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Abstract

In this paper we present an elegant pixel-based texture synthesis technique which is able to generate visually
pleasing results from source textures of both stochastic and structured nature. Inspired by the observation that the
most common artefacts which occur when synthesizing textures are high frequency discontinuities, our technique
tries to avoid these artefacts by forcing at least one of the direct neighboring pixels in each causal neighborhood
to match within a predetermined threshold. This does not only avoid deterioration of the visual quality, but also
results in faster synthesis timings. We demonstrate our technique on a variety of stochastic and structured textures.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism, color, shading, shadowing and Texture.

1. Introduction

The goal of texture synthesis is to generate new textures
which look similar to a given sample texture. Texture synthe-
sis is used extensively in computer graphics and computer
vision applications, such as texture mapping [PFH00], im-
age completion and restoration [DCOY03], motion synthe-
sis [WL00], film post-production, and the compression of
images and video sequences.

Recently, a multitude of texture synthesis techniques have
been developed. However, each of these previous techniques
are geared towards a specific texture type. For example,
pixel-based texture synthesis techniques excel in synthesiz-
ing textures of a stochastic nature, whereas patch-based tech-
niques are proficient in synthesizing from near regular sam-
ple textures.

The goal of this paper is to develop a fast texture synthesis
technique which is able to generate visually pleasing results
from a wide range of texture types. However, when blindly
applying any of the previously developed methods to differ-
ent texture types, the generated results can show high fre-
quency discontinuities such as cuts and edges (figure 1). The
human eye is particularly sensitive to these high frequency
errors and therefore these kinds of errors should be avoided
as much as possible.

In this paper we present an elegant pixel-based texture

Figure 1: Left: a texture synthesized with the presented
method without high frequency discontinuities and a simi-
lar look as the source texture. Right: a synthesized texture
distorted by high frequency discontinuities.

synthesis technique, which is able to generate visually pleas-
ing results from stochastic and near regular structured sam-
ple textures. Key to our method is the reduction of the search
space for each pixel such that high frequency discontinu-
ities are avoided as much as possible. Additionally, since
the search space is reduced, a synthesis speed-up is attained.
This reduction is achieved by a priori restricting the search
space to contain only causal neighborhoods which minimize
the probability of introducing high frequency artefacts in the
synthesized results.
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2. Previous Work

Texture synthesis has been an active research topic during
recent years. Published techniques can be roughly subdi-
vided in two main categories: procedural texture synthesis,
and texture synthesis by example.

Procedural texture synthesis is basically a customized
program which transforms some predefined signal (e.g. Per-
lin noise [Per85], Worley noise [Wor96], ...) into a desired
texture. This produces a high quality, continuous texture.
However, a major limitation of procedural texture synthe-
sis approaches is that creating a new texture requires a new
program to be written, usually a trial and error process, to
achieve a texture which has the right "look". For more infor-
mation, we refer the reader to [EMP∗02].

Texture synthesis by example generates a novel texture
that is similar to a given sample texture. There are three
classes of algorithms: texture synthesis by analysis, pixel-
based texture synthesis and patch-based texture synthesis.

Texture synthesis by analysis usually characterizes a sam-
ple texture by a limited number of statistics. A new texture is
synthesized such that the statistics of the sample texture are
maintained. [HB95] proposed to analyze textures in terms of
histograms of filter responses at multiple scales and orienta-
tions. [PS00] were able to substantially improve synthesis
results for structured textures at the cost of a more compli-
cated optimization procedure. [DeB97] scrambles the input
in a coarse-to-fine fashion, preserving the conditional dis-
tribution of filter outputs over multiple scales. [NMMK05]
separates regular features with the aid of a fractional Fourier
analysis on a near regular texture, which are then tiled. Af-
terwards, irregular texture detail is added back in to the tiled
texture.

Pixel-based texture synthesis generates novel textures by
repeatedly selecting and copying a single pixel from the
sample texture, based on already synthesized pixels in the
novel texture. These algorithms are generally based on the
theory of Markov Random Fields, a two-dimensional exten-
sion to Markov Chains [PL98].

“Non-parametric sampling” [EL99] synthesizes a novel
texture by selecting pixels, with high conditional probabil-
ity, from a sample texture. The conditional probability be-
tween a pixel in the sample texture and a to-be-synthesized
pixel is defined by a Gaussian weighted normalized sum of
the squared differences of the pixel values in a small neigh-
borhood around each pixel.

Wei and Levoy [WL00] use a fixed causal neighborhood
size and interpret all possible neighborhoods in the input tex-
ture as a set of vectors which span a high dimensional search
space. Tree structured vector quantization (TSVQ) is used to
accelerate searching this space. Furthermore, the algorithm
is extended using a multi-resolution synthesis pyramid. Al-
though a number of newer pixel-based techniques have been
developed, this technique is still used extensively because of

its simplicity and robustness with respect to a wide range of
texture-types.

Ashikhmin [Ash01] modified the algorithm of [WL00] to
encourage verbatim copying of parts of the input sample.
Unlike [WL00] where for each pixel all causal neighbor-
hoods in the sample are compared, only four neighborhoods
per pixel are checked. These four neighborhoods are defined
by the corresponding causal neighborhoods in the sample
texture of the already synthesized neighboring pixels of the
to-be-synthesized pixel. Ashikhmin [Ash01] noted that his
algorithm works best on natural textures, such as textures of
flower fields, pebbles, forest undergrowth, bushes and tree
branches. However it is not suited for textures containing
structured features.

Hertzmann et al. [HJO∗01] introduced an algorithm that
handles both texture synthesis and texture transfer. The
works of [WL00] and [Ash01] are combined and extended
to work on corresponding pairs of images rather than on sin-
gle textures.

Zelinka and Garland [ZG02] accelerate texture synthesis
by using a jump map. Each pixel in the jump map contains a
list of pre-calculated references and probabilities for match-
ing pixels. A texture is synthesized in real-time by copying
a matching pixel, referred in the jump map, from the sample
texture.

Tong et al. [TZL∗02], presented k-coherence, a method
for synthesizing bidirectional texture functions. K-
coherence can also be used for normal texture synthesis and
is closely related to [Ash01] and the technique presented
in this paper. K-coherence stores for each pixel a set of
k nearest causal matches. Similar to Ashikhmin [Ash01],
the source pixels in the causal neighborhood are used to
define a candidate set from which the best matching pixel
is copied. Unlike Ashikhmin, who directly uses the the
causal neighborhoods around the source pixels, k-coherence
creates the candidate list from the k pre-computed best
matching neighborhoods for each source pixel.

Recently, Battiato et al. [BPR03] extended the texture
synthesis technique of [WL00] by using antipole clustering,
instead of TSVQ to speed up texture synthesis, yielding im-
proved synthesis results.

Patch-based texture synthesis. Efros and Freeman [EF01]
point out that pixel-based texture synthesis algorithms like
those of Efros and Leung [EL99], Wei and Levoy [WL00],
and Ashikhmin [Ash01], all perform excess computations
when dealing with structured textures. They propose to syn-
thesize a novel texture by copying whole patches from the
sample texture, as opposed to copying a single pixel in the
pixel-based techniques. Other early work on patch-based
texture synthesis was performed by [XGS00] (Chaos Mo-
saics), [PFH00] (Lapped Textures), [EF01] (Image Quilting)
and [LLX∗01].

Cohen et al. [CSHD03] propose to use Wang tiles for
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patch-based texture synthesis. Wang tiles can be used to gen-
erate non-repeating tilings of a limited number of tiles by as-
signing a color to each tile’s edge and matching only edges
with similar color. To extend Wang tiles for texture synthe-
sis, Cohen et al. assign a texture patch to each Wang tile,
making sure that tiles with common colors can be matched
without introducing artefacts in the synthesized texture. The
major advantage of this approach is that the tiled texture is
guaranteed non-repeating.

Kwatra et al. [KSE∗03] copy irregularly shaped patches
from a sample image to generate a new texture. The pro-
cess of copying patches is performed in two stages. First,
the best candidate rectangular patch is selected by compar-
ing the pixels in a candidate patch with already synthesized
pixels. Second, an optimal portion of the rectangular patch,
determined using a graph cut algorithm, is copied to the
synthesized texture. The textures synthesized with this tech-
nique are of a very good visual quality.

Nealen and Alexa [NA03], presented a hybrid patch-based
texture synthesis technique which tries to use as large as
possible patches by adaptively splitting them. To stitch the
patches of different sizes together, a pixel-based method is
used. In [NA04], this method is extended and speeded-up
by replacing the pixel-based synthesis technique by a k-
coherence [TZL∗02] based technique.

Liu et al. [LLH04] treat a near regular texture as a statis-
tical distortion of a regular tiling, possibly with individual
variations in tile shape, size, color and lighting. Textures are
synthesized by tiling the regularized texture, and applying
the statistical distortions afterwards to the synthesized tex-
ture. The results of this technique are very good compared
to other patch-based techniques.

3. Motivation

Although the observations made by Efros and Free-
man [EF01] are still valid, pixel-based texture synthesis
techniques are still widely used; for example for directly
synthesizing on a 3D surface [Tur01] and for image comple-
tion [DCOY03]. The main reason for this is the ease of use
and ease of implementation and its strengths in synthesizing
stochastic textures.

Our method is also a pixel-based texture synthesis tech-
nique, designed with the following goals in mind:

• Simplicity: Pixel-based methods are popular because they
are straightforward to implement and easy to use.

• Wide range of texture-types: A disadvantage of pixel-
based texture synthesis methods is that they are not really
good in synthesizing textures from structured sample tex-
tures. Our method is able to handle these kinds of textures
better.

• Visually pleasing results: We are not interested in gener-
ating a texture with the lowest mathematical error, but in

Figure 2: An L-shaped causal neighborhood of size 7
(width) around a pixel marked in red. The pixels marked in
blue are the four direct neighbors.

synthesizing visually pleasing textures. We will therefore
relax some constraints in current pixel-based systems to
achieve better visual results.

• Fast: Pixel-based texture synthesis methods usually trade-
off speed to synthesis quality. Our technique is both fast
and able to generate high quality results.

As in many pixel-based texture synthesis techniques, we
also assume a Markov random field model. A texture is mod-
eled as a local and stationary random process: each pixel is
classified by a vector representing a small set of neighbor-
ing pixels (local causality). This classification is similar for
all pixels (stationary). The local causality principle allows
us to construct a search space in which we would like to find
the best matching vector representing a given pixel’s neigh-
borhood. The stationary principle indicates that the search
space is the same for all pixels. The dimensionality of the
search space equals the required number of pixels required
in a neighborhood to make a faithful classification. Usually,
a large neighborhood is required, and thus resides the search
space in a high dimensional space.

Assume we have a sequential (e.g. scanline order) synthe-
sis algorithm and assume that the already synthesized pixels
are chosen optimally and that we use an L-shaped causal
neighborhood to classify each pixel. When synthesizing a
new pixel, the only possibility to introduce a high frequency
discontinuity is in the transition between a direct neighbor
and the to-be-synthesized pixel. In order to avoid these er-
rors completely, the direct neighbors in the causal neighbor-
hood in the sample texture should exactly match the corre-
sponding pixel values of the direct neighbors around the to-
be-synthesized pixel. An example of a causal neighborhood
and its direct neighbors is depicted in figure 2. The proba-
bility of finding such a causal neighborhood in the sample
texture is very small. We relax this constraint by requiring
at least one (instead of all) of the direct neighbors to match
exactly. This ensures that for at least one direction no high
frequency discontinuities can occur. The causal neighbor-
hoods in the sample texture that have at least one matching
direct neighbor define a reduced search space. In effect, we
are reducing the search space by taking a slice through the
complete search space in which a single dimension is fixed.
This reduced search space is completely defined by the direct
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Synthesized texture
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Figure 3: The causal neighborhoods which need to be veri-
fied are uniquely determined by the pixels in the source tex-
ture which have the same color as the direct neighbors of the
current pixel.

neighbors of the current to-be-synthesized pixel and thus for
each pixel a different reduced search space is defined.

The reduced search space might not contain the optimal
neighborhood vector in an L2 sense, but we will show that
this results mainly in low frequency artefacts in the synthe-
sized textures. Since the human visual system is more sen-
sitive to high frequency discontinuities than low frequency
artefacts, this approach results in visual pleasing results.

In the remainder of this paper, we will discuss how such a
system can be efficiently implemented and a thorough anal-
ysis is conducted on the generated results.

4. Implementation

In the previous section we argued for reducing the search
space for each pixel depending on the pixel values in the di-
rect neighborhood. Instead of reducing the large stationary
search space for each pixel separately, we opt for construct-
ing the reduced search space on the fly. Each reduced search
space can be seen as the union of the search spaces associ-
ated with a single direct neighboring pixel value. The search
space associated with a single direct neighboring pixel are

the causal neighborhoods which have the same pixel value
at an identical position in the full search space. Thus if we
know which pixel positions in the sample texture have the
same color, then we also know the causal neighborhoods
which share this color at a specific position. This reduces
the construction of the search space to a simple search space
look-up, in which the pixel value of the direct neighbor is
the look-up key. This is illustrated in figure 3.

We opt for using a kd-tree as a data-structure to accelerate
this look-up. This kd-tree is a 3-dimensional tree, in which
each node corresponds to a unique color, represented by an
RGB triplet, in the sample texture. Thus, the 3 dimensions
of the kd-tree correspond to the red, green and blue channels
in the RGB color-space. Associated with each node is a list
of pixel positions in the sample texture containing this color.
Figure 4 shows a schematic overview of the kd-tree.

The presented texture synthesis method consists of three
steps: texture analysis (kd-tree construction), texture synthe-
sis and synthesis initialization.

4.1. Texture Analysis

During the analysis step, a kd-tree is constructed. Each pixel
in the sample texture is added to the kd-tree. If the pixel
value (RGB) is already in the kd-tree, then the pixel’s loca-
tion is added to the associated list of pixel positions. If the
kd-tree does not contain the pixel value, then a new node is
created and a list of pixel positions is associated. This list is
initialized to contain only the current pixel position. Because
pixels on the edge of the sample texture have an incomplete
causal neighborhood, only the pixels which are above a pre-
determined distance from the edge are considered for inclu-
sion in the kd-tree.

Source texture

Kd-tree

Kd-tree node

Key R G B

Figure 4: A schematic depiction of the kd-tree used in our
method. Each node of the kd-tree represents a unique color
in the source texture. Associated with each node in the kd-
tree is a list of pixel positions in the source texture of occur-
rences of the color of this node.
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Figure 5: When advancing to the next pixel, half of the as-
sociated lists of pixel positions can be reused. The lists as-
sociated with the blue marked pixels can be reused. The lists
associated with the red marked pixels are discarded, while
the green mark pixels have to be queried in the kd-tree.

4.2. Texture Synthesis

Texture synthesis is performed in scanline order. For each to-
be synthesized pixel, a reduced search space is constructed in
the following manner: For each direct neighbor, a list of sam-
ple texture pixel positions is retrieved from the kd-tree using
the direct neighbor’s pixel value. Each position in the re-
trieved list is adjusted (depending on which direct neighbor
was used as key on the kd-tree query) such that the resulting
positions now represent the center positions of causal neigh-
borhoods in the sample texture. The union of the four lists is
a representation of the reduced search space. Next, for each
causal neighborhood in the search space, the L2-difference
is computed with the corresponding causal neighborhood
around the current to-be-synthesized pixel. The center pixel
of the best matching (smallest L2-error) causal neighborhood
is copied into the current to-be-synthesized pixel.

As in most previous pixel-based texture synthesis algo-
rithms, it is very important to select a “good” causal neigh-
borhood size. There is a direct correlation between the fea-
ture size in the sample texture and the minimum size of the
causal neighborhood. However, a too large causal neighbor-
hood size will result in excess computations and unnecessary
prolonged synthesis timings.

4.3. Synthesis Initialization

The texture synthesis process relies on previously synthe-
sized pixels in order to select a good pixel value for the cur-
rent pixel. When starting to synthesize a texture, no previ-
ously synthesized pixels are available. In order to bootstrap
the synthesis process an initialization is required.

Depending on the texture type, two different texture ini-
tialization techniques are utilized. In both cases, the upper-
band of the texture is filled. The height of this band depends
on the height of the causal neighborhood. In case the sam-
ple texture is stochastic in nature, the band is filled with
randomly selected pixel values from the sample texture. In

case the sample texture is near regular, a structured upper-
band is required. However, randomly copying pixel values
destroys the near-regular structure. Therefore, we synthesize
the upper-band in the following manner: We first rotate the
upper-band and the sample texture. Next a random block is
copied from the rotated sample texture to cover the top of
this rotated band. Because the width of the rotated texture is
limited and smaller than the sample texture, a large enough
block can be copied to the top to ensure a completely filled
“upper-band” in the rotated upper-band. Finally the band is
completed using the texture synthesis technique described in
the previous section. After synthesis, the band is rotated back
and copied into the target texture. By working in a rotated
texture, we ensure that as much as possible of the causal
neighborhood overlaps with already synthesized pixels.

4.4. Optimizations

A number of general optimizations are possible:

• Minimize kd-tree look-ups. Traversing the kd-tree can
be a costly operation, especially when the kd-tree is large,
and the associated lists of sample texture positions are
short. It is obvious that a number of the kd-tree look-ups
of previously synthesized pixels can be reused, reducing
the number of kd-tree queries by 50% (see figure 5).

• Avoid checking causal neighborhoods twice. The in-
tersection of partial search spaces defined by the direct
neighboring pixels is not necessary empty. In order to
avoid checking causal neighborhoods multiple times for a
single pixel, already checked neighborhoods are marked,
and subsequently ignored for the remainder of the synthe-
sis of the current pixel.

• Minimize associated list lengths. For near regular tex-
tures there is a large probability that multiple sample tex-
ture positions define a similar causal neighborhood. Since
the causal neighborhoods associated to each sample pixel
value are known on beforehand, it is very easy and fast
to group similar causal neighborhoods into a single list-
entry.

5. Results and Discussions

Figure 6 shows textures synthesized using our technique.
The generated results cover a wide range of texture types,
ranging from stochastic to near regular textures. As illus-
trated, our method is able to synthesize visually pleasing tex-
tures for different kinds of texture types.

Table 1 summarizes the computational costs for generat-
ing the results shown in figure 6, together with various statis-
tics such as sample texture size, number of distinct colors
in the sample texture, the size of the causal neighborhood
and the average number of tested causal neighborhoods per
pixel. The timings are further split up in the time required for
constructing the kd-tree, time required for the actual synthe-
sis and the speed-up with respect to a brute force synthe-
sis technique [WL00]. All examples were computed on an
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(a)

(f)

(b) (c) (d)

(e) (g) (h)

Figure 6: Examples generated with our technique. The source texture is shown for each example in the top-left corner. Synthesis
statistics can be found in table 1.

Text- Source Colors Causal Avg. Tested Analysis Initialization Synthesis Total Brute Force Speed-up

b
c
d
e
f
g
h

ure

a 192 × 192
199 × 199
150 × 150
100 × 100
100 × 100
246 × 246
192 × 192
100 × 100

Size

4201
6933
36772
28778

12895
11718
17607

in Source

234

69

33

5
7
7
19
11

Neighb. Size

33

Neighb./Pixel

188.63

7.58
15.40
3.69

5.35
5.40
3.15

17.10

0.31

0.07
0.11
0.94
0.60

Timings

0.24

0.29

0.01

0.30
0.10

0.54

Timings

1.79
0.75

0.14
1.01

3.30 121.94

24.97
13.85
2.84
2.88
2.94
4.85
2.90

Timings

125.25

27.00
14.91
3.43
3.05

6.80
4.04

Timings

3.19

1837.42

2754.00
9360.00
536.52
351.18
351.85
7080.00
2125.72

Timings

627.77
156.42
115.14
110.30
1041.18
526.11
14.67

102.00

Table 1: Synthesis statistics for the textures in figure 6. All texture are generated at a resolution of 400× 400 and all tim-
ings are provided in seconds. For each texture the source texture size, number of colors in the source sample and the causal
neighborhood size used during synthesis are provided. The timings are split into three parts: time required for constructing the
kd-tree (Analysis Timings), time required to synthesize the upper-band (Initialization Timings) and the time require to synthesize
a 400× 400 texture. The total time is also given. For comparison we also provide the time required for synthesizing the same
texture (identical resolution, source texture and causal neighborhood size) using a brute force approach [WL00]. The ratio
between the presented method and the brute force method are shown in the last column.

(Exact Match)
20% 40 % 60 % 80 % 100 %

(Exhaustive Search)
0%

Figure 7: A comparison of the synthesized results’ visual quality with respect to an increase in error tolerance on matching the
direct neighbors.
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Exact Match

Exact Match 50 % range

20 % range

Figure 8: Matching the direct neighbors exactly does not
always result in a search space rich enough to ensure satis-
fying synthesized textures. By allowing a small error toler-
ance when matching direct neighbors, better results can be
achieved.

AMD64 4000+ processor (2400Mhz). From this table we
can conclude the following: the speed-up achieved compared
to a brute force synthesis technique is on average 2 orders
of magnitude, especially when using source textures with
a large number of colors. The speed-up is less pronounced
when using textures with very few different colors (e.g. ex-
ample 6.h). This is caused by the fact that there are more pix-
els in the source texture than colors, and thus a single color
occurs multiple times at different positions. This results in
a large number of causal neighbors that need to be verified
each time a new pixel is synthesized.

In figure 8 some less successful results are shown. The
reduced search space is sometimes not diverse enough to en-
sure good synthesized results. In order to expand the search
space for these cases, we extend our algorithm. Until now
we constructed the search space by taking the union of the
search spaces defined by the direct neighboring pixels. This
implies that at least one of the direct neighbor’s pixel values
is exactly matched in each vector of the constructed search
space. It is possible to relax this constraint of having at least
one exact match by considering all partial search spaces for
which the key (color) lies within some predetermined range
or alternatively the n nearest colors to the exact key value.
The rational is that as long as the pixel values are perceptu-
ally close in appearance, high frequency discontinuities are
avoided. A disadvantage is that the search space increases in

size, and thus requires more time to be searched, resulting in
a slower synthesis (see figure 9). This extention can be eas-
ily incorporated in the original algorithm since we already
used a kd-tree, which is a suitable data structure for doing
range-queries on.

To show the effect of using a reduced search space, we
synthesized a texture with different error tolerances on the
key value ranging from 0% (exact match) upto 100% (ex-
haustive search). A selection of the generated textures can
be seen in figure 7. For this particular example it is clear
that the reduced search space (0% range) performs at least
as good as an exhaustive search. This shows that although
the diversity of the search space has been reduced, the re-
sults still look visually pleasing.

Finally, we investigated the effect of using a reduced
search space on the “randomness” of the generated textures
by creating false color images which encode where each
pixel in the generated texture originates from in the sam-
ple texture (figure 10). Examples 10.a and 10.b were gener-
ated from a stochastic sample texture. The false color images
clearly show that the generated textures consist of random ir-
regularly shaped blocks from the sample texture. Examples
10.c and 10.d are generated from near regular sample tex-
tures. As expected, the false color images show a regular pat-
tern. Note that in figure 10.c the same tile is repeated in the
synthesized texture. This is caused by the fact that the sam-
ple texture is an exact tiling of patterns. Since our method is
deterministic, it will always copy the same pixel when multi-
ple sample pixels have the same error. In figure 10.d another
regular structured texture is shown, but not an exact tiling,
resulting in some randomness in the color coding.

Some additional results can be found at the end of this pa-

0% 10% 20% 30% 80% 90%70%60%50%40%
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Figure 9: Increasing the error tolerance when matching the
direct neighbors, results in a richer search space. However,
this search space is much larger, and thus results in slower
synthesis timings. In this graph we plotted the increase in
time versus the error tolerance for the source texture shown
in the left-top when synthesizing a 400×400 texture.
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(a) (b)

(c) (d)

Figure 10: Some synthesized textures together with false color images which indicate from where each pixel in the synthesized
texture originates from in the source texture. The black region in each false color image indicates the part which was handled
by the initialization process (section 4.3).

per in figure 13. All of the results in this figure, have been
created by matching at least one of the direct neighbors di-
rectly. As discussed before, this can still lead to some discon-
tinuities in the synthesized texture (e.g. bolt image and win-
dow image in figure 13). Using a range search would solve
this problem at the cost of prolonged synthesis timings.

6. Comparison

The presented technique shares some resemblance
to [WL00], [Ash01], [ZG02] and [TZL∗02]. As in the
TSVQ technique of Wei and Levoy [WL00], our method
reduces the search space in order to speed-up the synthesis
process. However, with TSVQ a low dimensional approxi-
mation of the complete search space is constructed, whereas
our method uses highly detailed slices of the full search
space. This implies that the diversity of our search space is
less than the TSVQ search space, but has more detail. This
surplus in detail allows smoother transitions in the search
space from one point to another, resulting in more detailed
and visually pleasing results. Ashikhmin [Ash01] also uses
a reduced search space defined by the direct neighboring
pixels. However, the search space used by Ashikhmin is
much smaller (maximum 4 vectors), and is only able to
generate good results for natural textures. Our method
considers a larger search space and is able to handle a wider
range of texture types. The method of Ashikhmin [Ash01]
is further generalized in [TZL∗02]. Instead of using the
search space defined directly by the direct neighbors, an

extra level of indirection is added; the k most resembling
neighborhoods to the “forward shifted” direct neighbor’s
causal neighborhoods are used. K-coherence reduces the
search space to similar size as the presented method, but
due to the extra indirection, can introduce high frequency
discontinuities (i.e. there is no guarantee that the k best
matches of a forward shifted direct neighbor, have a low
error on direct neighbors). Finally, our methods bares
resemblance to the jump map technique of Zelinka and
Garland [ZG02]. Both methods reduce the run-time cost by
precomputing a (partial) search space. However, the jump
map works with precomputed probabilities and does not
take in account the current state of the synthesized texture,
whereas our method does.

A visual comparison between the reported results
of [WL00] and [Ash01] are shown in figure 11. Our method
clearly preserves the overall structure of the sample tex-
tures better and outperforms either in terms of synthesis
speed and visual quality. In figure 12 we compared our
pixel-based texture synthesis technique to the reported re-
sults of [LLX∗01], [KSE∗03] and [LLH04], which are all
patch-based texture synthesis techniques. As can be seen,
our method performs at least as good as the patch-based
techniques on structured textures. Note, that our technique
can also handle textures of a stochastic nature, whereas
patch-based techniques usually cannot.
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TSVQ Ashikmin OurWei and LevoySource
Texture [WL00] [WL00] [Ash01] Method

Figure 11: A comparison between the reported results of [WL00] and [Ash01] and the presented technique.

Source
Texture

Our
Method

Patch-based
[LLX∗01]

Graph-cut
[KSE∗03]

Near Regular Texture
Synthesis [LLH04]

Figure 12: A comparison of our pixel-based technique with the reported results of some patch-based techniques.
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7. Conclusion and Future Work

We presented a pixel-based texture synthesis algorithm
which is able to create high quality textures very fast. The
key to our method is that at least one of the direct neighbor-
ing pixels is forced to match within a controlled error toler-
ance. By forcing such a match a large number of undesirable
matches (i.e. neighborhoods with a low L2-error contribution
on distant pixels and a high L2-error contribution on nearby
pixels) are removed from the search space, avoiding unde-
sirable matches which can lead to cuts and discontinuities in
the synthesized texture.

Since a large number of causal neighborhoods are a-priori
ignored, a synthesis speed-up is achieved. If we have N pix-
els and C different colors in the sample texture, then the re-
duced search space size is on average 4N/C large. Thus, if C
is large, then the average size of the reduced search space is
small and thus very few causal neighborhoods need to be
compared. As a result, a good matching neighborhood is
found almost immediately. Even if the number of different
colors is low (e.g. 100) then our method is still significantly
faster than an exhaustive search.

For future work we would like to further improve the re-
sult and synthesis speed by exploiting the fact that large ir-
regular blocks are copied. Unlike patch-based techniques,
we would like to impose no restrictions on the shape of these
blocks. Currently, our system requires two user determined
parameters: the causal neighborhood size and the maximum
error range tolerated when doing a nearest neighbor query
in the kd-tree. Ideally, we would like the system to propose
a “good” initial guess, which the user can refine if desired.
Finally, we’d like to incorporate multi-resolution synthesis.
Initial experiments yield encouraging results.
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Neighborhood size: 11 Neighborhood size: 23 Neighborhood size: 9 Neighborhood size: 9
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Neighborhood size: 29Neighborhood size: 19Neighborhood size: 45Neighborhood size: 33

Neighborhood size: 63

Neighborhood size: 57 Neighborhood size: 39 Neighborhood size: 37 Neighborhood size: 37

Figure 13: Some more results generated with the presented method.
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