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Abstract

This paper presents a novel method for acquiring a wavelet representation of the reflectance field of real objects.
Key to our method is the use of wavelet noise illumination to infer a reflectance function for each pixel. Due
to their stochastic nature, these wavelet noise patterns enable to trade off the number of recorded photographs
for the quality of the computed reflectance functions. Additionally, each wavelet noise pattern affects all pixels
in a recorded photograph, independently of the underlying material properties in the scene. Consequently, each
recorded photograph contributes additional information to the reflectance field computation.

The presented method consists of three steps. First, a fixed number of photographs are recorded of the scene lit by a
series of wavelet noise patterns emitted from a CRT monitor. Next, for each pixel a reflectance function is computed
offline, by identifying the important wavelet coefficients for the pixel’s reflectance function. The coefficients are
computed by solving a linear least squares problem. Finally, once all reflectance functions are computed, a novel
image of the scene can be composited with arbitrary incident illumination.

The method can be used for both image-based relighting and environment matting.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation; 1.3.7
[Computer Graphics]: Three dimensional graphics and realism; 1.4.1 [Image Processing and Computer Vision]:

Digitization and Image Capture;

1. Introduction

To capture the appearance of real objects and to visualize
them under novel illumination has received a lot of atten-
tion in recent years. A number of different methods have
been developed. Most of these methods find their roots in the
Light Stage [DHT™*00] (i.e. Image-based relighting) or in En-
vironment matting [ZWCS99]. Both techniques essentially
try to solve the same problem, but use a radically different
approach. Methods based on the Light Stage are tradition-
ally better suited for scenes containing diffuse and slightly
glossy materials, as opposed to Environment matting, which
excels in capturing the reflections of highly glossy and spec-
ular objects. However, this disjunction has blurred with the
introduction of newer techniques (e.g. [PD03, MLP04]).

A central concept in image-based relighting is a re-
flectance field; a 8D function expressing the relation between
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incident illumination at, and exitant illumination from an ob-
ject for any position and direction. Capturing the complete
8D reflectance field requires an enormous amount of work.
Therefore, image-based relighting techniques focus on cap-
turing a dimensionally reduced (4D) slice of this function.
The incident illumination is reduced to a 2D approximation
by either restricting it to directional incident illumination,
or by assuming it 2D positional parameterizable (i.e. direc-
tionally fixed). The exitant illumination is reduced to a 2D
function by fixing the viewpoint. A reflectance function is
defined as a 2D function by further fixing the view direc-
tion. It describes how a pixel in an image (recorded from the
viewpoint) behaves under 2D incident illumination.

The goal of our method is to capture this 4D approxima-
tion of the reflectance field. Our method consists of three
steps. In the first step a user-defined number of photographs
of the scene are recorded. For each photograph the object is
illuminated by a different wavelet noise pattern emitted from
a CRT monitor. In the second step, a compact wavelet repre-
sentation of the reflectance function is iteratively computed
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for each pixel separately. For each iteration, the most impor-
tant wavelet is selected from a small set of candidates, and
added to the reflectance function approximation. The candi-
date wavelets are inferred in a greedy manner from the al-
ready computed approximate reflectance function and their
importance is estimated by solving a linear least squares
problem. This process is repeated until all possible candi-
date wavelets are processed or a user-defined maximum is
reached. Finally, in the third step, novel incident illumina-
tion or alternatively a backdrop image, can be applied to the
computed reflectance functions, resulting in a relit image of
the captured object.

The presented method has following properties:

e Material types. The method works equally well for dif-
fuse, glossy and specular materials.

e Mathematical framework. A well defined mathematical
framework forms the basis of our system (section 4).

e The information gain is maximized per additional
photograph. In order to minimize the number of re-
quired illumination patterns and thus photographs, the
information gain of each additional photograph should
be maximized for computing the reflectance functions.
Each emitted wavelet noise pattern affects all pixels in
the recorded photographs, independently of the underly-
ing material properties, resulting in additional information
for the computation of each reflectance function.

e Stochastic illumination patterns. The illumination pat-
terns (wavelet noise) are well defined, but contain a de-
gree of randomness, enabling to trade off approximation
accuracy versus the number of photographs. The user can
choose to use less photographs at the cost of accuracy loss
of the approximation of the reflectance functions.

e The required dynamic range is minimized. The aver-
age intensity of each illumination pattern is approximately
equal by construction, therefore the same range of shutter
times can be used for each photograph.

e Compact representation. To reduce storage cost, a com-
pact non-linear wavelet representation of the reflectance
field is used.

e Simplicity. The computation of the reflectance field, and
of a relit image is simple and relatively fast.

2. Related Work

In this section we discuss work related to the acquisition of
the reflectance field of real objects.

Sampling the reflectance field. Debevec et al. [DHT*00]
created a gantry called the Light Stage, which samples
the reflectance field by recording a series of photographs
of an object from a fixed viewpoint. For each photo-
graph, the object is illuminated from a single direction se-
lected from a set of uniformly distributed lighting direc-
tions around the object. Subsequent versions improved on
acquisition speed [HCDO1], portability [MDA02, MGWO01]

and on reconstructing the reflectance functions more ac-
curately [MPDWO4]. The Light Stage has been success-
fully extended to include varying view points [MPN*02],
animated human faces [HWT*04] and 4D incident light-
fields [MPDWO3].

Sampling the reflectance field using a Light Stage is suited
for objects containing diffuse and directional diffuse materi-
als, because their reflectance functions mainly contain low
frequency components. The upper limit on the frequency
components which can be captured is determined by the
sampling rate (i.e. Nyquist rate). Capturing high frequency
reflectance functions is impractical since the number of re-
quired samples scales linearly with the upper frequency
limit.

Observing pixel responses under complex illumina-
tion. A number of techniques have been developed to over-
come the problems of brute force sampling. Key to these
methods is the use of a CRT monitor as “continuous” illu-
mination device for emitting complex illumination onto the
scene. A reflectance field is computed from the observed
pixel responses of this complex illumination on the scene.

Environment matting, introduced by Zongker et
al. [ZWCS99], uses horizontal and vertical two-color
square wave patterns as input illumination. The response
of a pixel is modeled by a box filter on the incident
illumination. Chuang et al. [CZH*00] extended this idea by
using multiple Gaussian filters instead of a single box filter.
Oriented Gaussian strips are swept across the CRT screen
and used as input illumination. Both methods require a
non-linear optimization to find the parameters of the filters.
The representational power of these filters is very limited,
and only suited for objects containing specular, and, in the
case of [CZH*00], highly glossy material properties. Wexler
et al. [WFZ02] extended environment matting to a more
general probabilistic model. [WFZ02] use natural images
as input, but only demonstrate their system on specular
objects.

Zhu and Yang [ZY04] model reflectance functions us-
ing a similar representation as [WFZ02]. Time varying co-
sine wave patterns, with a predetermined time frequency per
pixel, are used as input. The main advantage of frequency
based patterns is the robustness with respect to measurement
noise. Using a different frequency per pixel would result in
a large number of required illumination patterns. Therefore
two series of patterns are used, each with a constant fre-
quency for each row or column respectively. The method is
biased towards elliptical Gaussian responses, due to the sep-
aration in horizontal and vertical patterns, and is therefore
only suited for reflectance functions with a compact foot-
print, i.e. specular and glossy reflections.

Peers and Dutré [PD03] use wavelets as illumination pat-
terns to selectively sample the reflectance field in the wavelet
domain. A feedback loop is used to determine which part of
domain is subsequently worthwhile to sample. Their method
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Figure 1: An example of Haar wavelet noise.

is able to capture the reflectance field of objects containing
specular, glossy and diffuse material properties. The num-
ber of required photographs does not scale well for specular
objects, since a small footprint wavelet illumination pattern
contributes significantly to only a few pixels in the recorded
photograph, resulting in a limited information gain from this
photograph. Furthermore, the amount of light reflected from
the object into the camera is closely related to the footprint
size of the wavelet used in the illumination pattern, requiring
a large dynamic range to accurately capture small and large
footprint wavelet patterns.

Matusik et al. [MLPO04] use natural illumination (i.e. pho-
tographs) as input. The reflectance function of each pixel is
represented by a summation of weighted box filters, which
are determined by a progressive algorithm. In each iteration
of this progressive algorithm a constraint linear system is
solved using Quadratic programming. A spacial correction
is used to further enhance the results. [MLP04] demonstrate
their technique on a number of objects containing specular,
glossy and diffuse surfaces. It is not clear how many input
images are required, or what the constraints are on the input
illumination.

[MPZ*02] introduced a hybrid method that uses a
Light Stage [DHT*00] to capture the low frequency part
of the reflectance field, and an environment matting ap-
proach [CZH*00] to capture the high frequency part of the
reflectance field.

3. Overview of the Method

Key to our technique is the use of wavelet noise illumina-
tion patterns. For each emitted wavelet noise pattern a high
dynamic range photograph of the scene is recorded. Next,
a progressive algorithm is used to compute a non-linear
wavelet approximation of the reflectance function for each
pixel.

A wavelet noise pattern is defined as the (monochromatic)
wavelet composition of normal distributed random wavelet
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coefficients. An example of wavelet noise is shown in fig-
ure 1. Using wavelet noise as illumination patterns has a
number of advantages:

e It is possible to generate any number of unique wavelet
noise patterns. Together with the progressive computation
of the reflectance functions, this enables to trade off be-
tween the number of illumination patterns and the quality
of the final approximation.

e Because the wavelet noise patterns are globally defined
in both time and frequency, each pixel gives a response,
independent of the underlying reflectance function, when
illuminated with a wavelet noise pattern. Thus, each ad-
ditional photograph contributes new information for the
computation of the reflectance functions.

e It is possible to fix the average of each wavelet noise pat-
tern, resulting in a limited dynamic range which needs to
be captured.

In this paper we describe the reflectance functions using a
non-linear wavelet approximation. A progressive algorithm
is used to infer the reflectance functions from the responses
of the wavelet noise patterns for each pixel independently.
The number of wavelet coefficients in the final approxima-
tion can be either user-defined or dynamically determined
depending on the number of input illumination patterns. In
order to progressively refine the approximation of the re-
flectance functions, a refinement oracle must be defined. A
similar problem is addressed in [PD03] and in [MLP04].
Both use a progressive algorithm:

e In [PDO03] a feedback loop is used to determine online
which subsequent wavelet illumination patterns are im-
portant for the construction of the wavelet environment
matte. The selection of these subsequent illumination pat-
terns is based on information from already acquired pho-
tographs. The children of the wavelet, which resulted in
the largest contribution to the wavelet environment matte
(i.e. photograph with the largest L, norm), are selected
to be processed in the subsequent iteration. Note that the
selection of the wavelet illumination patterns is based on
information gathered from all pixels in parallel, which can
result in a non-optimal choice for individual pixels. Fur-
thermore, it is possible that a child of another (less) impor-
tant wavelet is more significant then the proposed wavelet
illumination patterns.

e [MLPO04] use a method in which box filters are split pro-
gressively based on the current approximation for each
pixel independently. The splitting criterion, however, is
not optimal as demonstrated in figure 2. Sub-figure 2.a
shows an approximation (red) of a 1D representation of a
reflectance function (blue). In sub-figure 2.b the approx-
imation is refined by splitting the box filter with high-
est energy content (as is done in [MLP04]). However, in
sub-figure 2.c a more optimal refinement, according to en-
tropy, is shown.

In this paper a different refinement oracle, sharing compo-
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(c) Split according
to entropy.

(a) Coarse approximation. (b) Split according to energy.

Figure 2: (a) An approximation (red) of a 1D reflectance
function (blue). (b) Refinement according to energy. A better
refinement criterion in terms of error, would be according to
entropy (c).

nents from previous approaches, is used. In section 4.3, we
will show that it is possible, for each pixel independently, to
make an estimate of the magnitudes of the children’s coef-
ficients of the wavelets in the current approximation of the
reflectance function. From these estimates, the wavelet with
the largest coefficient is selected and added to the current ap-
proximation. The advantage of this approach is that the ap-
proximation is kept as small as possible, in terms of number
of wavelet coefficients, while minimizing the approximation
error.

In the next section (4) we develop a mathematical frame-
work from which we will derive the algorithm described
above.

4. Mathematical Framework

In this section a mathematical framework is developed for
inferring reflectance functions from stochastically defined
wavelet noise illumination. For an excellent introduction
to wavelets and related mathematics we refer the reader
to [SDS96]. First, the light transport is described for image-
based relighting using a matrix notation (section 4.1). Using
this notation, the properties of wavelet noise illumination are
explored in section 4.2. Next, a progressive algorithm is de-
veloped to compute a reflectance function of a single pixel
(section 4.3). Finally, in section 4.4 the normalization of the
wavelet noise is discussed.

4.1. Light Transport Matrix

Light transport is a linear process which, for image-based
relighting, can be written in a matrix notation:

C=TL, 1)

where L is the incident illumination, discretized in [ parts,
and stacked in a vector. C represents the resulting k pixel
image, also stacked in a vector. The / x k matrix T represents
the light transport. The goal of image-based relighting is to
find T by controlling L and observing the resulting C.

Each row in T = [T, ..., T;] represents a reflectance func-
tion of a single pixel in C = [¢;], thus:

¢ ="T-L, @)

with 7; a vector of length /. Both L and T can be expressed
in a basis B and corresponding dual basis B 7. Lg, the pro-
jection of L on a basis B, is defined as:

Ly =BL. 3)

Define Tp the transport matrix expressed in the same ba-
sis B:

C = TBBL 4
= Tg Lp. 3)

Note that the interpretation of the rows of Ty is similar as
previously: the rows are the reflectance functions expressed
in a basis B.

4.2. Wavelet Noise Patterns

Define a wavelet noise pattern M; as the sum of normal dis-
tributed random weighted wavelets:

M; =YW, 6

where W is a wavelet basis (with dual ¥) of / basis func-
tions, and W; is a vector of / normal distributed weights.

The observed camera image is (using formulas 1 and 3):

C =TM; ¥
=TWY) M ®)
= Ty ¥ M; )
= Te PPW, (10)
= Ty W, (11)

and thus the observed response ¢, of a pixel p is:

¢p =T, W (12)

Denote W = [Wj|...|W,], where each W; is a column in
W, a set of wavelet noise patterns’ weights. We would like
to minimize n, the number of required illumination patterns,

T BB=BB=I
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and thus the number of photographs that need to be captured,
such that Ty can still be determined.

Since the reflectance function Ty, contains / entries, a
brute force approach would require / wavelet noise patterns
M; and requires a linear system to be solved for Tip ,:

Cp =Ty, W, (13)

where Cj, is a vector containing the observed pixel values
cp for each W;. However, Masselus et al. [MPDWO04] noted
that each Ty, can be compactly represented by a non-linear
wavelet approximation. Suppose that each Ty, requires at
most m << [ coefficients. If we know which m coefficients
are significant, then an accurate estimate of the magnitude of
these coefficients is possible using at least m wavelet noise

patterns® M;. Denote ﬁ;m) the approximation of Ty, with
m wavelet coefficients (i.e. zeroing out the least significant
coefficients). Thus:

(m)

, W (14)

Cp%ﬁ;

If W, Cp and the set of m significant coefficients, are

known, then f;;,m) can be efficiently computed using a linear
least squares minimization. Both W and C;, are known by
either construction or acquisition. However, it is unknown
which m coefficients are significant for a pixel p. Further-
more, each pixel p has a different set of m significant coeffi-
cients.

4.3. Progressive Refinement

In this section a progressive algorithm is developed to de-
termine which subsequent wavelet coefficient is significant
for a pixel p, given a set of m previously computed wavelet
coefficients. First, we show that it is possible to use a pro-
gressive algorithm to infer the reflectance functions using the
mathematical framework of the previous section. Next, a re-
finement criterion for progressively computing a reflectance
function is derived.

A progressive algorithm is possible if a reliable estimate
can be made of the magnitude of a subset of the significant
wavelet coefficients. Therefore, reconsider equation 14 and

extend it with an error term E ,(,’):

(@)

S W)+ EY, (15)

Cp=(Ty

E3 Generally, it is better to use more than m wavelet noise patterns,
since it is possible that the m patterns are not completely orthogonal
for the subspace spanned by the m non-zero wavelet coefficients.
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Data: priorityQueue processOrder
list waveletApproximation

Init: add the scale function to processOrder

while(maximum number of coefficients not reached and
processOrder is not empty and
processOrder.top > threshold)
{
newWavelet = processOrder.top
add newWavelet to waveletApproximation
estimate the energy in each of the direct children which
overlap the footprint of newWavelet (Least Squares)
insert children in processOrder
}
Re-estimate all selected wavelet coefficients (Least Squares)
in waveletApproximation to arrive at the final solution.

Figure 3: A high level description of the algorithm used to
compute a reflectance function for each pixel.

where 0 < i < m. Combining with formula 13 we can

(@)

write Ep,” as:

EY = (T, W) — (Tyy W) (16)
— (Ty, — To)) W a7
= rRY'w, (18)

(@)

where R’ is the residue, containing the wavelet coeffi-
cients zeroed out in ﬁ/yg). Note that ||R\y§,l ) |2 decreases as i
increases. Furthermore ||R\y5,m> |2 ~ 0.

The magnitudes of the entries in E l(,l) are distributed ac-
cording to a normal distribution, since W follows a normal
distribution by construction, and a weighted sum of normal
distributions is a normal distribution itself. The mean of E él)
is zero, and the variance is determined by the magnitude of
the elements in the residue RE,I>.

This implies that an estimate of the magnitude of the
wavelet coefficients can be made, even if not all signifi-
cant wavelet coefficients’ positions are known, using a linear
least squares minimization (formula 14). The error on the es-
timates decreases if the remaining most significant wavelet

coefficients are added with increasing i. f;(pl) should contain
the i largest coefficients, in order to minimize the error for
each step. This shows that it is indeed possible to use a pro-
gressive algorithm using the framework set out in previous
sections.

Given YA"\;:;[), which wavelet coefficient should subse-
quently be added? We first note that if a wavelet has a
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large response, then it is very likely that one or more of
the children of this wavelet also have a significant response.
This observation generally holds for natural functions such
as reflectance functions. Furthermore, it is possible to es-
timate the coefficients of all the children of already com-
puted wavelet coefficients in the current approximation.
From these estimates, the child with largest entropy is se-
lected and added to the current approximation. However, es-
timating all children at each iteration requires a significant
overhead, not only in terms of computation, but also in terms
of required number of illumination patterns. Estimating the
coefficients of n children requires at least n additional illu-
mination patterns. A solution to this dilemma is to only es-
timate the children of the wavelet that has been added most
recently, and keeping the estimates of the children of previ-
ously added wavelets without re-evaluating them. The idea
is that the relative error on large estimates is small, and thus
the estimate will not change much in magnitude. However,
the relative error on small estimates can be large, but this is
not really a problem since we are mainly interested in large
coefficients.

The resulting algorithm is shown in figure 3. There are
three 2D wavelets associated with each position in space
(i.e. Yx @y, OxWy, Wx Yy, where y and @ are respectively the
wavelet and the associated scale function). We store the total
magnitude of all three wavelets as a single entry in the prior-
ity queue. When a specific wavelet position is retrieved from
the queue, we estimate the direct children in the footprint of
all three wavelets (i.e. 12 children for the Haar wavelet). Ad-
ditionally, the priority queue is sorted according to intensity,
and all three color channels are processed in parallel. The
threshold in the algorithm in figure 3 ensures that we are not
modeling camera noise.

4.4. Wavelet Normalization

In the previous sections we ignored the normalization of the
wavelets in the illumination patterns. A number of wavelet
normalizations are possible. When selecting a wavelet nor-
malization, following factors need to be taken into account:

1. The wavelet noise patterns will be emitted from a CRT
monitor (section 6). The number of distinct (linear) inten-
sity values a CRT can generate is very limited (approxi-
mately 200). To allocate an equal intensity range to each
individual wavelet, it is best that all wavelets have ap-
proximately the same amplitude. This way each wavelet
occupies a 0.5log, (1) part of the intensity range (worst
case).

2. The algorithm described in figure 3 starts from the largest
wavelet, and proceeds down to the children wavelets.
This scheme works best if the wavelet coefficients do not
gain in magnitude with advancing wavelet level. Using
an equal amplitude across all wavelet levels ensures that
small and large footprint wavelets are weighted equally.

There are two kinds of common wavelet normalizations:

Input: QU-1), Rg';li, BU=D and 4;

with Q© = I, R\") = empty and B®) = B
Output: The solution to Aj;X =B

M) Vi=QiV'y,
(2) compute the Householder reflection H® using V;
3) QW =qQl-1 g
. 1 .
@) Ry =[R | HO V]
(5) BY =HO pt-1
(6) back-substitute R(IIIX =B for X

Figure 4: A sequential QR factorization algorithm for com-
puting a least squares solution of A14X = B for each itera-
tion of the algorithm in figure 3.

1. Constant energy. All wavelet have the same energy.
(high-pass Nyquist gain = v/2 and low-pass DC gain =
V2).

2. Constant amplitude. All wavelets have approximately
the same amplitude. (high-pass Nyquist gain =2 and low-
pass DC gain = 1).

Given the constraints, we opt for normalizing the wavelets
in the wavelet noise patterns to a constant amplitude. The
same normalization is used during computation of the re-
flectance functions. A disadvantage is that not necessar-
ily the optimal non-linear wavelet approximation for a re-
flectance function in terms of energy conservation is com-
puted.

5. Least Squares Minimization Speed Up

The algorithm in figure 3 requires a least squares mini-
mization for each iteration during the computation of a re-
flectance function. A least squares minimization requires
O(m?e) operations (e.g. using QR factorization), this is re-
peated m times. Thus the total operation count for the com-
putation of a single reflectance function is O(m3e), where
m is the number of coefficients to be computed, and e is
the number of emitted patterns. However, this approach is
not optimal, since a large number of operations is repeated
between consecutive least squares minimizations. In fig-
ure 4 a sequential variant on the QR factorization algorithm
is given for computing the reflectance function in O(mze)
time-complexity, instead of O(m3e). The algorithm is based
on [DGKS76] (also in [Ste98] p339), and a mathematical
derivation is given in appendix A. The most expensive step
in the algorithm is (6), the back-substitution. To minimize
the computational cost, the back-substitution should be post-
poned as much as possible, i.e. only back-substitute the ele-
ments that need to be estimated in the current iteration.

(© The Eurographics Association 2005.
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6. Data Acquisition and Calibration

Our acquisition setup consists of a CRT monitor and a dig-
ital camera (Canon EOS D30). Both the CRT monitor and
the camera are radiometrically calibrated. The camera re-
sponse curve is determined using the technique of [DM97],
and each recorded photograph is converted to a high dy-
namic range image. A minimal shutter time of 1 second is
used to avoid synchronization problems with the refresh rate
of the CRT monitor. The gamma curve of the CRT monitor
is measured by recording high dynamic range photographs
of the CRT monitor while emitting 256 different intensity
images. Since we only emit monochromatic wavelet noise
patterns, no color calibration (except white balancing) is re-
quired. We did not fit an analytical gamma curve through the
measured intensity values, but used the discrete representa-
tion directly. The discrete gamma curve is inversely applied
before emitting a pattern.

There is a discrepancy possible between the intensity val-
ues used during computation and the intensity values actu-
ally emitted from the CRT monitor, since the discrete gamma
curve can map multiple intensity values to the same screen
value. To avert this, an inverse gamma correction followed
by a forward gamma correction is applied to each pattern
before computing a reflectance function.

7. Results and Discussion

To generate a relit image, the incident illumination is pro-
jected onto the wavelet basis. For each pixel a weighted sum
of the wavelet coefficients from the reflectance function and
the corresponding wavelet coefficients from the incident il-
lumination is made, resulting in the relit pixel value.

In figures 6, 7 and 8 a number of results of our technique
are shown. A reference photograph is shown, for each pair,
on the left, while the computed relit image is depicted on the
right. All examples are computed using 64 coefficients and
256 photographs. The resolution of the incident illumination
is 512 x 512.

In figure 6, a hard disk is shown, illuminated from the
right side by two different photographs. The scene contains
specular (disk), glossy (cover) and diffuse (underground)
material properties. The final computed reflectance field is
68MB LZW compressed (158MB uncompressed).

A detail of this scene, containing a balanced selection of
different material properties, is used to test the influence
of the number of coefficients versus the number of pho-
tographs. The results are depicted in figure 5. The red graph
shows the error with respect to the reference image of a vari-
able number of coefficients computed using 256 illumina-
tion patterns. A minimum was reached for 64 coefficients.
Adding additional wavelet coefficients allows to approxi-
mate the reflectance function more accurately (e.g. from 32
to 64 coefficients), however, only a limited amount of in-
formation is available to estimate the coefficients, and thus,
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with each increase in the number of coefficients, the accu-
racy of the estimates decreases. At a certain point, the error
on the estimates outweighs the addition in wavelet coeffi-
cients (e.g. from 64 to 96 coefficients). The green and blue
graph show the error for respectively 64 and 128 coefficients
when using a variable number of illumination patterns. As
expected the error decreases with each additional illumina-
tion pattern.

The required processing time depends on the number of
coefficients, the number of photographs, the underlying ma-
terial property and the noise threshold. We tested a number
of settings on the detail shown in figure 5. The timings for
each setting ranged from 0.005 to 0.075 seconds per pixel on
average, on a 3GHz Pentium 4 with 1GB of memory.

In figure 7 a scene is shown, inspired by [PD03]. Unlike
previous methods, we also computed the reflectance func-
tions of directly visible pixels on the CRT monitor. The fi-
nal computed reflectance field is 139MB LZW compressed
(329MB uncompressed).

Figure 8 shows an antique copper model replica of a
Jaguar XK-120 illuminated from the right side by the two
photographs used for figure 7. The final computed re-
flectance field is S8MB LZW compressed (132MB uncom-
pressed).

All three results show some noise in dark areas. There are
two sources of noise. Firstly, there is measurement noise,
noticeable in regions with low reflectance. Secondly, there
is some stochastic noise, due to the stochastic nature of the
illumination patterns and estimation process (e.g. visible in
figure 6, under the arch of the bridge). This stochastic noise
shows some structure related to the (Haar) wavelet used.
The amount of noise should decrease if the number of pho-
tographs increases.

The methods of [PD03] and [MLP04] are closest re-
lated to the presented method. What follows is a short com-
parison of the presented method and both previous meth-
ods. Both [MLP04] and our method have a straightforward
data acquisition process, which is complicated in [PD03]
by the feedback loop. The number of distinct wavelets
in the computed reflectance functions were approximately
262000, which is almost equal to the total number of pos-
sible wavelets (given the resolution of the incident illumi-
nation). This gives an idea on how many wavelets have
to be emitted to achieve similar results with the technique
of [PD03]. [MLPO04] solve a constraint linear least squares
problem, which is more complex then solving an uncon-
straint linear least squares problem. Furthermore, [MLP04]
requires a spacial correction to further enhance the results,
which can fail if the scene contains many high frequency
features. The presented method performed better when com-
pared to the results of [MLP04] without spacial correction.
We use a more optimal refinement criterion compared to
both previous methods. Furthermore, it is unclear what the
constraints are on the natural illumination used in [MLP04],
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Figure 5: The error on the approximation for the reference
photograph in terms of the number of coefficients and the
number of photographs. The error was computed on a detail
of the scene from figure 6 and contains a balanced selection
of diffuse, glossy and specular material properties. The red
graph shows the error with respect to the number of coeffi-
cients when using 256 illumination patterns. The green and
the blue graph shows the error on respectively 64 and 128
coefficients for a variable number of illumination patterns.

whereas the wavelet noise patterns are well defined. A key
difference, is that the wavelet noise patterns are dense in
space and frequency, whereas this is not guaranteed for nat-
ural images.

8. Conclusions and Future Work

In this paper we presented a novel method for acquiring a
compact wavelet representation of (a part of) the reflectance
field of real objects. Wavelet noise patterns are used as input
illumination and a progressive algorithm is used to compute
the reflectance function for each pixel. The method works
equally well for objects containing a mix of diffuse, glossy
and specular materials. Using wavelet noise patterns has a
number of advantages. Firstly, due to the stochastic nature
of wavelet noise, any number of illumination patterns can
be generated and used during measurement. This enables
a trade-off between the accuracy of the approximation and
the number of photographs which need to be recorded. Sec-
ondly, the information gain is maximized per additional pho-
tograph. The wavelet noise patterns are globally defined in
space and frequency, resulting in a response on every pixel
independent of the underlying reflectance function. Each
additional photograph results in additional information for
each pixel. Thirdly, the required dynamic range is mini-
mized, because the wavelet noise patterns can be generated
such that their average is approximately equal. The method
is based on a solid mathematical framework and is easy to
implement.

For future work we would like to investigate advanced fil-
tering techniques directly on the wavelet representation of
the reflectance field in order to reduce the stochastic noise
in the computed results. Currently we are also looking into
higher order wavelets. Initial experiments in this direction
yield promising results. Furthermore, we would like to ex-
tend our method to use natural illumination as in [MLPO04].
Natural illumination, however, does not result in normal dis-
tributed wavelet coefficients [DLAWO1]. A thorough anal-
ysis on how far we can relax the constraints on the input
illumination is required.
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Appendix A: QR Factorization

In this appendix we first review QR factorization and how
it can be used to solve a least squares problem (among oth-
ers described in [Ste98]). Next a derivation of the algorithm
shown in figure 4 is given. To solve a linear least squares
minimization we rewrite the system A X = B using the OR
factorization of A:

AX =B 19)
QRX = B (20
RX = QT B, @n

where R is an upper-triangle matrix, and Q is an orthogo-
nal matrix. The last equation 21 can be efficiently solved us-
ing back-substitution and gives the solution in a least squares
sense.

The matrices R and Q are defined using Householder re-
flections:

R = R®™ g™ gD A (22)
Q = Q(n) —gO g (23)

The Householder reflection H is defined as:

H) —1-2vT v, (24)

where V; is the householder vector of the i-th column
of R0~ Note that HY and Q™ are never explicitly
computed, since a multiplication with H® can be done in
O(me) operations using formula 24 directly.
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Appending a Row to the QR Factorization

For each iteration of the algorithm in figure 3 an addi-
tional vector A; is determined and appended to A. To
minimize repeating computations through each iteration we
first determine how Q¥ and R® change for each step.

The matrix Q(i> is trivially dependent on Q<i*1>:

QW = Qi-1 g, (25)

The relation between R and RG=1) can be written as:

RO = gHO gD A (26)
— HO Qi-1" A 27)
= HO RGE-D, (28)

The problem is that A is not yet fully known. Define
A= [A] ‘,..|A,’], then:

RV = HO _HD Ay (29)
= QW' A1 | Al (30)
= HO [V Ay QY Al G
— 1O R QD A (32)
= HO R v (33)
= R HO v (34)

This last step is possible since H® does not effect

columns 1 to i — 1 (formula 24). Note that R<1n12 =RM® 1t
is also immediately clear that the vector V;, needed for cre-

. . T
ating the Householder reflection HD, is Q<‘*1> A;.

Defining B = Q(i)TB, and using formula 34, 25 and 21,
we can formulate the algorithm in figure 4. At each step of
the algorithm the solution of Ay; X = B is computed. The
complexity of this algorithm is O(me) for each iteration.
The iteration is repeated m times, resulting in a total com-
plexity of O(m?e). The algorithm is due to [DGKS76] (also
in [Ste98] p339).

(© The Eurographics Association 2005.
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Figure 6: A hard disk illuminated from the right side. The scene contains specular (disk), glossy (cover) and diffuse (under-
ground) material properties. For each pair, a reference photograph is shown on the left, and a computed relit image on the right.
The examples are illuminated by respectively a photograph of a landscape and a photograph of an old stone bridge.

Figure 7: A dinner scene, inspired by [PDO03], illuminated from behind. Note that the directly visible pixels on the CRT are also
computed using our method. For each pair a reference photograph is shown on the left.

Figure 8: An antique copper model replica of a Jaguar XK-120, illuminated from the right side. For each pair, a reference
photograph is shown on the left. The scene is lit by the same photographs as in figure 7.
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