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Figure 1: SVBRDF diffusion estimates visualized with integrated normal maps and global illumination for four different

spatially varying materials captured by: a colocated flash photograph (1st and 2nd), a photograph captured under uncontrolled

natural lighting (3rd), and a flash/no-flash image pair (4th).

ABSTRACT

We formulate SVBRDF estimation from photographs as a diffusion

task. To model the distribution of spatially varying materials, we

first train a novel unconditional SVBRDF diffusion backbone model

on a large set of 312,165 synthetic spatially varying material exem-

plars. This SVBRDF diffusion backbone model, named MatFusion,

can then serve as a basis for refining a conditional diffusion model

to estimate the material properties from a photograph under con-

trolled or uncontrolled lighting. Our backbone MatFusion model is

trained using only a loss on the reflectance properties, and therefore

refinement can be paired with more expensive rendering methods

without the need for backpropagation during training. Because

the conditional SVBRDF diffusion models are generative, we can

synthesize multiple SVBRDF estimates from the same input photo-

graph from which the user can select the one that best matches the

users’ expectation. We demonstrate the flexibility of our method by

refining different SVBRDF diffusion models conditioned on differ-

ent types of incident lighting, and show that for a single photograph

under colocated flash lighting our method achieves equal or better

accuracy than existing SVBRDF estimation methods.
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1 INTRODUCTION

Reproducing the visual appearance of real-world spatially varying

materials is a challenging research problem that requires balancing

multiple competing goals such as ease of capture, robustness, accu-

racy of the reproduction, and suitability for post-production editing.

The most promising recent solutions leverage machine learning to

produce Spatially Varying Bidirectional Reflectance Distribution

Function (SVBRDF) parameter maps that correspond to one or more

photographs of the target material. These methods are convenient

and can produce plausible SVBRDFs. However, SVBRDF modeling

is inherently ambiguous as multiple parameter combinations can

explain the (underconstrained) appearance observations of the ma-

terial, and there is no recourse when the inferred property maps fail

to reproduce plausible material properties; there are typically no

additional hyper-parameters that can be tuned to produce alterna-

tive solutions. Furthermore, these machine learning based methods

are trained for a specific type of incident lighting, and modifying

the input lighting often requires a lengthy retraining step and an

appropriate corresponding loss.

Inspired by recent successes in using diffusion models [Karras

et al. 2022; Rombach et al. 2022; Song et al. 2021b] for image syn-

thesis tasks such as image restoration [Dhariwal and Nichol 2021;

Ho et al. 2020, 2022], super-resolution [Kadkhodaie and Simoncelli

2021; Saharia et al. 2023], and image-to-image translation [Saharia
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et al. 2022; Sasaki et al. 2021] we formulate SVBRDF estimation as a

diffusion task. Existing diffusion based image processing methods

rely on pre-trained large scale image diffusion models to sample

the distribution of natural images. However, the distribution of

SVBRDFs differs significantly from natural images. We therefore in-

troduce a novel generative diffusion model geared towards spatially

varying materials. We introduce an unconditional backbone diffu-

sion model, named MatFusion, that synthesizes SVBRDF parameter

maps (i.e., diffuse and specular albedo, specular roughness, and nor-

mals). We leverage ConvNeXt blocks [Liu et al. 2022] instead of the

typical Residual blocks [He et al. 2016] commonly used in diffusion

models to increase the number of activations without increasing

the parameter count to better model the 10 SVBRDF channels (ver-

sus 3 for images). Furthermore, training diffusion models typically

requires a significantly larger training set than conventional convo-

lutional neural networks. To support training an SVBRDF diffusion

model, we supplement the INRIA synthetic SVBRDF dataset [De-

schaintre et al. 2018] with a new training set constructed from 1,877

synthetic SVBRDFs, that after augmentation with a novel mixing

strategy, together with the INRIA dataset, grows to 312,165 unique

training exemplars. Building on the MatFusion backbone, we also

introduce three conditional refinements that differ in their input: the

classic colocated camera-flash image, a photograph under uncon-

trolled natural lighting, and a flash/no-flash image pair (Figure 1).

By changing the seed, all three models can produce a variety of

candidate SVBRDF replicates, from which the SVBRDF that best

matches the user’s expectation can be selected. Our backbone diffu-

sion network is trained using only SVBRDF parameter losses (i.e.,

without a rendering loss), and thus no backpropagation through a

differentiable renderer is needed. This allows us to train the con-

ditional diffusion network on input images that contain a more

complete characterization of the surface reflectance by integrating

the normal maps and accounting for indirect lighting within the ma-

terial. While such indirect lighting does not contribute significantly

for backscatter surface reflectance, it does impact the visual appear-

ance significantly for more complex lighting conditions (such as

natural lighting).

We demonstrate the efficacy of finetuning the MatFusion back-

bone and show that the conditional diffusion networks produce

plausible SVBRDFs, and in case of colocated flash lighting, with

equal or better quality than existing methods.

In summary, our contributions are:

(1) MatFusion: a backbone k-diffusion model that generates 10

channels of reflectance properties;

(2) three conditional SVBRDF diffusion models refined from

the MatFusion backbone using a novel direct conditioning

strategy; and

(3) a training set of 312,165 unique synthetic SVBRDFs.

2 RELATEDWORK

We focus the discussion of related work on learning-based genera-

tive and inference methods for modeling SVBRDFs.

Direct Inference Methods. Estimating spatially varying material

parameters from a single photograph is a difficult problem. Leverag-

ing advances in neural networks, Li et al. [2017] and Ye et al. [2018]

demonstrate plausible SVBRDF capture from a single photograph

under unknown natural lighting, albeit restricted to a predeter-

mined class of materials (e.g., metals, plastics, etc.) Deschainte et

al. [2018] introduced the de-facto standard training set of approxi-

mately 200,000 synthesized SVBRDFs to train an inference network,

using a novel render loss, that estimates the SVBRDF property maps

from a single photograph lit by a colocated flash light. Subsequent

work further improved the inference accuracy by exploring novel

architectures and loss functions [Guo et al. 2021; Li et al. 2018; Sang

and Chandraker 2020; Vecchio et al. 2021; Zhou and Kalantari 2021]

or supporting multiple input photographs [Deschaintre et al. 2019;

Ye et al. 2021]. Martin et al. [2022] capture SVBRDFs, albeit without

specular albedo, from outdoor photographs that include ambient

occlusion effects. All of the above methods are trained for a specific

input lighting condition; it is unclear to what degree the architec-

ture and loss are tuned to the expected lighting, and significantly

changing the lighting condition during capture would require re-

training the network from scratch. In contrast, our method builds

on an unconditional SVBRDF diffusion backbone, trained indepen-

dently from the incident lighting, which can serve as a basis for

conditional finetuning. Furthermore, all the above methods produce

a single result per photograph, and offer no strategies for producing

alternative estimates that can better explain the appearance.

Iterative Inference Methods. In contrast to direct inference meth-

ods that directly produce the target material property maps, itera-

tive inference methods perform an online optimization to minimize

a rendering loss with respect to the captured photograph. Gao et

al. [2019] and Guo et al. [2020b] perform the optimization in a

learned space modeled by an auto-encoder and a GAN respectively.

In both cases, the lighting condition is only considered during the

online optimization process, and the space of SVBRDFs is lighting

agnostic. Hence, these methods could in theory be applied to dif-

ferent lighting conditions. However, neither method provides an

interface for directing the optimization process to different plau-

sible SVBRDFs. Furthermore, both methods tend to suffer from

over-fitting, resulting in burned-in highlights in the diffuse albedo

maps. Zhou and Kalantari [2022] and Fischer and Ritschel [2022]

combat overfitting by combing direct inference and optimization-

based methods using meta-learning. While this greatly improves

the quality, the resulting trained networks are lighting specific. Our

method is also iterative, but unlike the above methods, we do not

minimize a render loss function, but instead solve a denoising dif-

ferential equation. Unlike prior iterative methods, our method can

produce different replicate SVBRDFs by changing the input seed.

Generative Methods. Aittala et al. [2016] extend parametric tex-

ture synthesis to replicate the spatially varying appearance of a

mostly stationary material from a single flash lit photograph of

an exemplar material. Similarly, Wen et al. [2022] train a GAN to

model the appearance from a photograph of a stationary mate-

rial. Henzler et al. [2021] employ a convolutional neural network,

conditioned on a latent code from a learned space, to convert a

random noise field into a random non-repeating field of BRDFs

that match the appearance of a flash-lit photograph of a station-

ary material. Inspired by MaterialGAN [Guo et al. 2020b], Zhou et

al. [2022] and Hu et al. [2022a] introduce tileable material GANs

that allow for spatial control through an additional guidance im-

age. While these networks can produce some stochastic variations
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around the expected value, they do not effectively sample the dis-

tribution conditioned on the input image. In contrast our method

samples the conditional SVBRDF distribution that better adheres to

the input material’s appearance. An alternative strategy to directly

synthesizing the SVBRDF property maps, is to generate a proce-

dural model [Guerrero et al. 2022; Hu et al. 2022b; Shi et al. 2020].

The parameters of such procedural models can be matched to the

appearance of an exemplar in a photograph [Guo et al. 2020a]. How-

ever, current procedural methods are limited to specific material

classes.

3 SVBRDF DIFFUSION MODEL

Preliminaries. We model the appearance of a planar spatially

varying material by an SVBRDF, where each surface point’s re-

flectance is modeled by a microfacet BRDF with a GGX distribu-

tion [Walter et al. 2007] parameterized by its diffuse albedo, specular

albedo, and monochrome specular roughness. In addition, wemodel

the local surface variations by a normal map.

MatFusion. We first model the distribution of SVBRDFs using

an unconditional diffusion model, named MatFusion, that we will

subsequently refine based on the capture conditions. The basic

observation of diffusion modeling is that adding noise to a signal

(e.g., image) is a destructive process, and hence the process of re-

moving noise must therefore be generative. In the limit, an entirely

synthetic signal can be generated by starting from pure random

Gaussian noise, and iteratively denoising the signal [Ho et al. 2020].

Formally, the goal of a generative model is to sample a random vari-

able according to a target data distribution 𝑥0 ∼ 𝑝
data

. In a diffusion

model, we consider a sequence of related random variables 𝑥1,2,...,𝑇

where each subsequent variable is increasingly more noisy until 𝑥𝑇
is indistinguishable from pure Gaussian noise:

𝑝 (𝑥𝑡 |𝑥0) = N
(
𝑥0, 𝜎

2

𝑡

)
, (1)

with 𝜎𝑡 > 𝜎𝑡−1. The diffusion process itself repeatedly samples

𝑝 (𝑥𝑡−1 |𝑥𝑡 ) starting with 𝑡 = 𝑇 and ending when 𝑡 = 0 [Ho et al.

2020; Song et al. 2021a]. This differs from a traditional generator

(e.g., GAN) that samples 𝑥0 directly. Song et al. [2021b] formulate

diffusion as a differential equation that maintains the distribution

𝑝 as 𝑥 evolves over time. The change in 𝑥 with time 𝑡 is then1:

d𝑥 = −¤𝜎 (𝑡)𝜎 (𝑡)∇𝑥 log𝑝 (𝑥 ;𝜎 (𝑡))d𝑡, (2)

where ¤𝜎 (𝑡) denotes the time-derivative of 𝜎 (𝑡). ∇𝑥 log𝑝 (𝑥 ;𝜎 (𝑡)) is
also called the score function: a vector that points towards the high-

est density of probable signals. The differential denoising equation

can then be solved by taking discrete time-steps to evolve the solu-

tion (e.g., using an Euler method) using Equation (2). To compute

the score function, we define a neural denoising network 𝐷𝜃 (𝑥𝑡 ; 𝑡)
that minimizes the expected error on samples drawn from 𝑝

data

for every 𝜎𝑡 . To avoid that the inputs of 𝐷𝜃 grow with increasing

𝜎𝑡 , it is standard practice to normalize the estimate 𝑥𝑡 by

√︃
1 + 𝜎2

𝑡 .

Denoting the normalization factor of 𝑥𝑡 as 𝑎, abstracts the network

input 𝑦 as 𝑎𝑥 + 𝑏𝑛 s.t. 𝑎2 + 𝑏2 = 1, where 𝑛 is Gaussian distributed

noise
2
. Karras et al. [2022] introduced a robust diffusion variant,

1
We assume no time-dependent signal scaling, i.e., s(t) = 1.

2𝑎 and 𝑏 in this case correspond to

√
𝛼 and

√
1 − 𝛼 in [Ho et al. 2020].

Figure 2: Summary of the MatFusion architecture.

named k-diffusion, that instead of estimating the noise as in prior

diffusion models, estimates the “velocity” 𝑎𝑛−𝑏𝑥 (note the swapped

position of 𝑛 and 𝑥 and change of sign for the second term) such

that the denoising network 𝐷𝜃 minimizes the loss function:

E𝑥∼𝑝data E𝑛∼N(0,1) ∥𝐷𝜃 (𝑦; 𝑡) − (𝑎𝑛 − 𝑏𝑥)∥2

2
, (3)

This allows us to estimate both the expectation of noise and signal

with equal ease by leveraging that 𝑎2 + 𝑏2 = 1:

E𝑛 ≈ 𝑏𝑦 + 𝑎𝐷𝜃 (𝑦; 𝑡), (4)

E𝑥 ≈ 𝑎𝑦 − 𝑏𝐷𝜃 (𝑦; 𝑡) . (5)

Note that depending on 𝑎 (which depends on 𝜎 (𝑡)), the output of
the neural network 𝐷𝜃 varies from an estimate of the signal 𝑥 to

and estimate of the noise 𝑛 when 𝑡 → 0.

Architecture. In this paper we follow the normalization and

sampling schedule (i.e., 𝜎 (𝑡)) from [Ho et al. 2020], but use the

k-diffusion loss function for 𝐷𝜃 . Our architecture for 𝐷𝜃 is inspired

by Dhariwal et al. [2021]’s ImageNet-256 U-net architecture with 6

resolutions for the encoder and decoder (Figure 2). To accommodate

for the larger number of channels (10 for SVBRDFs vs. 3 for images),

we employ a 3 × 3 × 10 × 128 convolution kernel to transform the

10 input channels into 128 features. We replace the Residual con-

volution blocks with ConvNeXt blocks [Liu et al. 2022] to increase

the number of activations for the same number of parameters; we

argue that the higher channel count benefits from more activations.

We follow DDIM [Song et al. 2021a] and encode 𝑡 as a 512-length

feature (using Fourier embedding and a 2-layer MLP) and pass it to

each ConvNeXt block as a dense residual layer between the 7 × 7

convolution and the first depth-wise convolution. Similar to DDIM,

all layers use a group norm with 32 groups, and the 32 and 16

resolution layers include self-attention blocks (with 8 heads) after

each ConvNeXt block, as well as an additional attention-layer at

the bottleneck. We follow the method of Rabe et al. [2021] to reduce

the memory overhead of the attention layers during training.

Conditional SVBRDF Diffusion Model. In order to recover a plau-

sible SVBRDF from a photograph, we need to make the SVBRDF

diffusion backbone network conditional on the photograph. One

possible strategy to condition the neural network 𝐷𝜃 on additional

input images is by concatenating them to the input noise [Saharia

et al. 2022; von Platen et al. 2022]. However, this would require

retraining the diffusion network from scratch which is very costly.

Vonyov et al. [2022] perform sketch-guided text-to-image diffu-

sion by backpropagating the loss over the condition and an inverse
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Input First Step E𝑥 Full Diffusion

Figure 3: For the first diffusion step, the denoising neural net-

work 𝐷𝜃 fully relies on the input photograph (left) and acts

as a direct inference network (middle). However, in contrast

to direct inference, a diffusion model iteratively improves

the estimate (right) by reducing burn-in, adding detail in the

normal map, and improving diffuse-specular separation.

mapping from the diffusion output to the condition. In the context

of SVBRDFs, this would be akin to driving the diffusion process

by the render error, risking burn-in artifacts. Recently, Zhang and

Agrawala [2023] showed that an existing unconditional diffusion

model can be conditioned by adding zero-initialized dense layers to

each skip connection, and providing them the outputs of a parallel

control network trained on the conditional task.

Inspired by Zhang and Agrawala [2023], we expand the input
head with 𝑘 additional features with both weights and bias ini-

tialized with zeros (i.e., yielding an initial convolution kernel of

3 × 3 × (10 + 𝑘) × 128, and where 𝑘 = 3𝑁 , and 𝑁 is the number

of condition input photographs). Next, we finetune the backbone
model for the target type of input photographs (unlike direct con-

catenation which requires retraining from scratch). Compared to

ControlNet, our approach is easier to implement and incurs less

overhead as we do not need an additional control network (we

only expand the input head) at the cost of “polluting” the original

diffusion network.

Relation to Direct Inference. When the k-diffusion model is condi-

tioned on a photograph 𝑐 of the target material, the model subsumes

direct inference methods. At 𝑡 = 𝑇 , the signal 𝑦 = 𝑎𝑥 + 𝑏𝑛 is purely

Gaussian noise (i.e., 𝑎 ∼ 0), and hence 𝐷𝜃 (𝑦 |𝑐; 𝑡) mostly relies on

the condition 𝑐 to estimate the velocity (i.e., 𝑎𝑛 − 𝑏𝑥 ∼ 𝑥). For all

practical purposes, we can ignore the noisy input at 𝑡 = 𝑇 , and thus

the expectation E𝑥 computed from the estimate of 𝐷𝜃 (Equation (5))

closely mimics the behavior of a direct inference method. How-

ever, unlike direct inference methods, diffusion only takes a small

step towards the estimate and continues to improve the result in

subsequent steps. Figure 3 demonstrates that the expectation from

the first diffusion step is similar to the result of a direct inference

method; note all SVBRDF property maps shown in this paper are

ordered as: diffuse albedo, specular albedo, roughness, normal map.

This initial estimate often exhibits burn-in, bended normals and

missing details, and imprecise diffuse-specular separation, which

are reduced in subsequent diffusion steps.

4 TRAINING DATA

The MatFusion backbone model has 256M parameters, hence, train-

ing such a model requires a large and diverse training set. Deschain-

tre et al. [2018] augment 150 synthetic SVBRDFs to 199,068 training

exemplars by randomly perturbing parameters, scaling/rotating the

exemplars, and taking convex combinations. However, since the

dataset is augmented from only 150 SVBRDFs, the texture diversity

is limited and insufficient to train our MatFusion backbone model.

To mitigate this issue, we collected and augment 307 additional syn-

thetic SVBRDFs from https://polyhaven.com and 1,570 additional

synthetic SVBRDFs from https://ambientcg.com.

The 307 SVBRDFs from Polyhaven are CC0 licensed and each con-

tains a unique diffuse albedo map, normal map and roughness map

at 2𝑘 resolution. Polyhaven’s SVBRDFs do not come with a spec-

ular albedo. We therefore assign a homogeneous specular albedo

uniformly sampled in [0.04, 0.08]. The 1,570 SVBRDFs from Ambi-

entCG are also CC0 licensed, and all contain unique albedo, specular

roughness, and normal maps at 2𝑘 resolution. 274 SVBRDFs also

contain a metalness map. A homogeneous specular albedo is as-

signed (uniform random in [0.04, 0.08]) plus albedo times metalness

(if available). The diffuse albedo is set to the albedo (scaled by one

minus metalness if available).

For each of the 1,877 SVBRDF maps we randomly crop 16 square

areas, each from from a random position, rotation, and size (be-

tween 512 and 1,400 pixels fully contained within the original maps).

Each cropped map was bilinearly resized to 512 × 512 resolution,

yielding a total of 30,032 basis SVBRDFs. To further diversify the

roughness maps, we randomly select 6,000 basis SVBRDFs, and

blend their roughness maps with procedurally generated maps. We

employ a randomly initialized dense neural network that trans-

forms each pixels’ (diffuse + specular) albedo and height (obtained

by integrating the normal map [Quéau et al. 2018]) to a procedural

roughness value; see the supplemental material for more details.

Note, the randomly initialized network is not optimized and it

serves as a random non-linear transformation of albedo and height

to roughness.

To better mimic that real-world materials are often formed by

piece-wise constant combinations of different basis materials (e.g.,

metal and rust), we create 83,065 additional piece-wise constant

mixtures from both the 199,068 INRIA SVBRDFs and the 30,032

basis SVBRDFs. For 66% we mix two randomly selected SVBRDFs

without replacement (i.e., each SVBRDF is only used in one mixture

material), and three SVBRDFs for the remaining 34%. We use a

randomly initialized dense neural network (detailed in the supple-

mental material) that transforms each pixels’ (diffuse + specular)

albedo and height into a one-hot selection weight (for each of the

two/three source SVBRDFs). Similar as for the roughness generator,

the randomly initialized network is not optimized and it serves

as a random non-linear transformation and thresholding step. To

avoid unnatural hard edges, we perform the mixing on 2× bilinearly

upsampled randomly selected 288 × 288 crops from the INRIA or

basis SVBRDFs, and after mixing, (average) downsample again to

288 × 288 resolution.

Combining the INRIA training set (199,068 at 288 × 288 resolu-

tion), our basis SVBRDF set (30,032 at 512× 512 resolution), and the

mixture set (83,065 at 288 × 288 resolution) yields our final training

https://polyhaven.com
https://ambientcg.com
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Flash w/o GI Flash w/ GI Natural w/o GI Natural w/ GI

Figure 4: Global illumination transport within the spatially

varying material is negligible for a colocated camera-light

setup. However, under natural lighting, the effects are signif-

icant (i.e., self-shadowing and ambient occlusion).

set with 312,165 training exemplars. In addition, we created a test

set of 50 materials that consists of a selection of 31 diverse mate-

rials from the Deep Inverse Rendering [Gao et al. 2019] test set, 6

materials from the look-ahead meta-learning [Zhou and Kalantari

2022] test set, 11 from Polyhaven, and 2 from AmbientCG. None of

the test materials are included in the training set.

5 RESULTS

Implementation. We implemented MatFusion in FLAX [Heek

et al. 2023] and train it for 50 epochs using the full 312,165 SVBRDF

training set (cropped to 256 × 256 resolution) using the AdamW

optimizer [Loshchilov and Hutter 2019] with a batch size of 32, a

learning rate of 2 × 10
−5

(with a 100,000 iteration warmup), and

EMA weights [Song and Ermon 2020] on 4 Nvidia A40 GPUs with

48GB of memory. Training took approximately 255 hours.

We train three conditional variants of MatFusion. All three are

finetuned for 19 epochs on MatFusion using the full SVBRDF train-

ing set using the same optimizer and hyperparameters. Training

took approximately 102 hours on 4 Nvidia A40 GPUs, or 2.5× faster

than training MatFusion from scratch. The three variants differ in

the expected lighting in the input condition photograph: colocated

flash lighting, flash/no-flash, and natural lighting. The Colo-

cated variant is trained on synthetic photographs rendered with di-

rect illumination only, as indirect lighting is negligible for backscat-

ter reflectance. However, indirect lighting significantly affects the

appearance of spatially varying materials (Figure 4). Therefore, the

Natural and Flash/no-flash variants are trained on images ren-

dered with Blender’s Cycles path-tracer with 32 samples per pixel

with OpenImageDenoise using the height map as the material’s

geometry obtained by integrating the surface normals [Quéau et al.

2018]; we use the original normal maps to determine the shading

normals. Natural illumination is modeled by randomly selecting

and rotating an HDR environment map from 560 CC0 licensed HDR

environment maps retrieved from https://polyhaven.com/hdris. For

the Flash/no-flash variant, the log relative brightness ratio be-

tween the flash lighting and the environment lighting is randomly

sampled between log(1/50) and log(3/2). Both the Natural and

Flash/no-flash variants are trained on images rendered with a

virtual camera with a focal length of 35mm (i.e., camera distance =

exemplar size). TheColocated variant is trained for a variable cam-

era distance (with matching FOV) sampled according to a
1

2
Γ(2, 2)

distribution (relative to the exemplar size), and we concatenate the

per-pixel view vector as an additional input condition.

During inference, the differential equation is iteratively solved

using the EulerA solver [Song et al. 2021b] in just 20 steps and with

the guidance scale set to 1.

Selection. The conditional SVBRDF diffusion models take, be-

sides the input photograph, also a normal distributed random field

determined by a seed. By changing the seed, different replicates of

the SVBRDF can be generated (Figure 5). The choice of the seed

can impact the quality of the result. Therefore, we show results

selected with one of the following three selection strategies:

(1) Fixed seed: the seed is fixed for all results.

(2) Render error selection: we render the generated SVBRDFs

from 10 random seeds and select the one that minimizes the

LPIPS error [Zhang et al. 2018] when rendered under the

capture lighting conditions.

(3) Manual selection: a set of 10 SVBRDFs generated with differ-

ent random seeds are presented and the usermanually selects

the SVBRDF that appears (subjectively) the most plausible.

We also experimented with optimizing the input random field on

the render error, but found that this tends to produce burn-in of

the specular highlight. While the majority of seeds do not produce

burn-in, those that do are scattered through the whole space. Thus

no matter the starting point, there is always a nearby point that

produces burn-in which the optimization will inevitably drive the

solution towards.

Synthetic Results. Figure 9 compares the estimated SVBRDFs,

manually selected from 10 random seeds, for 6 selected synthetic

materials for each of the three conditional diffusion models. For

each material, we show two renderings under different point lights

for each of the models and the reference. In general, the colocated

model produces the most consistent results due to the known light-

ing, although it sometimes fails to recover the specular reflectance

on small features (e.g., the nob in the 2nd material) or produces

unexpected texture variations (e.g., the center of the 6th material).

The results from the natural model exhibit a greater variability

in accuracy, such as incomplete diffuse-specular separation (4th

example), or underestimation of specular roughness (6th example).

Nevertheless, the resulting SVBRDFs are still plausible, demonstrat-

ing the ability of MatFusion to recover the SVBRDFs of general

spatially varying materials under unknown lighting. The Flash/no-

flashmodel benefits from having an input without strong specular

highlights (i.e., no-flash) to better recover the diffuse texture. On

the other hand, due to the unknown relative brightness of the nat-

ural lighting versus the flash lighting, it sometimes underestimates

either the diffuse albedo (e.g., 4th material) or the specular rough-

ness (e.g., 3rd material). The Flash/no-flash model shows that

MatFusion can be conditioned on more than one input.

Comparison to Prior Work. Figure 10 compares the colocated

variant for each of the three selection methods (fixed seed, render
error, andmanual selection) against the adversarial direct inference
method of Zhou and Kalantari [2021] and the meta-learning look-

ahead method of Zhou and Kalantari [2022] on synthetic SVBRDFs.

Qualitatively, the colocated model produces a more plausible ap-

pearance and the corresponding property maps appear “cleaner”.

These qualitative conclusions are supported by the average LPIPS

https://polyhaven.com/hdris
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Input Fixed Seed Render Err. Manual

Figure 5: Changing the seed results in different SVBRDF replicates conditioned on the input photograph. For each replicate we

show a rendering under a different lighting than the input photograph as well as the generated SVBRDF property maps. Also

marked are the SVBRDF selection based on the render error with respect to the input lighting, as well as the manual selection

of the (subjectively) most plausible SVBRDF.

Table 1: Quantitative comparison of average RMSE on the

property maps and average LPIPS errors on 128 renders lit by

a uniformly sampled point light on the hemisphere for the

colocated conditioned MatFusion model versus Zhou and

Kalantari’s [2021] adversarial inference method and Zhou

and Kalantari’s [2022] meta-learning look-ahead method.

LPIPS RMSE

Render Diff. Spec. Rough. Normal

Adversarial 0.2304 0.0439 0.0859 0.1358 0.0577

Adversarial (retrained) 0.2292 0.0405 0.0795 0.1276 0.0545

Look-ahead 0.2647 0.0591 0.0727 0.1424 0.0572

MatFusion (fixed seed) 0.2282 0.0427 0.0691 0.1252 0.0561

MatFusion (render err.) 0.2138 0.0440 0.0657 0.1282 0.0543

MatFusion (manual) 0.2056 0.0412 0.0666 0.1265 0.0524

[Zhang et al. 2018] render error listed below. We render each ex-

emplar over a set of 128 randomly selected point lights on the

hemisphere (with a radius of 2.41 units to match the training (and

thus offer a best case evaluation) of Zhou and Kalantari [2021;

2022]), as well as in Table 1 for manual selection on the whole

test set of 50 materials. We argue that a perceptual render error is

the best metric for comparing the different methods as different

maps can produce similar material appearances. For completeness,

Table 1 also lists the RMSE errors over the SVBRDF property maps.

We also include a comparison to Zhou and Kalantari’s adversarial

direct inference method retrained using our training set. MatFusion

is a generative model which does not guarantee pixel-perfect align-

ment, which can result in sometimes a larger error on texture-rich

property maps (e.g., 6th row) or unobserved properties (e.g., 2nd

row). However, qualitatively, these property maps include fine de-

tails, albeit not perfectly aligned with the reference. In contrast, the

look ahead-method of Zhou and Kalantari [2022] produces normal

maps with little detail, resulting in a low error, but distributed over

the whole map. Figure 10 also demonstrates that the render error

selection can provide a good match (e.g., 1st and 5th row), but it

can also overfit (e.g., 3rd row).

Real-world Validation. Figure 6 and Figure 7 demonstrate that

MatFusion generalizes well to real-world captures. The results

in Figure 6 are manually selected from 10 random seeds and vali-

dated on the materials captured by Guo et al. [2020b] which also

contain reference photographs captured under different lighting

conditions. Our results are visually closer to the reference than the

Table 2: Achitecture ablation study of average RMSE on the

property maps and average LPIPS render errors on 128 visu-

alizations lit by a uniformly sampled point light, compar-

ing the impact of using Residual convolution blocks versus

ConvNeXt convolution blocks, and comparing the difference

between using ControlNet and our direct conditioning.

LPIPS RMSE

Render Diff. Spec. Rough. Normal

ResNet+Control 0.2655 0.0525 0.0813 0.1536 0.0545

ConvNeXt+Control 0.2731 0.0517 0.0764 0.1428 0.0604

ResNet+Direct 0.2093 0.0432 0.0682 0.1055 0.0528

ConvNeXt+Direct 0.2056 0.0412 0.0666 0.1265 0.0524

adversarial direct inference method of Zhou and Kalantari [2021],

and the look-ahead method of Zhou and Kalantari [2022]. Our

method suffers less from specular burn-in (1st example) and over-

fitting normal detail to specular highlights in the input (2nd and

3rd example).

The materials in Figure 7 are captured in-the-wild by us using

a Pixel 5a cell phone, and we manually select the most plausible

SVBRDFs. Note that these images are captured under unknown

natural lighting, and due to the uncontrolled nature of the cap-

ture conditions, no reference photographs under different lighting

conditions are available. Nevertheless, the SVBRDF property maps

nicely separate diffuse and specular, and the renderings plausibly

capture the appearance from the input photographs.

Ablation Study. We perform an ablation study to justify the

design decisions with respect to the architecture of MatFusion

(Table 2). We validate both the impact of using Residual versus

ConvNeXt convolutional blocks and using ControlNet versus di-

rect conditioning. For all models we compute the average RMSE on

the property maps and average LPIPS error on renders under the

same set of random point lights for each of the 50 test materials.

From Table 2, we observe that ConvNeXt layers slightly outperform

Residual convolutional blocks on LPIPS error and ∼5% better on

RMSE on the albedos; the lower roughness error for ResNet is due

to a few outlier materials. Furthermore, direct conditioning outper-

forms ControlNet on all metrics, while training time is similar for

both, except that ControlNet requires significantly more memory

resources. We posit that the difference in performance is due to

ControlNet only receiving indirect feedback (by copying the initial

weights) of the diffusion network it aims to control, whereas direct
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Input Reference Ours Zhou and Kalantari [2021] Zhou and Kalantari [2022]

Figure 6: Qualitative comparison on real-world materials captured with a colocated light source, and relit from two different

point light positions.

Input SVBRDF Render

Figure 7: Demonstration of in-the-wild SVBRDF capture un-

der uncontrolled unknown natural lighting and revisualized

under novel lighting.

conditioning closely intertwines both control and synthesis. Fur-

thermore, our input conditions are more strict, leaving less room

for synthesis than typical ControlNet conditions (e.g., sketches).

However, our conclusions with respect to ControlNet are only vali-

dated for MatFusion using photographs as conditions, and further

investigations are needed to ascertain whether these conclusions

extend to other diffusion networks and/or condition types.

Input SVBRDF Render

Figure 8: Failure case: artificial “blob-like” normal maps.

Limitations. MatFusion is a generative SVBRDFmodel, and it has

trouble generating pixel-perfect reproductions. Hence, MatFusion

does not necessary produce the lowest errors on pixel-basedmetrics.

Furthermore, as a generative model, MatFusion is better suited for

capturing materials with organic structures than those with regular

straight lines. We posit that this is the reason why MatFusion tends

to produce higher quality results on real-world captures than on

artist-generated materials which are more regular. This causes

MatFusion to sometimes generate properties maps that look too

artificial (Figure 8). Furthermore, MatFusion is currently limited to

256 × 256 resolution SVBRDFs. Finally, the render error selection

requires prior knowledge of the lighting condition, hampering

automatic selection from photographs under unknown lighting

(e.g., natural lighting). Furthermore, it does not always yield a good

selection because oversaturation canmake it difficult to differentiate

between two SVBRDFs that produce a similar rendered replica but

that substantially differ in quality. Ideally, we would like to employ

a selection criterion that judges plausibility of the SVBRDFs.
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6 CONCLUSION

We presented MatFusion, a generative SVBRDF diffusion model

trained on a new large and diverse training set of synthetic SVBRDFs.

MatFusion can subsequently serve as a starting point for refining

an SVBRDF diffusion model conditioned on captured images under

some target lighting condition. We demonstrated the flexibility and

efficacy of MatFusion by training three conditional variants: one

for photographs captured with a colocated flash light, one under

unknown and uncontrolled natural lighting, and one for flash/no-

flash image pairs. An advantage of using a generative SVBRDF

model is that different replicates can be synthesized by changing

the seed, allowing user to select the most plausible replicate. For fu-

ture work we would like to investigate more comprehensive metrics

for automatic selection, and better regularization during training

and/or inference for modeling regular features. Based on the recent

successes in coupling large language models with diffusion models,

another interesting avenue would be to explore better authoring

tools for SVBRDF creation.
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Reference Colocated Natural Flash/no-flash

Figure 9: Comparison of the Colocated, Natural, and Flash/no-flash conditional diffusion models on a variety of synthetic

SVBRDFs.
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Input Reference Fixed Seed Render Error Manual Zhou et al. [2021] Zhou et al. [2022]

Average LPIPS Render Error: 0.1762 0.0984 0.0984 0.2450 0.2170

Average LPIPS Render Error: 0.2324 0.2391 0.2146 0.2930 0.3076

Average LPIPS Render Error: 0.3067 0.3129 0.2897 0.3297 0.3213

Average LPIPS Render Error: 0.2192 0.2317 0.2080 0.2350 0.2656

Average LPIPS Render Error: 0.1764 0.1764 0.1728 0.2797 0.3967

Average LPIPS Render Error: 0.3273 0.3044 0.3044 0.3312 0.3932

Figure 10: Qualitative comparison ofMatFusion conditioned on colocated lighting (fixed seed, render error, andmanual selection)
against the adversarial direct inference of Zhou and Kalantari [2021] and the meta-leanring look-ahead method of Zhou and

Kalantari [2022]. The LPIPS errors are averaged over visualizations under 128 different point lights sampled on the hemisphere

surrounding the sample.
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