendering of surface
light fields. In SGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques (2002), ACM
Press, pp. 447-456.

CHUANG Y.-Y., CURLESS B., SALESIN D. H., SzELisklI R.: A
Bayesian approach to digital matting. In Proceedings of IEEE CVPR
2001 (December 2001), vol. 2, IEEE Computer Society, pp. 264-271.

DEeBEVEC P. E.: Modeling and Rendering Architecture from Photo-
graphs. PhD thesis, University of California at Berkeley, Computer Sci-
ence Division, Berkeley CA, 1996.

GORTLER S. J., GRZESzCZUK R., SzELISKI R., COHEN M. F.: The
lumigraph. In SGGRAPH 96, Computer Graphics Proceedings (Aug.
1996), Rushmeier H., (Ed.), Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, pp. 43-54.

HARTLEY R. I., ZISSERMAN A.: Multiple View Geometry in Computer
\Vision, second ed. Cambridge University Press, ISBN: 0521540518,
2004.

KAMBHATLA N., LEEN T. K.: Dimension reduction by local principal
component analysis. Neural Comput. 9, 7 (1997), 1493-1516.

13

[LH96]

[MPN*02]

[PCD*97]

[Pol99]

[PWHO4]

[PZvBGOO]

[RHHLO2]

[RMMDO04]

[RTOO]

[SHHS03]

[SITS04]

[SSY*04]

LEvoy M., HANRAHAN P.: Light field rendering. In SGGRAPH 96
Conference Proceedings (Aug. 1996), Rushmeier H., (Ed.), Annual Con-
ference Series, ACM SIGGRAPH, Addison Wesley, pp. 31-42.

MATUSIK W., PFISTER H., NGAN A., BEARDSLEY P., ZIEGLER R.,
McMILLAN L.: Image-based 3D photography using opacity hulls. In
S GGRAPH 2002 Conference Proceedings (2002), Hughes J., (Ed.), An-
nual Conference Series, SIGGRAPH, ACM Press/ACM SIGGRAPH,
pp. 427-437.

PuLLI K., COHEN M., DUCHAMP T., HOPPE H., SHAPIRO L., STUET-
ZLE W.: View-based rendering: Visualizing real objects from scanned
range and color data. In Proc. 8th Eurographics Workshop on Rendering
(June 1997).

PoLLEFEYS M.: Sdf-calibration and metric 3D reconstruction fromun-
calibrated image sequences. PhD thesis, Katholieke Universiteit Leuven,
ESAT-PSI, Leuven, Belgium, 1999.

PANG W.-M., WONG T.-T., HENG P.-A.: Estimating light vectors in
real time. |EEE Computer Graphics and Applications 24, 3 (2004), 36—
43.

PFISTER H., ZWICKER M., VAN BAAR J., GROSS M.: Surfels: surface
elements as rendering primitives. In SGGRAPH ' 00: Proceedings of the
27th annual conference on Computer graphics and interactive techniques
(2000), ACM Press/Addison-Wesley Publishing Co., pp. 335-342.

RusINKIEWICZ S., HALL-HOLT O., LEvoy M.: Real-time 3D model
acquisition. ACM Transactions on Graphics 21, 3 (July 2002), 438-446.

RECHE-MARTINEZ A., MARTIN |., DRETTAKIS G.: \olumetric re-
construction and interactive rendering of trees from photographs. ACM
Trans. Graph. 23, 3 (2004), 720-727.

RuzoN M., ToMAsSI C.: Alpha estimation in natural images. In Pro-
ceedings of IEEE CVPR 2000 (June 2000), vol. 2, IEEE Computer Soci-
ety, pp. 18-25.

SLOAN P.-P., HALL J., HART J., SNYDER J.: Clustered principal com-
ponents for precomputed radiance transfer. ACM Trans. Graph. 22, 3
(2003), 382-391.

SUN J., JIA J., TANG C.-K., SHUM H.-Y.: Poisson matting. ACM
Trans. Graph. 23, 3 (2004), 315-321.

SHUM H.-Y., SUNJ., YAMAZAKI S., LI1'Y., TANG C.-K.: Pop-up light
field: An interactive image-based modeling and rendering system. ACM
Trans. Graph. 23, 2 (2004), 143-162.

14

[STO4] SAND P., TELLERS.: Video matching. ACM Trans. Graph. 23, 3 (2004),
592-599.

[VPM*03] VLAsIC D., PAISTER H., MOLINOV S., GRZESZCZUK R., MATUSIK
W.: Opacity light fields: interactive rendering of surface light fields with
view-dependent opacity. In SI3D '03: Proceedings of the 2003 sym-
posium on Interactive 3D graphics (New York, NY, USA, 2003), ACM
Press, pp. 65-74.

[WAA*00] Woob D. N., AzuMA D. I., ALDINGER K., CURLESS B., DUCH-
AMP T., SALESIN D. H., STUETZLE W.: Surface light fields for 3D
photography. In SGGRAPH ’*00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques (2000), ACM
Press/Addison-Wesley Publishing Co., pp. 287-296.

[YSK*02] YAMAZAKI S., SAGAWA R., KAWASAKI H., IKEUCHI K., SAKAUCHI
M.: Microfacet billboarding. In EGRW *02: Proceedings of the 13th
Eurographics workshop on Rendering (2002), Eurographics Association,
pp. 169-180.

A Overview of Bayesian M atting

In this section a short overview of Bayesian matting is given. For a detailed overview
we refer to the original paper of Chuang et al. [CCSS01].
All matting methods try to solve the compositing equation for each pixel:

C=aF+(1-0a)B,

where C,F and B are respectively the composited pixel, the foreground pixel and
the background pixel. o is called the opacity. Each matting method differs in the way
it solve this equation and what it require as input.

In Bayesian matting only C and a trimap is known. The trimap is a user specified
map that indicates what parts of C are definitely foreground (a = 1), definitely back-
ground (o = 0), or unknown (a € [0..1]). a, F and B are computed using a maximum
a posteriori technique, formulated using a Bayesian framework:

argmaxg g (P(F,B,a|C) = argn‘naxF’B_’aL(C|F, B,a)+L(F)+L(B)+L(a),
where L(-) is the log likelihood of the probability. The matting problem is now
reduced to specifying the log likelihoods.
L(CIF,B,a) = —|[C—aF — (1 —a)BJ?/g,

where a2 is the standard deviation of the camera noise in C. The foreground like-
lihood is defined by:

15

L(F)=-05(F-F)T 51 (F-F),

where F is the average estimated foreground color in the neighborhood of F, and
3 is the covariance matrix in the same neighborhood. Both are defined as:

f = Wilzwi FI
|

= WIYw(R-F)(F-F),

where W = 5, w; and w; is a weighting function in terms of the distance to F.
[CCSS01] uses a Gaussian falloff with a standard deviation equal to 8 pixels.

L(B) is computed similarly as L(F). L(a) is assumed to be constant. In [CCSS01]
an efficient two-step iterative algorithm is used to solve for F,B and a. We refer the
interested reader to the original paper.

16

Figure 7: A large statue, captured outdoors. A reference photograph is shown in the
middle.

Figure 8: A Kachina doll with fine geo- Figure 9: A duck with complex micro-
metrical details and (opaque) hair, ac- geometry (bumps).

companied by two details of the opacity

values.

Figure 10: Two human heads visualized from different viewpoints. Note the fine detail
in the hair and glasses. 17

