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Figure 1. A comparison of PGVS-Net on 3 selected frames from an RGB-P video sequence from our novel PGV-117
dataset against the method of Kalra et al. [14] and Mei et al. [29]. From left to right: RGB, AoLP, and DoLP input images;
glass segmentation results for selected frames compared to the ground truth segmentation; evolution of error over the video
sequence. Both prior methods are temporally unstable due to significant temporal changes in DoLP. In contrast, PGVS-Net
combines multi-view polarization cues for segmentation propagation, yielding a temporally stable glass segmentation.

Abstract

In this paper, we present the first polarization-guided
video glass segmentation propagation solution (PGVS-Net)
that can robustly and coherently propagate glass segmen-
tation in RGB-P video sequences. By leveraging spatio-
temporal polarization and color information, our method
combines multi-view polarization cues and thus can alle-
viate the view dependence of single-input intensity vari-
ations on glass objects. We demonstrate that our model
can outperform glass segmentation on RGB-only video se-
quences as well as produce more robust segmentation than
per-frame RGB-P single-image segmentation methods. To
train and validate PGVS-Net, we introduce a novel RGB-P
Glass Video dataset (PGV-117) containing 117 video se-
quences of scenes captured with different types of camera
paths, lighting conditions, dynamics, and glass types.

1. Introduction
Transparent objects, such as glass, are common in man-

made environments. Despite their prevalence, such ob-
jects pose numerous challenges for industrial and academic
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vision processing algorithms due to their view-dependent
appearance, statistical similarity to the background envi-
ronment, and lack of texture. These challenges are par-
ticularly acute for segmentation tasks that underpin au-
tonomous driving, robotics, and aerial drone navigation.
Traditional learning-based solutions [8, 30, 50, 51] that rely
on RGB textures for feature extraction often fail to ade-
quately model the illumination and view-dependent glass
features. Consequently, recent advances have explored
richer modalities such as light fields [44] and polariza-
tion [14, 18, 21, 29, 46, 49] for more robust segmentation of
glass objects. Polarization has proven to be a strong cue for
glass segmentation in still images [14, 29]. The availability
of commercial off-the-shelf RGB-P cameras (e.g., Flir and
Lucid), makes this last category an attractive modality for
glass segmentation.

Polarization of reflected light depends on various fac-
tors such as surface normals, material types, and illumina-
tion and view directions [2]. Due to the polarimetric near-
specular behavior, glass materials are particularly challeng-
ing; small changes in object orientation and/or view/light
direction can induce a rapid change in polarization state.
For example, consider the glass areas ‘1’ in Figure 2 that
show a glass door in various stages of being closed. In this
example, the RGB textures remain almost unchanged, but
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Figure 2. Representative exemplars from the PGV-117
dataset containing a total of 117 video sequences captured
with a variety of camera movement patterns, lighting condi-
tions, scene dynamics, and materials. Glass areas ‘1’ depict
a door in various stages of being closed. Glass areas ‘2’ are
captured by moving the camera.

changes in the surface normal induce a significant decrease
in the Angle of Linear Polarization (AoLP) from close to
π (red-blue mixture) to less than half π (full blue), and a
noticeable reduction in the Degree of Linear Polarization
(DoLP) from 0.137 to 0.043. Similarly, moving the cam-
era will induce a similar change in the polarization (e.g.,
the glass areas ‘2’ in Figure 2). These observations sug-
gest that polarization cues are beneficial for glass segmen-
tation and can provide additional guidance. Furthermore,
the DOLP in glass area ’1’ is unstable across the entire span
of the video sequence, with noticeable DoLP reductions at
specific angles of incidence (ρ = 0.043). Such types of in-
stabilities can confuse methods [14, 29] that only rely on
a single-frame RGB-P as input (Figure 1, right). More-
over, extracting glass features from RGB textures or polar-
ization cues from a single view may also be difficult (e.g.,
under low light conditions as in Figure 1 left). As a con-
sequence, polarization cues that are robust for static single
image segmentation methods, can still yield temporally dis-
joint and inconsistent segmentation results when applied to

video sequences, especially when object orientation and/or
viewpoint changes.

In this paper, we introduce a Polarization Video Glass
Segmentation network (PGVS-Net) to robustly and coher-
ently propagate an initial glass segmentation mask over an
RGB-P video sequence. PGVS-Net perceives multi-view
polarimetric features from long-range memory and short-
range integration. A variation of the Spatio-Temporal Mem-
ory network (STM) [33] is introduced to leverage spec-
tral polarization cues for constructing long-range view de-
pendency. A well-designed Polarization-Guide Integration
module (PGI) is responsible for the frame identity and his-
torical polarization matching. Furthermore, a novel Polar-
ization Temporal Forward module (PTF) integrates previ-
ous polarization cues to promote short-range spectral con-
sistency during the decoder process. We also leverage
cross-modal and cross-temporal attention (CMTA) to in-
tegrate multimodal features and temporal representations
from different frames. To train and test PGVS-Net, we
capture and annotate a large-scale video glass segmentation
dataset, PGV-117, which includes 21,485 annotated RGB-
P frames and masks. We demonstrate, using this newly
created dataset, that our PGVS-Net outperforms competing
single-frame RGB-P glass segmentation methods as well
as RGB-based video segmentation methods both quantita-
tively and qualitatively.

In summary, our contributions are:

• A novel Polarization Video Glass Segmentation net-
work (PGVS-Net) to robustly provide glass segmenta-
tion propagation in RGB-P video sequences;

• A series of polarimetric consistency and integration
modules to enhance spatio-temporal correlation of
spectral polarization cues;

• A large-scale video glass segmentation dataset, PGV-
117, containing 21,485 frames with spectral polariza-
tion cues and densely-annotated masks.

2. Background and Related Work

Polarization. Light is an electro-magnetic wave, whose
polarization state describes the orientation of the transverse
electric field, which can be unpolarized (i.e., random), lin-
early polarized (i.e. biased towards a single direction), or
circularly polarized. We focus our discussion on linear po-
larization as supported by recent commercial polarization-
array CMOS sensors, which allows us to record four dis-
tinct linear-polarization states per pixel: I0◦ , I45◦ , I90◦ , and
I135◦ , where Ix describes the intensity of linearly-polarized
light at an angle x. These four linear polarization measure-
ments allow us to compute the linear-polarization compo-



nents of the Stokes vector S = [S0, S1, S2]:

S0 = I0◦ + I90◦ = I45◦ + I135◦ ,
S1 = I0◦ − I90◦ ,
S2 = I45◦ − I135◦ ,

(1)

where S0 is the total light intensity, S1 and S2 are the ratio
of the 0◦ and 45◦, respectively, linear polarization intensity
over its perpendicular counterpart. Given the linear Stokes
vector, the degree of linear polarization (DoLP) and the an-
gle of linear polarization (AoLP) are defined as:
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2

S0
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1

2
arctan
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)
. (2)

Glass Object Segmentation. RGB texture information
has proven to be an effective cue for image detection [41,
42, 43] and segmentation [24, 36, 37]. However, accurately
segmenting glass objects in images remains a challenging
problem because of the dynamic texture patterns that vary
with viewing conditions due to reflection and transmission
that share the statistics of the surrounding scene. Prior glass
segmentation methods operating exclusively on RGB im-
ages have leveraged contextual information [30, 52, 53] or
boundary cues [9, 50] to address these challenges. However,
the effectiveness of RGB-only appearance cues depends on
the lighting conditions, the amount of scene clutter, and the
presence of nefarious actors (e.g., print-out-spoofs) [14].
One avenue to improve glass segmentation robustness is to
include additional modalities that further differentiate glass
objects from others, such as scene depth [28], thermal infor-
mation [12], and polarization [14, 29]. Our approach falls
in this latter category, and we rely on RGB and polariza-
tion (RGB-P) to robustly segment glass objects. However,
the strength of the polarization cues can vary from frame to
frame in a video sequence due to changes in view or light-
ing conditions yielding inconsistent object segmentation be-
tween frames. In this work, we leverage multi-view obser-
vations to recover a more complete, less view-dependent,
description of the polarization properties of objects in the
scene, resulting in a temporally more robust glass segmen-
tation.

Video Segmentation and Detection. Video sequences
can offer additional temporal cues to aid segmentation and
detection tasks, but simultaneously also introduce the addi-
tional challenge of temporal consistency. Semantic video
segmentation methods enhance temporal consistency via a
variety of temporal propagating approaches such as opti-
cal flow[13, 32, 55], spatially varying convolutions [23],
and recurrent network architectures [40]. In the absence
of semantic cues, video object segmentation approaches es-
timate consistent class-agnostic object masks and instance

IDs by exploiting spatial and temporal information to prop-
agate an initial mask [4, 7, 11, 20, 26, 33, 39]. Panoptic
segmentation [16] is a popular and successful segmenta-
tion approach that unifies semantic and instance segmen-
tation, and which has also been extended to video segmen-
tation [15, 22, 35, 47]. In addition to segmentation, the re-
lated problem of object detection has recently also been ex-
tended to video sequences in different application domains
such as salient object detection [17, 19], camouflaged object
detection [5], shadow detection [3, 25], and video action de-
tection [54]. Similar to prior work, we also exploit spatial
and temporal cues. In addition, we also leverage the richer
embedded cues in RGB-P videos and gather robust polar-
ization cues from multi-view observations to aid in propa-
gating glass segmentation masks in video sequences. To the
best of our knowledge, none of the prior segmentation prop-
agation methods can effectively leverage polarization cues
that are uncorrelated with RGB features.

3. Polarimetric Video Glass Segmentation
Our Polarization Video Glass Segmentation network

(PGVS-Net) sequentially processes video frames beginning
with the second frame, utilizing the ground truth annotation
provided in the initial frame. As the video processing un-
folds, preceding frames with object masks—established in
the first frame or inferred in subsequent frames—are em-
ployed as memory frames. Furthermore, the current frame,
excluding the object mask, assumes the role of the query
frame. Note that each frame consists of trichromatic inten-
sity I , AoLP φ, and DoLP ρ information.

Inspired by the successful Spatial-Temporal Memory
(STM) framework [4, 33], we encode each frame into a
paired set of key and value maps. Specifically, for a given
modality x, we utilize a ResNet50 architecture [10] to en-
code the modality into three distinct feature maps: fx

b1, fx
b2,

and fx
b3, corresponding to the outputs of the first, second,

and third blocks, respectively. The key feature map of each
frame is derived using our specially devised Polarization-
Guided Integration module (PGI; detailed in Section 3.1),
based on fx

b1, fx
b2, and fx

b3. Importantly, both memory and
query frames employ the same methodology to generate
key maps. For memory frames, the value map is generated
through the following steps:

1. Trichromatic I , φ, ρ, and the glass mask are concate-
nated along the channel dimension and fed as input to
a ResNet18 model [10] to produce a feature map;

2. The resulting feature map is concatenated with fx
b3 and

subjected to two residual blocks [10] and a Convolu-
tional Block Attention Module (CBAM) [48] attention
block;

3. Finally, the memory value maps are produced by ag-
gregating the multimodality maps from step 2.

In essence, relying on the query key and the pairs of mem-



Figure 3. Overview of PGVS-Net. The RGB-P Memory and PGI fused keys are designed to store long-range multi-view
polarization cues. The short-range spectral propagation are implemented by the CMTA and PTF modules.

ory key and value maps, PGVS-Net endeavors to esti-
mate the value map (discussed in Section 3.2) for a given
query frame through multi-view polarimetric propagation
(described in Section 3.3) and the extraction of temporal
correlations (explained in Section 3.4). The resultant value
map of the query frame is then translated into the glass mask
of the query frame via a decoder (introduced in Section 3.5).
Our PGVS-Net is summarized in Figure 3.

3.1. Polarization-Guided Integration

Polarization information provides strong cues on the ma-
terial properties. We therefore leverage these polarization
cues as guidance to combine multimodal key feature maps
for each frame. To achieve this, we introduce a novel
Polarization-Guided Integration (PGI) module. Formally,
the PGI is defined as:

kx = Ψ(fx
b3),

Y1 = γ1 ∗ {[Ψ(kI)⊛Ψ(kφ)]⊛Ψ(kI)},
Y2 = γ2 ∗ {[Ψ(kI)⊛Ψ(kρ)]⊛Ψ(kI)},
k = Ψ([kI ,Y1,Y2])

(3)

where x is either I , φ, or ρ; γ1 and γ2 are learnable pa-
rameters; Ψ(·) represents a convolution layer, followed by
a regional pooling operation (output size equals 11) and an
additional convolution layer; ⊛ indicates a matrix multipli-
cation. kx ∈ RBT×H×W×C , where B, T,H,W,C are the

batch size, temporal length, and the height, width, and chan-
nel size of a feature map, respectively.

3.2. Query Value Prediction

In the context of a query frame, we establish a connec-
tion between RGB-P information from multiple views by
investigating the interplay between the query key and mem-
ory keys. This interaction results in corresponding value
features grounded in memory affinity. Our model employs
an STM variant for RGB-P memory, dynamically amal-
gamating multimodal inputs and establishing correlations
across diverse views over an extensive temporal span.

Concretely, when provided with a query key kQ, we
anticipate the query value vQ through the utilization of
a softmax-normalized affinity matrix, which is computed
from the pairing of (kM , kQ) [4]. This computation allows
us to extract the most pertinent memory values. The compu-
tation of memory affinity adheres to the methodology out-
lined by Cheng et al. [4] (for a comprehensive explanation,
please refer to the supplementary material). Memory values
encapsulate historical RGB-P information of a scene, ensur-
ing that the affinity mechanism facilitates the far-reaching
propagation of multi-view spectral polarization within vQ.



3.3. Cross Modal-Temporal Attention

To this point, the query value prediction process only uti-
lizes long term memory by leveraging the collective infor-
mation contained in the memory frames. However, captured
trichromatic information also exhibits rapid changes across
different modalities, indicating potential target area bound-
aries over short time-intervals. These changes across di-
verse modalities are not well captured by a long-term mem-
ory framework. To address this shortcoming, we introduce a
Cross Modal-Temporal Attention module (CMTA) to model
the short-term interactions between the query and its one
preceding memory frame.

Central to our CMTA module is a multi-head self-
attention mechanism inspired by the transformer architec-
ture [45]. This mechanism is first applied along the modal-
ity dimension and then extended to the temporal dimension.
Formally, the CMTA can be defined as follows:

χm = [Rm(kI),Rm(kφ),Rm(kρ)],

Fm = L[Υ(L(χm)) + χm],

χt = [Rt(CI(Fm)),Rt(Cφ(Fm)),Rt(Cρ(Fm))],

Ft = L[Υ(L(χt)) + χt],

(4)

where [·] indicates the concatenation on the first dimen-
sion; Υ indicates a multi-head self-attention block [45];
L refers to Layer Normalization [1]. Rm is a modal-
ity reshape operator, which transfers the shape of kc from
RB×T×H×W×C into RBT×HW×C . Rt is a reshape oper-
ator in the temporal domain, which reshape a feature map
from RB×T×H×W×C → RB×THW×C . Cx is the chunked
vector for modality x. Finally, the derived Ft is concate-
nated with the query value acquired through the query value
prediction process, and subsequently forwarded as input to
the decoder.

3.4. Polarimetric Temporal Forward

The examples in Figure 2 demonstrate that the polariza-
tion cues provide strong temporal continuity cues. The core
idea of leveraging polarimetric continuity is that the polar-
ization for the query frame can benefit from the preceding
memory frame’s polarization cues. To actualize this, the
Polarimetric Temporal Forward (PTF) module engages fx

b1

and fx
b2, sourced from the query and the preceding mem-

ory frame, as inputs. This module carries out an unfolding
operation (U) on these inputs. In order to distinguish be-
tween the features from the query and memory frames, an
additional subscript is appended to the feature samples. For
instance, fx

M−b1 and fx
Q−b2 represent the feature map of

block 1 from a memory frame and the feature map of block
2 from a query frame for the modality x, respectively. For-
mally, given fx

M−b1 and fx
Q−b1, the PTF operation is defined

as:

UM
φ , UM

ρ = U(fφ
M−b1),U(f

ρ
M−b1),

FQ
φ , FQ

ρ = R(fφ
Q−b1),R(fρ

Q−b1),

Sφ = σ(S(FQ
φ ⊗ UM

φ ))⊗ UM
φ + fφ

b1,

Sρ = σ(S(FQ
ρ ⊗ UM

ρ ))⊗ UM
ρ + fρ

b1,

FPTF
b1 = Sφ + Sρ + f I

b1,

(5)

where R and S denote the reshape operation and sum opera-
tion applied to the first dimension, respectively; ⊗ indicates
the element-wise multiplication; σ is the softmax func-
tion. Uφ, Uρ ∈ RC×P×H×W , where P denotes the win-
dow size during the unfold convolution, and f I

b2, f
φ
b2, f

ρ
b2 ∈

RC×1×H×W .
PTF further applies the described operations to fφ

b2, fρ
b2,

and f I
b2, yielding the output FPTF

b2 . In our implementa-
tion, we establish the window sizes for unfold convolutions
as 7 and 9 for fb2 and fb1, respectively. Through this de-
sign, PTF enables dynamic incorporation via unfold convo-
lutions, fostering forward propagation among adjacent po-
larimetric features and thereby achieving inter-frame view
dependency.

3.5. Decoder

We employ a straightforward yet effective decoder to
translate the acquired query value into the corresponding
glass masks of the query frame. Our decoder encompasses
two UNet-like [38] upsampling blocks, tasked with reinstat-
ing the resolution of the query value map to 1/4 of the query
frame’s dimensions. Subsequently, a prediction convolution
transforms the channel configuration of the resultant feature
map to a single channel, which is then upsampled to match
the resolution of the query frame. In addition to the query
value, this decoder taps into the feature maps offered by the
PTF module to reinforce temporal coherence. Specifically,
FPTF b1 and FPTF b2 serve as inputs to the first and second
upsampling blocks, respectively.

3.6. Implementation Details

We implement PGVS-Net in PyTorch. For training, in-
put images are randomly cropped to 384 × 384 and aug-
mented by horizontal random flipping, translations, and
affine transforms. During training, the sequence takes a
group of three frames as the input of the network. The
masks of ground truth glass areas in the first frame are
provided as input, and we employ a binary cross-entropy
(BCE) loss to supervise the output mask of the last two
frames. For optimization, we use the Adam optimizer with
a weight decay of 1e− 7. The learning rate is fixed at
1e−5. Training takes three days to converge on a dual TI-
TAN V100 graphics card setup after 150,000 iterations with
a batch size of 4. During inference, we update the memory
bank every three frames.



Figure 4. Summary of camera motions (left) and the PGV-
117 dataset characteristics (right). To avoid biasing PGV-
117 into certain types of camera motions, we implement
different camera motion strategies. The blue areas repre-
sent the glass target. The 117 video sequences are captured
with different types of camera paths, lighting conditions,
dynamics, and materials (dark indicates ground glass).

4. PGV-117 dataset

We introduce a novel RGB-P-video-based dataset, PGV-
117, to support and stimulate research in video-based glass
segmentation. The dataset is collected using a trichro-
matic (RGB) polarizer-array camera (LUCID PHX050S),
equipped with four directional linear-polarizers, i.e., 0◦,
45◦, 90◦ and 135◦. The frame rate is fixed at 30fps, and
we vary the exposure time from 3,000µs to 39,999µs de-
pending on the scene and lighting conditions. Each frame
in the PGV-117 dataset includes: an RGB image, four di-
rectional polarization images, inferred spectral AoLP and
DoLP maps, and the captured RAW camera data. Ta-
ble 1 summarizes PGV-117 statistics in comparison to prior
datasets. Care was taken during creation of PGV-117 to
ensure a sufficient variation in lighting conditions, camera
paths, and scene dynamics.

Lighting conditions. PGV-117 is collected in various in-
door environments, such as shopping malls, office build-
ings, and classrooms, as well as in a variety of outdoor envi-
ronments. For outdoor environments, we capture sequences
spanning during the full time-range from daytime to night.
As such, PGV-117 offers four types of lighting variations:
normal, low-light, saturated light, and high-dynamic-range.
Additionally, we also consider diverse glass types in PGV-
117, including clear, frosted, and patterned glasses, tinted
glass on vehicles, and outdoor and indoor glass walls.

Datasets Task Frames AD P Seq(tr+v/te)
DAVIS2017 [34] VOS 10, 459 #1 90/60
DAVSOD [6] VSOD 23, 938 #1 36/90
MoCA-Mask [5] VCOD 22, 939 #5 71/16
RGBP-Glass [29] IGS 4, 511 #1 ✓ -

PGV-117 VGS 21, 485 #1 ✓ 85/32

Table 1. Statistics of PGV-117 compared to representa-
tive video datasets and glass datasets. In each column, we
list: the primary Task for which the dataset was designed
(Video Object Segmentation (VOS), Video Saliency Object
Detection (VSOD), Video Camouflaged Object Detection
(VCOD), and Image Glass Segmentation (IGS)); AD: the
annotation interval in #frames; P: whether the dataset in-
cludes polarization; and Seq(tr+v)/te: the number of train-
ing and validation exemplars versus test exemplars.

Camera motion patterns. Polarization cues are angle de-
pendent. To avoid biasing PGV-117 to certain view an-
gles and camera paths, we randomly pick one of five pre-
determined camera motion patterns: front, inclined, circu-
lar, straight-forward, and up-down; see Figure 4 for a visual
summary. During acquisition, we also recapture some glass
areas back and forth to enrich the robustness and diversity.

Dynamics. PGV-117 captures both static and dynamic
scenes (e.g., doors/windows opening and closing, and
pedestrians occluding glass).

Frame removal. Frames characterized by motion blur
and overexposure are excluded due to the inherent ambi-
guity in their annotations. Typically, we remove 1 to 2
frames per static-camera sequence, and about 20% frames
for a moving-camera sequence.

5. Experiments

In this section, we first compare the performance of
PGVS-Net under continuous polarization to demonstrate
the robustness of combining multi-view and temporal con-
sistency (subsection 5.1). Next, we validate the efficacy
of our model by quantitatively and qualitatively compar-
ing PGVS-Net against polarization-based and SOTA video
methods retrained on the PGV-117 dataset. To quan-
tify performance, we adopt four prevalent evaluation met-
rics: intersection over union (IoU), weighted F-measure
(Fβ) [27], mean absolute error (MAE), and balance error
rate (BER) [31]. Finally, we perform an ablation study to
show the impact of the different components that comprise
PGVS-Net (subsection 5.3). Please refer to the supplemen-
tary materials for additional images and video results.
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Figure 5. Error plots comparing PGVS-Net to PM-RCNN and PGSNet for four different sequences. For reference, the DoLP
is also included to indicate which frames pose a greater challenge for RGB-P methods.

5.1. Multi-view Polarimetric Consistency

Due to their near-specular reflection and refraction be-
havior, glass materials are more sensitive to changes in
view/light conditions. While RGB-P cues have proven to be
essential for robust single-image glass segmentation, ignor-
ing the temporal instability can result in inconsistent glass
segmentation over time. PGVS-Net is specially designed
to leverage and aggregate temporal changes in polarization
cues. Figure 5 illustrates the correlation between variations
in polarization intensity (DoLP) and the corresponding per-
formance levels (measured by mIoU) in comparison to two
image-based polarimetric techniques [14, 29] (applied in-
dependently to each frame) across diverse video sequences.
The distinct abrupt shifts in the curve within Figure 5 due
to the removal frames with motion blur (section 4), which
breaks the temporal continuity and may degrade the multi-
view dependency of PGVS-Net.

From the first result in Figure 5, we can observe
that when DoLP changes significantly, prior single-frame
image-based methods fail to produce a consistent, coher-
ent segmentation. In contrast, our model not only stores
and leverages historical polarization information, but also
enhances the current frame with the prior polarization in-
formation through the CMTA and PTF modules, resulting
in good temporal consistency. The second result in Fig-
ure 5 shows that our model can still maintain a stable perfor-
mance when the overall DoLP changes within the sequence
cover a relatively large range (between 0.2 and 0.45). The
third and fourth result in Figure 5 show that PGVS-Net can
achieve better performance in low light and high brightness
environments with extremely low overall DoLP over the se-
quence (less than 0.12).

5.2. Comparison to the State-of-the-art

We compare PGVS-Net to prior single-frame image-
based glass segmentation methods and state-of-the-art
video segmentation methods. We retrain all methods on
the PGV-117 dataset and evaluate them on the 32 test
sequences. We compare against: RGB-input GSD [30]
where the input and supervision are replaced with our

Methods IoU↑ Fβ↑ MAE↓ BER↓
GSDIS [30] 80.29 0.828 0.115 12.34
EAFIS [49] 41.69 0.556 0.450 43.91
PM-RCNNIS [14] 76.13 0.797 0.140 15.83
PGSIS [29] 79.69 0.873 0.119 12.31

STICTV U [25] 50.68 0.577 0.299 32.03
ViShaV S [3] 77.42 0.805 0.136 13.77
STCNV S [4] 80.85 0.826 0.120 12.77
RDEV S [20] 74.87 0.763 0.169 15.95
PGVS-Net (Ours) 84.60 0.867 0.099 10.02

Table 2. Quantitative comparison of PGVS-Net with prior
SOTA methods (method subscripts: IS: Image-based super-
vised, VS: Video-based supervised, and VU.: Video-based
without labels). The top and second best results are high-
lighted in red and blue, respectively.

dataset; RGB-P glass segmentation methods EAF [49],
PM-RCNN [14] and PGS [29]; STICT [25] (since this is
an unsupervised method, we use the polarimetric dataset
from [29] as labeled images for training); ViSha [3] is a
recent video shadow detection method; STM-based video
segmentation methods STCN [4] and RDE [20] (with
ground truth masks during training and using the mask from
GSD [30] during evaluation). In all our examples, during
inference, the initial masks for PGVS-Net are provided by
the polarization-aware PGSNet [29]. The quantitative and
qualitative results are shown in Table 2 and Figure 6.

PGVS-Net outperforms state-of-the-art methods by a
significant margin and improves IoU, MAE, and BER by
3.75, 0.016, and 2.29 over the next best method, demon-
strating the effectiveness of multi-view polarization prop-
agation for video glass segmentation. PGVS-Net per-
forms slightly less than PGS-Net on the Fβ metric, which
again illustrates the robustness of polarization cues for glass
segmentation for both still-image and video sequences.
Figure 6 further qualitatively illustrates the robustness of
PGVS-Net. We refer to the video sequences in the sup-
plementary material to qualitatively evaluate the temporally



Figure 6. Qualitative comparison of our model against state-of-the-art image-based glass segmentation methods and video
detection/segmentation methods. All models are retrained on PGV-117.

Figure 7. Qualitative comparison of the different ablation combinations of PGVS-Net.

Networks IoU↑ Fβ↑ MAE↓ BER↓
RGB 78.96 0.807 0.142 13.88
RGB-P 81.01 0.827 0.131 13.16

RGB-P+PGI 83.68 0.860 0.101 10.43
RGB-P+PTF 81.78 0.838 0.122 12.38
RGB-P+CMTA 83.81 0.862 0.100 10.88
RGB-P+PGI+CMTA+PTF(M5) 80.76 0.826 0.134 12.82
PGVS-Net 84.60 0.867 0.099 10.02

Table 3. Summary of ablation experiments: Polarization
cues (RGB-P) outperform RGB-only cues. The combina-
tion of all modules (PGVS-Net) produces the overall best
results. ‘M5’ indicates that the long-range memory is up-
dated every five frames during inference.

coherent glass segmentation propagation.

5.3. Ablation Study

We validate the impact of each component in PGVS-Net
by disabling one or more components and comparing the
performance on the PGV-117 test set (Table 3). The net-

work named ‘RGB’ uses only RGB textures to populate and
query the memory to predict glass areas without any other
modules. The ‘RGB-P’ network uses RGB-P information
to store, read and calculate memory features. All other net-
works start from the ‘RGB-P’ baseline with the listed mod-
ules enabled. Finally, we indicate with ‘M5’ that the mem-
ory is updated every five frames during the inference stage
as opposed to every three frames for PGVS-Net.

The improved performance of the ‘RGB-P’ network over
‘RGB’ shows that polarization provides additional cues for
glass segmentation. PGI combines tripartite key features to
retrieve affinity from historical views. Its attribute perfor-
mance gain shows that integrated RGB-P streams can bet-
ter mine multi-view similarity than single-stream matching.
The PTF module further improves the segmentation accu-
racy (e.g., IoU increases from 81.01 to 81.78). Adding
the CMTA module further improves the performance on
the four metrics, demonstrating that the cross-modal and
cross-temporal integration provides rich short-range refer-
ences for query frames. Finally, the full PGVS-Net with all
modules enabled achieves the best results when combined
with a memory update every three frames.



Figure 8. Two failure cases with inaccurate glass segmenta-
tion highlighted in the red boxes.

5.4. Failure Cases and Limitations

Our method propagates a single initial mask, and thus its
overall quality is affected by the quality of the initial mask.
For glass areas with no initial or historical references, lit-
tle information can be propagated from multi-view observa-
tions. While PGVS-Net can augment glass segmentation in
such scenarios by harnessing spatial characteristics across
both the RGB and polarization domain, it is possible that the
segmentation can result in gaps in the glass segmentation
results (two failure cases are shown in Figure 8). An inter-
esting avenue for future research would be to determine the
most reliable RGB-P frame for initial mask estimation be-
fore propagating it to the rest of the sequence. Furthermore,
although PGVS-Net significantly outperforms other video
segmentation methods in accuracy, its tripartite-modal in-
tegration and temporal consistency strategy of polarization
cues require additional inference time. Our unoptimized
implementation currently operates at 7fps.

6. Conclusion

In this paper, we introduced a Polarization Video Glass
Segmentation network (PGVS-Net), that exploits histori-
cal multi-view spectral polarization cues to segment glass
areas, and which outperforms state-of-the-art polarization-
related image and video segmentation networks. PGVS-Net
leverages RGB-P memory and PGI-fused keys to correlate
input frames with view-dependent polarization information
from prior spectral cues. We show that the continuous
changes in illumination are better captured by polarimet-
ric features, and that long-range affinity helps to better bal-
ance single-input instabilities than single image methods.
In addition, CMTA and PTF provide short-range polariza-
tion cues for low-level polarimetric features, providing rich
wavelength details in the decoder phase. We also create a
novel video glass segmentation dataset (PGV-117) to train
and evaluate PGVS-Net.
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