
Intrinisic Mesh Simplification
RANDY SHOEMAKER, College of William & Mary, USA
SAM SARTOR, College of William & Mary, USA
PIETER PEERS, College of William & Mary, USA

This paper presents a novel simplification method for removing vertices
from an intrinsic triangulation corresponding to extrinsic vertices lying on
near-developable (i.e., with limited Gaussian curvature) and general surfaces.
We greedily process all intrinsic vertices with an absolute Gaussian curvature
below a user selected threshold. For each vertex, we repeatedly perform local
intrinsic edge flips until the vertex reaches the desired valance (three for
internal vertices or two for boundary vertices) such that removal of the vertex
and incident edges can be locally performed in the intrinsic triangulation.
Each removed vertex’s intrinsic location is tracked via (intrinsic) barycentric
coordinates that are updated to reflect changes in the intrinsic triangulation.
We demonstrate the robustness and effectiveness of our method on the
Thingi10k dataset and analyze the effect of the curvature threshold on the
solutions of PDEs.

CCS Concepts: • Computing methodologies → Shape analysis.

Additional Key Words and Phrases: Intrinsic Triangulation, Simplification

1 INTRODUCTION
Geometric data encountered in the wild are often “messy” from
a geometry processing perspective, necessitating the need for ro-
bustified processing methods [Hu et al. 2018; Qi et al. 2022; Sawh-
ney and Crane 2020; Sellén et al. 2019; Zhou et al. 2016]. Intrin-
sic triangulation frameworks [Fisher et al. 2007; Gillespie et al.
2021a; Sharp et al. 2019] have been proposed as an alternative
strategy for robust geometry processing in the wild. Intrinsic ge-
ometry processing approaches geometry processing from an in-
trinsic view where all operations are expressed as combinations
of atomic operations (e.g., edge flipping, face splitting, inserting
edges, etc.) defined on distances between points over the 2D man-
ifold. While existing intrinsic triangulation frameworks differ in
data-structure and efficiency of certain atomic operations, they
all share that each “extrinsic” vertex has an immutable counter-
part in the intrinsic triangulation, and consequently, vertex re-
moval of initial extrinsic vertices is not supported. Many in-the-
wild triangle meshes are finely triangulated in order to faithfully
approximate curved surfaces in R3 by piecewise planar surfaces.
However, a significant portion of in-the-
wild triangle meshes are designed with
CAD tools or are the result of 3D scans
of real-world surfaces formed by combin-
ing developable patches. Intrinsically, such
developable parts are isometric to a plane.
For example consider a cap-less cylinder
which can be fully modeled using just two
intrinsic triangles (see inset). However, to
faithfully capture the curvature, thousands of extrinsic triangles are
needed in R3. Not only does blindly embedding a heavily tessellated

Authors’ addresses: Randy Shoemaker, rwshoemaker@wm.edu, College of William &
Mary, Williamsburg, VA, USA; Sam Sartor, slsartor@wm.edu, College of William &
Mary, Williamsburg, VA, USA; Pieter Peers, ppeers@siggraph.org, College of William
& Mary, Williamsburg, VA, USA.

Fig. 1. Our Intrinsic Simplification algorithm simplifies the metric of a
surface by approximating the intrinsic geometry with developable patches.

developable surface incur significant overhead, it also impacts the
efficiency of many downstream processing algorithms such as opti-
mal Delaunay triangulations [Chen and Xu 2004], adaptive intrinsic
mesh refinement [Sharp et al. 2019], computing geodesics [Sharp
and Crane 2020], geodesic distances, and other tasks.
In this paper we present a topology-preserving method for sim-

plifying a triangle mesh directly on the intrinsic manifold. A key
insight is that vertices with zero Gaussian curvature can be removed
without impacting the accuracy of the metric defined on the embed-
ding. Moreover, a locally developable approximation can be obtained
by allowing vertices with small Gaussian curvature to be removed
as in Figure 1. However, classic vertex merging and edge collapse
require updating of edge lengths in the intrinsic setting which can
be non-trivial when removing a vertex with non-zero curvature.
Instead, we introduce a novel intrinsic simplification method based
on edge flipping, a stable atomic intrinsic operation. For each vertex
we would like to remove, we perform edge flips until the vertex has
valance 3 (or valance 2 for vertices on the boundary). We can then
remove the vertex if the resulting triangulation remains valid. If the
triangulation becomes invalid, we undo the edge flips in reverse
order and reschedule the vertex for later evaluation. We process
vertices in a greedy “intrinsically-flattest-first” order until no more
vertices can be removed. In addition, we keep track of the intrinsic

HTTPS://ORCID.ORG/0009-0009-7589-4356
https://orcid.org/0009-0009-7589-4356


2 • Shoemaker et al.

location of deleted vertices by their intrinsic barycentric coordi-
nates. Compared to extrinsic simplification which approximates the
surface with fewer planar triangles, intrinsic simplification can be
seen as approximating the surface with developable patches. Since
the metric of an intrinsic triangulation is fully described by its edge
lengths, intrinsic simplification can be seen as simplification of the
metric rather than the extrinsic mesh.

We demonstrate and validate the robustness of our method on the
Thingi10k dataset [Zhou and Jacobson 2016], and evaluate the impact
of relaxing the Gaussian curvature threshold on PDE solutions.

2 RELATED WORK
Mesh Simplification. There exists a vast body of work on extrinsic

mesh simplification and an exhaustive enumeration is beyond the
scope of this paper. Instead we will focus on seminal papers in this
area and contrast them against our intrinsic mesh simplification
method; we refer the reader to [Khan et al. 2020] (Sec. 4.1) for an
in-depth systematic review. Extrinsic mesh simplification methods
aim to reduce the number of vertices in the mesh such that some
quality metric is best preserved. The most commonly preserved
quality is the visual appearance of a mesh [Cohen-Steiner et al. 2004;
Garland and Heckbert 1997; Popović and Hoppe 1997; Rossignac and
Borrel 1993; Schroeder et al. 1992]. Vertex decimation [Schroeder
et al. 1992] iteratively deletes vertices according to an extrinsic
criterion and the resulting hole is carefully re-triangulated. Our
method of vertex deletion is similar to vertex decimation, except
that we employ intrinsic edge flips until the ring of a vertex is a
triangle which can be removed without retriangulation. In their
seminal work, Garland and Heckbert [1997] greedily merge vertices
to minimize a quadric error metric (QEM) via edge contraction. We
also follow a greedy approach, but instead of QEM, we use Gaussian
curvature to drive the simplification.
Recently, Lescoat et al. [2020] proposed spectral mesh simplifi-

cation, a greedy extrinsic mesh simplification strategy, that aims
to preserve the intrinsic geometry (i.e., minimize the change in
the first 𝑘 eigenvectors of the Laplace-Beltrami operator). Spectral
mesh simplification is able to reduce the number of extrinsic trian-
gles while minimizing errors when computing spectral distances.
However, spectral mesh simplification is relatively computationally
expensive and limited to reducing extrinsic surfaces. In contrast,
intrinsic mesh simplification is computationally light weight and
more efficient in reducing the number of elements in developable
patches while preserving the intrinsic geometry.
In concurrent work, Liu et al. [2023] propose a similar method

for intrinsic mesh simplification via intrinsic error metrics. Their
method tracks an approximation of the accumulated error during
simplification, informing the order of vertex deletion. Our method
uses the (dynamic) magnitude of the Gaussian curvature of a vertex
to decide deletion order, which is easily updated after deletion. Our
method removes vertices by reducing them to a desired valence
whereby they can be safely removed. Once the valence of a ver-
tex has been reduced, our method implicitly intrinsically flattens
the neighborhood of a vertex via a simple update whereas Liu et
al. [2023] flattens the neighborhood of a vertex prior to valence
reduction, requiring iterative optimization.

Intrinsic Triangulations. Intrinsic triangulation frameworks [Fisher
et al. 2007; Gillespie et al. 2021a; Sharp et al. 2019] provide tools and
atomic operations to perform geometry processing algorithms that
only rely on intrinsic information directly on the intrinsic mesh
(e.g., geodesic distance [Sharp and Crane 2020], computing distor-
tion minimizing homeomorphisms [Takayama 2022], or algorithms
that rely on the Laplace-Beltrami operator [Botsch et al. 2010]). All
existing intrinsic triangulation frameworks support edge flipping,
and the Signpost [Sharp et al. 2019] and Integer Coordinate frame-
works [Gillespie et al. 2021a] support additional atomic operations
such as adding vertices, repositioning (added) vertices, and comput-
ing common subdivisions. However, none of the existing intrinsic
triangulation frameworks currently support the removal of an ex-
trinsic vertex’s intrinsic counterpart. Our method only relies on edge
flipping to remove vertices, opening the door to possible adaptation
to other current and future intrinsic triangulation frameworks.

Global Parameterization. Global mesh parameterization is similar
to intrinsic mesh simplification in that both produce a base domain
with a mapping to the original mesh. Various in depth surveys dis-
cuss the variety of parameterization methods [Floater and Hormann
2005; Hormann et al. 2007; Sheffer et al. 2006]. In our case the base
domain is an intrinsic triangulation and the mapping is specified by
the barycentric coordinates of removed extrinsic vertices with re-
spect to the intrinsic triangulation. Global parameterizationmethods
utilizing simplicial and quadrilateral complexes as the base domain
that apply iterative decimation schemes are most relevant to this
work, for example [Bommes et al. 2013; Khodakovsky et al. 2003; Lee
et al. 1998]. Such methods typically require some kind of embedding
of mesh vertices as the algorithm progresses (usually in two dimen-
sions) and are therefore unable take advantage of the additional
degrees of freedom offered by intrinsic triangulations [Sharp et al.
2019] which are unencumbered by the requirement to maintain an
embedding. Furthermore global parameterization methods, such as
those producing integer grid maps (IGM) are computationally inten-
sive whereas our edge flipping procedure is fast. Ebke et al. [2016]
offer a framework for computing an IGM on large meshes via a
decimation objective based on the change in Gaussian curvature be-
tween the coarse and fine mesh. While our vertex ordering criteria
are similar, their method is not designed to support intrinsic trian-
gulations since both the parameterization domain and simplified
meshes must be embedded in R2 and R3 respectively.

3 BACKGROUND
We briefly review the data structure required to support intrinsic
triangulations. For a more detailed discussion of intrinsic triangula-
tions we refer the reader to [Sharp et al. 2019].
Starting from a meshM = {V, E, F} encoded as a Δ-complex, an

intrinsic triangulation requires the lengths ℓ𝑖 𝑗 of the 𝑖 𝑗-th edge in E
between vertices 𝑖 and 𝑗 ∈ V. Consistent with previous approaches,
we represent the intrinsic triangulation as a Δ-complex since it
supports phenomena such as self-edges (edges that connect a vertex
to itself) and degree one vertices. The lengths ℓ𝑖 𝑗 describe the shape
of the triangles. It can be easily seen that the edge lengths fully
define the intrinsic geometry. Other relevant intrinsic information



Intrinisic Mesh Simplification • 3

can be directly computed from the edge lengths:

𝜃𝑖
𝑗𝑘

= arccos

(
ℓ2
𝑖 𝑗
+ ℓ2

𝑖𝑘
− ℓ2

𝑗𝑘

2ℓ𝑖 𝑗 ℓ𝑖𝑘

)
, (1)

𝐴𝑖 𝑗𝑘 =

√︃
𝑠 (𝑠 − ℓ𝑖 𝑗 ) (𝑠 − ℓ𝑗𝑘 ) (𝑠 − ℓ𝑘𝑖 ), (2)

𝑠 = (ℓ𝑖 𝑗 + ℓ𝑗𝑘 + ℓ𝑘𝑖 )/2 (3)

where 𝜃𝑖
𝑗𝑘

is the interior angle at 𝑖 ∈ V in the triangle 𝑖 𝑗𝑘 ∈ F and
𝐴𝑖 𝑗𝑘 is the area of the triangle 𝑖 𝑗𝑘 ∈ F.

4 INTRINSIC SIMPLIFICATION BY EDGE FLIPPING
Our goal is to remove intrinsic vertices that are part of a (near)
developable patch in the corresponding extrinsic mesh. Removing
such vertices will not alter the intrinsic geometry since a developable
patch is isometric to a planar neighborhood. A surface is developable
around a vertex 𝑖 if it has zero Gaussian curvature: 𝜅𝑖 = 2𝜋 − 𝛼𝑖 ,
where 𝛼𝑖 =

∑
𝑖 𝑗𝑘 𝜃

𝑖
𝑗𝑘

is the cone angle. Ideally, only vertices with
zero Gaussian curvature should be removed such that the intrinsic
geometry is not changed. However, developable surfaces are often
highly tessellated for accurate approximation in R3. Depending
on the exact triangulation and/or numerical round-off errors, an
exact zero Gaussian curvature might not be reached. Therefore,
in practice we try to remove all vertices with an absolute value
Gaussian curvature less than some predetermined threshold 𝜅𝑚𝑎𝑥 .
Setting 𝜅𝑚𝑎𝑥 to a larger threshold, allows us to obtain an intrinsic
approximation where portions of the triangulation are replaced with
developable patches.

Although not strictly necessary, we start by performing an intrin-
sic Delaunay retriangulation to ensure a well behaved mesh. Next,
we sort all vertices by the magnitude of their Gaussian curvature
in a queue P by smallest Gaussian curvature first, and process the
vertices in P until no vertices with a Gaussian curvature less than
𝜅𝑚𝑎𝑥 can be removed. For each vertex, we perform edge flips on all
incident edges until the desired valence (three for interior vertices
or two for vertices on boundaries) is reached. We avoid removing
degree one vertices or those incident to self-edges and avoid flipping
edges that would modify mesh topology. We record each edge flip in
a FIFO queue Q for additional post-processing detailed below. For
vertices with zero Gaussian curvature, we are guaranteed to reach
the desired valence [Gillespie et al. 2021a; Sharp and Crane 2020].
However this is not the case for vertices with non-zero curvature.
If the Gaussian curvature is extremely negative the valence can not
be achieved. In practice models typically have few if any vertices
with large negative curvature and we found that we can usually
achieve the desired valance. When the desired valence is reached,
simplification can be easily achieved by removing the vertex 𝑖 and
all incident edges 𝑖 𝑗 , 𝑖𝑘 and 𝑖𝑙 , such that the resulting triangle 𝑗𝑘𝑙

forms a developable approximation (Figure 2). However, depending
on the configuration of the 1-ring, removing the vertex can lead to
an invalid triangulation. We therefore only remove vertices if 𝑗𝑘𝑙
strictly adheres to the triangle inequality. When we are unable to
reach the desired valence or if the triangle inequality condition is
not met, we undo the edge flips recorded in Q in reverse order to
restore the triangulation. It is possible that after removing more

l

j

ki

initially edge flip edge flip remove
(valence 5) (valence 4) (valence 3)

initially edge flip edge flip remove
(valence 4) (valence 3) (valence 2)

Fig. 2. Illustration of intrinsic vertex removal by edge flipping for an interior
(top) and a boundary (bottom) vertex.

vertices, the triangulation is more favorable for removing the ver-
tex. Therefore, we re-queue the vertex for re-processing after all
outstanding vertices with a Gaussian curvature less than 𝜅𝑚𝑎𝑥 have
been processed.
If a vertex 𝑖 can be successfully removed (i.e., it has the desired

valence after edge flipping, and it satisfies the triangle inequality
condition), then we perform the following steps:

• We update the Gaussian curvature of the vertices of 𝑗𝑘𝑙 in
the processing queue P (either by updating the order if 𝑗 ,
𝑘 , or 𝑙 was in the queue, or by adding the vertex if not yet
queued).

• We perform a post-removal edge flipping procedure. During
edge flipping to achieve the desired valence, it is sometimes
possible to create degenerate triangles. Instead of trying
to figure out a safe flipping order, we instead ’repair’ the
triangulation after vertex removal. For each edge recorded
in Q , we check (in reverse order) if the resulting edge is
Delaunay. If not, then we flip the edge, and add the four
edges of the resulting triangles to Q . We repeat this process
until Q is empty and the resulting triangulation meets the
intrinsic Delaunay property again.

Discussion. A benefit of our simplification algorithm is that it
preserves the Euler characteristic 𝜒 = 𝑉 − 𝐸 + 𝐹 of the mesh. For a
closed mesh (without boundary), each vertex removal step results in
a deletion of 1 vertex, 3 edges, and 3 faces, while adding 1 new face
(Δ𝜒 = −1 + 3 − 3 + 1 = 0). In case there is a boundary, we remove
1 vertex, 2 edges and 1 face (Δ𝜒 = −1 + 2 − 1 = 0) and boundary
loops are unaffected. By virtue of the Gauss-Bonnet theorem, we
know that since the Euler characteristic is preserved, the sum of the
Gaussian curvature is unchanged. Thus deleting a vertex 𝑖 implies
that its Gaussian curvature is redistributed to its neighbors. This
also justifies why after each vertex removal, we update the Gaussian
curvature sorted processing queue P.
The above edge flipping strategy reduces the 1-ring polygon

around each candidate vertex for removal to the trivial re-triangulation
case; i.e., such that no re-triangulation is needed. We can apply this



4 • Shoemaker et al.

initially edge flip edge flip remove

Fig. 3. Applying edge flipping for vertex removal in the extrinsic setting can
significantly alter the metric.

strategy only on the intrinsic triangulation, not in an extrinsic set-
ting where it can significantly alter the metric. The metric can be
altered when an edge flip is applied to the extrinsic mesh (Figure 3)
whereas applying the same operation to an intrinsic edge preserves
the metric. Only the vertex removal step alters the surface metric,
occurring only if the vertex has nonzero Gaussian curvature.
While vertex removal typically requires retriangulation in the

extrinsic setting, it is unclear in the intrinsic domain how to update
the edge lengths when the Gaussian curvature is not zero. First, the
1-ring polygon needs to be flattened into to a developable surface,
altering the global intrinsic geometry. Second, it is unclear what
the updated edge lengths should be such that the candidate vertex
is projected onto the developable approximation. By reducing the
valence to three we do not need to update any edge lengths in the
intrinsic triangulations yielding a computationally light strategy
that avoids both retriangulation and computing new edge lengths
via optimization. While our approach avoids updating edge lengths
during vertex removal it requires us to carefully consider defining
the barycentric coordinates of the removed vertex with respect
to the remaining triangle should they be required by downstream
applications.

Intrinsic-Extrinsic Correspondence. Similar to the Signpost data
structure[Sharp et al. 2019], we keep track of the correspondence
between intrinsic and extrinsic triangulations. Special care needs to
be taken for tracking the correspondence of deleted vertices. This is
achieved by maintaining intrinsic barycentric coordinates for each
extrinsic vertex deleted from the intrinsic triangulation. There are
three scenarios to consider:

(1) Defining the barycentric coordinate (𝑐 𝑗
𝑖
, 𝑐𝑘
𝑖
, 𝑐𝑙
𝑖
) of a deleted

vertex 𝑖 inside a triangle 𝑗𝑘𝑙 . When the threshold 𝜅𝑚𝑎𝑥 is
not zero, the vertex is ‘projected’ onto a developable ap-
proximation. Since this projection is an approximation, a
number of viable options exist. In our implementation, we
opt for a conformal projection, which are known to have
low distortion [Gillespie et al. 2021b; Springborn et al. 2008].
We fix the edge lengths of the bounding triangle 𝑗𝑘 , 𝑘𝑙 , 𝑙 𝑗
and seek a uniform scale of the edges 𝑖 𝑗 , 𝑖𝑘 , and 𝑖𝑙 incident
to 𝑖 that ensures the projection of 𝑖 is intrinsically flat (as
in [Springborn et al. 2008] with fixed boundary). Since 𝑖 is
degree three we can compute the uniform scale by ensuring
that the corner angles of the projections of 𝑖𝑘𝑙 , 𝑖𝑙 𝑗 , and 𝑖 𝑗𝑘
agree with the corner angles of 𝑗𝑘𝑙 . For example, for corner
𝑗 of 𝑗𝑘𝑙 we require that the scale 𝑠 satisfies:

𝜃
𝑗

𝑘𝑙
= 𝜃

𝑗

𝑘𝑖
+ 𝜃 𝑗

𝑖𝑙

where 𝜃
𝑗

𝑘𝑖
= arccos

(
𝑙2
𝑗𝑘
+𝑠2 (𝑙2𝑖 𝑗−𝑙2𝑘𝑖 )
2𝑙 𝑗𝑘𝑠ℓ𝑖 𝑗

)
(similarly for 𝜃 𝑗

𝑖𝑙
). In

fact if the formula holds for any corner of 𝑗𝑘𝑙 , say 𝑗 then
the projection of edge 𝑗𝑖 must lie in the (unfolded) plane of
𝑖 𝑗𝑘 and similarly for 𝑖 and the projections of edge 𝑘𝑖 and
𝑘𝑙 , ensuring that the new Gaussian curvature of 𝑖 is zero.
Solving for 𝑠 in the corner angle equation yields a quadratic
in 𝑠2. We then choose the solution for 𝑠2 (and hence 𝑠) that
ensures the Gaussian curvature at the projection of 𝑖 is zero
and set the barycentric coordinate (𝑐 𝑗

𝑖
, 𝑐𝑘
𝑖
, 𝑐𝑙
𝑖
) accordingly. If

𝑠 would cause the projections of any of 𝑖𝑘 𝑗 , 𝑖 𝑗𝑙 , and 𝑖𝑙𝑘 to
violate the triangle inequality and 𝑖 (or any of its dependent
vertices) is required (for downstream applications) we do not
remove 𝑖 and instead restore the intrinsic mesh by undoing
the edge flips recorded in Q in reverse order and reschedule
it for deletion.

(2) Updating the barycentric coordinates of a vertex 𝑣 that de-
pends on a deleted vertex 𝑖 . When a vertex is deleted, it is
possible that a previously deleted vertex’s barycentric coor-
dinates depends on it. Because our vertex deletion is only
performed after the vertex has the desired valance, it follows
that the dependent vertex must lie in one of the faces that
will be merged. Hence, both the barycentric coordinates of
the deleted and dependent vertex will depend on the same
corner vertices after deletion. Thus, we can easily substitute
the barycentric coordinates of the deleted vertex. For exam-
ple, if 𝑣 ∈ 𝑖 𝑗𝑘 , and 𝑖 is deleted, then the updated coordinates
are: (𝑐 𝑗𝑣 + 𝑐𝑖𝑣𝑐

𝑗
𝑖
, 𝑐𝑘𝑣 + 𝑐𝑖𝑣𝑐𝑘𝑖 , 𝑐

𝑖
𝑣𝑐

𝑙
𝑖
).

(3) Updating the barycentric coordinate if the vertex is contained
in a triangle whose edge is flipped. In this case, we unfold
both triangles isometrically into a local plane and recompute
the barycentric coordinates with respect to the new face
containing the vertex.

5 RESULTS AND EVALUATION
We have implemented our intrinsic simplification method in C++
using a half-edge data structure annotated with edge lengths. We
have validated our method on a subset of the Thingi10k [Zhou and
Jacobson 2016] dataset containing valid manifold and oriented trian-
gle meshes. Processing all 7𝑘 triangle meshes takes approximately
25 hours to run the whole algorithm for the 7 threshold values for
𝜅𝑚𝑎𝑥 : 10−9, 10−6, 10−4, 10−2, 10−1, 1.0, 𝜋 (in radians) on a Intel
i5-8265U (1.60GHz) CPU with 16GB of memory (using a single core).
Figure 4 shows a selection of 3 meshes from the test set. For

each mesh we show the original mesh, and 3 thresholds 𝜅𝑚𝑎𝑥 =

{10−4, 10−2, 1.0}. For each visualization the simplified mesh is pro-
jected on the original extrinsic mesh, and thus shows an approxi-
mation of the intrinsic geometry of the simplified mesh. Typically,
a common subdivision is utilized to provide a visualization of an
intrinsic triangulation [Gillespie et al. 2021a; Sharp et al. 2019] by
making use of the fact that both triangulations have the same intrin-
sic geometry. When vertices with non-zero Gaussian curvature are
deleted the correspondence between the two triangulations breaks
down and these methods fail. To visualize a simplified mesh we
first perform a refinement of the original extrinsic mesh. We then



Intrinisic Mesh Simplification • 5

Mushrooms Sine Wave Surface Crystals
14,985 vertices 5,105 vertices 3,305 vertices

𝜅𝑚𝑎𝑥 = 10−4 𝜅𝑚𝑎𝑥 = 10−2 𝜅𝑚𝑎𝑥 = 1.0

14,698 vertices 11,146 vertices 340 vertices
1.92% reduction 25.62% reduction 97.73% reduction

3,447 vertices 2,108 vertices 242 vertices
32.48% reduction 58.71% reduction 96.04% reduction

1,882 vertices 718 vertices 307 vertices
43.06% reduction 78.28% reduction 90.07% reduction

Fig. 4. Intrinsic mesh simplification results on three meshes for different thresholds 𝜅𝑚𝑎𝑥 . Note that the simplified intrinsic mesh is projected on the original
mesh, showing only an approximation of the intrinsic triangulation’s geometry.



6 • Shoemaker et al.

Table 1. Mesh simplification statistics over a subset of over 7,000 manifold and oriented triangle meshes in the Thingi10K dataset comparing the percentage of
vertices with a Gaussian curvature less then 𝜅𝑚𝑎𝑥 versus the percentage removed after simplification.

Removable Successfully Removed Mean Time (s)

𝜅𝑚𝑎𝑥 mean std. dev. mean std. dev. remove track total

10−9 5.57% 13.84 99.56% 4.73 0.15s 0.61s 0.76s
10−6 7.48% 16.20 99.37% 5.15 0.16s 0.87s 1.03s
10−4 12.67% 20.23 95.58% 8.14 0.20s 0.84s 1.03s
10−2 33.96% 33.53 91.41% 10.12 0.33s 1.24s 1.57s
10−1 58.44% 37.81 89.18% 12.62 0.41s 1.79s 2.20s
1.00 88.75% 22.34 94.87% 7.87 0.45s 2.39s 2.84s
𝜋 99.81% 2.21 94.57% 9.17 0.46s 2.70s 3.15s

track the elements of the refined mesh during simplification. After
simplification we color the elements of the refined mesh according
to the intrinsic face they map to post-simplification. By tracking
the elements of a heavily refined mesh we are able to produce a
visualization that approximates the intrinsic triangulation. A more
robust method of visualizing a simplified intrinsic mesh, perhaps
by producing a (pseudo) common subdivision is an interesting av-
enue for future research. For each example in Figure 4 we list 𝜅𝑚𝑎𝑥

and the number of vertices in the simplified mesh. Note how our
method simplifies most in regions that are (approximately) devel-
opable. For example, in the Sine Wave Surface example, we can see
that significant simplification takes place on the base of the model
and similarly for the sharp edges of the Crystals model. Note how
some of the simplified intrinsic triangles form a curved surface in
R3. For the lowest threshold 𝜅𝑚𝑎𝑥 = 10−4 there is virtually no sim-
plification in the doubly-curved regions of Sine Wave Surface and
Mushrooms (along the cap). In general there is little simplification
in Mushrooms for 𝜅𝑚𝑎𝑥 = 10−4, even in the stalk region, due to
noisy vertex placement in the model. However, as the threshold
increases, our algorithm is able to achieve a large reduction in the
noisy model. As expected, for each example, a higher threshold
removes much move vertices; particularly at the highest threshold
𝜅𝑚𝑎𝑥 = 101.0 where our algorithm achieves a reduction of 97.73%,
96.04%, and 90.07% for Mushrooms, Sine Wave Surface, and Crystals
respectively. Notice that the doubly curved regions of Sine Wave
Surface and Mushrooms (on the mushroom caps) are approximated
by larger developable patches as 𝜅𝑚𝑎𝑥 increases. Figure 5 shows
2 meshes simplified to less than 2% of their original vertex count,
approximating each surface with a small number of developable
patches.
To gain further insight in the efficacy of our intrinsic simplifi-

cation method, Table 1 reports the mean percentage and standard
deviation of ideally removable vertices (i.e., those with a Gaussian
curvature less than 𝜅𝑚𝑎𝑥 ) and the mean percentage (and standard
deviation) of actually removed vertices for seven different thresholds
𝜅𝑚𝑎𝑥 = {10−9, 10−6, 10−4, 10−2, 10−1, 1.0, 𝜋}. As expected, with an
increasing threshold, more vertices can be removed, and in general
vertex removal succeeds for almost all candidate vertices. In addi-
tion, we also report the mean running time (excluding data IO) when
tracking all removed vertices via intrinsic barycentric coordinates.

Typically 80% of the compute time is spent tracking barycentric
coordinates.
To demonstrate the impact of removing non-zero Gaussian cur-

vature vertices, we visualize the solution to a Poisson equation with
a spike centered on a chosen vertex on 2 selected meshes for 3 𝜅𝑚𝑎𝑥

thresholds (Figure 6); we report the number of vertices and MSE
error over the Poisson solution for each of the vertices in the original
mesh, where the solution at a removed vertex is interpolated based
on the intrinsic barycentric coordinates. We deliberately did not
apply any refinement and instead directly solve the equation on the
simplified mesh to better illustrate the impact of the simplification.
In the first example, we deliberately placed the source term on a
vertex with low Gaussian curvature. As expected, as the threshold
𝜅𝑚𝑎𝑥 increases, so does the error. In the second example, we placed
the source term on a vertex with high Gaussian curvature, which
results in a smaller increase in error because most intrinsic triangles
around the source term will not be simplified. In a practice, for
maximal accuracy, we would first insert vertices via an intrinsic
optimal Delaunay algorithm [Sharp et al. 2019] or adaptive intrin-
sic mesh refinement [Sharp et al. 2019]. While both methods will
increase the number of intrinsic vertices, neither would be encum-
bered by sub-optimally placed intrinsic vertices from the original
mesh. Indeed, in the concurrent work of Liu et al. [2023] they per-
form refinement prior to simplification to achieve a better vertex
distribution post-simplification.

A key advantage of simplifying the intrinsic representation com-
pared to first simplifying an extrinsic mesh and then constructing an
intrinsic representation is that we can produce simplified triangles
that ride the underlying surface, and thus better maintain the sur-
face metric. To better understand the differences between different
simplification methods, Figure 7 compares intrinsic mesh simplifi-
cation with two extrinsic simplifications methods: QEM [Garland
and Heckbert 1997] and Spectral Mesh Simplification [Lescoat et al.
2020]. For each method, we perform an equal-vertex-count compari-
son (simplified from 14,290 to 1,715 vertices for the Bunny, and from
23,356 to 4,440 vertices for the Frog) to our intrinsically simplified
mesh, and highlight the differences between all methods by visual-
izing the solution to a Poisson equation computed directly on the
“raw” mesh with a source term placed at a low and high Gaussian
curvature vertex. PDE solutions are solved on the intrinsic mesh
and the barycentric coordinates are used to linearly interpolate the



Intrinisic Mesh Simplification • 7

𝜅𝑚𝑎𝑥 = 10−1 𝜅𝑚𝑎𝑥 = 1.0
Original: 140,864 vertices Original: 52,151 vertices
Simplified: 2,258 vertices Simplified: 914 vertices

98.40% reduction 98.25% reduction

Fig. 5. Our algorithm applied to various meshes from Thingi10k with large 𝜅𝑚𝑎𝑥 , achieving reduction in excess of 98%.

solution at deleted vertices. For QEM we use the implementation
provided by Lescoat et al. [2020]. Note that Spectral Mesh Simplifica-
tion optimizes for the intrinsic qualities of the mesh when removing
vertices, and as such on average the solution to the Poisson equation
is more accurate, albeit at a much higher computation cost (35 min-
utes versus 0.62 seconds for our method on the Bunny; for reference
QEM took 7.6 second seconds versus 0.85 seconds for our method on
the Frog). However, as noted before, intrinsic mesh simplification is
intended as a preprocessing step, and in practice we would apply an
adaptive refinement or produce an optimal Delaunay triangulation
before solving the Poisson equation.

6 LIMITATIONS AND FUTURE WORK
Our method is not without limitation. First, as mentioned in Sec-
tion 4, a potential limitation is imposed by reducing the valence
of a vertex prior to removal. The issue arises since a vertex 𝑖 with
Gaussian curvature𝜅𝑖 has a lower bound on its valence: ⌈2− 𝜅

𝜋 ⌉. The
lower bound exists since the corner angles 𝜃1, ..., 𝜃𝑛 around 𝑖 must
each satisfy 𝜃 𝑗 < 𝜋 since each 𝜃 𝑗 belongs to a triangle. Therefore
the total angle around 𝑖 must satisfy 𝛼𝑖 =

∑𝑛
𝑗=1 < 𝑛𝜋 ; and since

𝛼𝑖 = 2𝜋 − 𝜅𝑖 , the valence 𝑛 must satisfy 𝑛 > ⌈2 − 𝜅𝑖
𝜋 ⌉. The lower

bound means that our method is unable to remove vertices with
𝜅 ≤ −𝜋 . However, in practice, a typical mesh only has a few, if any,
vertices with such extreme negative curvature. In fact, on average,

models in our validation set (of roughly 7,000 models) fewer than
0.2% of vertices violate 𝜅 > −𝜋 . In practice the lower bound on the
valence of a vertex does not affect the practical effectiveness of our
method for the majority of real-world meshes.
Second, maintaining the correspondence between the intrinsic

and extrinsic triangulations with intrinsic barycentric coordinates
forces our algorithm to update barycentric coordinates of vertices
in faces adjacent to a flipped edge and in one of the three faces
incident to a vertex that is about to be removed. These repeated
updates can cause numerical error to compound as the algorithm
progresses. Furthermore, for large models that are highly decimated,
e.g. highly tessellated cylinder, a large number of removed vertices
must have their intrinsic coordinates updated during each edge flip
and vertex removal. Exploring alternative methods of maintaining
the correspondence between the two triangulations could provide
an interesting avenue for future research and open the door for
faster and more robust intrinsic mesh simplification.
Finally, our method of visualizing the simplified intrinsic trian-

gulation does not accurately represent the new intrinsic geometry.
A method that provides the benefits of a common subdivision can
enable a better visualization as well as provide a more robust way
to port data between the two triangulations, such as enabling a
robust change of basis when solving PDEs. Producing a ‘pseudo’-
common subdivision is an interesting avenue for future research.
Alternatively one could produce a visualization by computing an



8 • Shoemaker et al.

embedding of the simplified intrinsic mesh, which could aide in
visualizing the deformation of the intrinsic geometry of the original
mesh.

7 CONCLUSION
In this paper we presented amethod for intrinsicmesh simplification.
Our method leverages the benefits of intrinsic edge flipping and the
large space of intrinsic triangulations to significantly simplify vertex
deletion to two canonical cases (i.e., valence three for an internal
vertex, and valence two for a boundary vertex). We use Gaussian
curvature as the deletion criterion, which, together with our removal
strategy, effectively projects vertices onto a locally developable
approximation.We demonstrated the robustness and effectiveness of
our method on the Thingi10k dataset and demonstrated the impact
of relaxing the deletion threshold on the solutions of PDEs.

8 ACKNOWLEDGEMENTS
This work was supported in part by a Virginia Space Grant Grant
Consortium Graduate STEM Research Fellowship Grant and NSF
grant IIS-1909028.

REFERENCES
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4,
Article 98 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2462014

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. 2010. Polygon Mesh Processing.
Long Chen and Jinchao Xu. 2004. Optimal Delaunay triangulations. Journal of Compu-

tational Mathematics 22, 2 (1 March 2004), 299–308.
David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape

Approximation. ACM Trans. Graph. 23, 3 (aug 2004), 905–914.
Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Interac-

tively Controlled Quad Remeshing of High Resolution 3DModels. ACMTrans. Graph.
35, 6, Article 218 (dec 2016), 13 pages. https://doi.org/10.1145/2980179.2982413

Matthew Fisher, Boris Springborn, Peter Schröder, and Alexander I Bobenko. 2007. An
algorithm for the construction of intrinsic Delaunay triangulations with applications
to digital geometry processing. Computing 81, 2 (2007), 199–213.

Michael S Floater and Kai Hormann. 2005. Surface parameterization: a tutorial and
survey. Advances in multiresolution for geometric modelling (2005), 157–186.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’97). 209–216.

Mark Gillespie, Nicholas Sharp, and Keenan Crane. 2021a. Integer coordinates for
intrinsic geometry processing. ACM Trans. Graph. 40, 6 (2021).

Mark Gillespie, Boris Springborn, and Keenan Crane. 2021b. Discrete Conformal
Equivalence of Polyhedral Surfaces. ACM Trans. Graph. 40, 4 (2021).

Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory
and Practice. In ACM SIGGRAPH 2007 Courses (San Diego, California) (SIGGRAPH
’07). Association for Computing Machinery, New York, NY, USA, 1–es. https:
//doi.org/10.1145/1281500.1281510

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (jul
2018).

Dawar Khan, Alexander Plopski, Yuichiro Fujimoto, Masayuki Kanbara, Gul Jabeen,
Yongjie Jessica Zhang, Xiaopeng Zhang, andHirokazu Kato. 2020. Surface remeshing:
A systematic literature review of methods and research directions. IEEE TVCG 28, 3
(2020), 1680–1713.

Andrei Khodakovsky, Nathan Litke, and Peter Schröder. 2003. Globally Smooth Pa-
rameterizations with Low Distortion. ACM Trans. Graph. 22, 3 (jul 2003), 350–357.
https://doi.org/10.1145/882262.882275

Aaron WF Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David Dobkin.
1998. MAPS: Multiresolution adaptive parameterization of surfaces. In Proceedings of
the 25th annual conference on Computer graphics and interactive techniques. 95–104.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral mesh simplification. In Comp.
Graph. Forum, Vol. 39. 315–324.

Derek Liu, Mark Gillespie, Benjamin Chislett, Nicholas Sharp, Alec Jacobson, and
Keenan Crane. 2023. Surface Simplification using Intrinsic Error Metrics. ACM
Trans. Graph. XX, X (2023).

Jovan Popović and Hugues Hoppe. 1997. Progressive Simplicial Complexes. In Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’97). 217–224.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. Comp. Graph. Forum 41, 4 (2022), 51–62.

Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for render-
ing complex scenes. In Modeling in computer graphics. Springer, 455–465.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-
Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4, Article 123 (aug 2020).

William J Schroeder, Jonathan A Zarge, and William E Lorensen. 1992. Decimation of
triangle meshes. In Proceedings of the 19th annual conference on Computer graphics
and interactive techniques. 65–70.

Silvia Sellén, Herng Yi Cheng, Yuming Ma, Mitchell Dembowski, and Alec Jacobson.
2019. Solid Geometry Processing on Deconstructed Domains. Comp. Graph. Forum
38, 1 (2019), 564–579.

Nicholas Sharp and Keenan Crane. 2020. You Can Find Geodesic Paths in Triangle
Meshes by Just Flipping Edges. ACM Trans. Graph. 39, 6, Article 249 (nov 2020).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating intrinsic triangu-
lations. ACM Trans. Graph. 38, 4 (2019).

Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods
and Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (jan 2006), 105–171.
https://doi.org/10.1561/0600000011

Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence
of Triangle Meshes. ACM Trans. Graph. 27, 3 (aug 2008), 1–11. https://doi.org/10.
1145/1360612.1360676

Kenshi Takayama. 2022. Compatible Intrinsic Triangulations. ACM Trans. Graph. 41, 4,
Article 57 (jul 2022).

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrange-
ments for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (jul 2016).

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

https://doi.org/10.1145/2461912.2462014
https://doi.org/10.1145/2980179.2982413
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1145/1281500.1281510
https://doi.org/10.1145/882262.882275
https://doi.org/10.1561/0600000011
https://doi.org/10.1145/1360612.1360676
https://doi.org/10.1145/1360612.1360676


Intrinisic Mesh Simplification • 9

Original 𝜅𝑚𝑎𝑥 = 10−4 𝜅𝑚𝑎𝑥 = 10−3 𝜅𝑚𝑎𝑥 = 10−2
1,009,118 vertices 963,902 vertices 798,457 vertices 350,793 vertices

MSE = 1.77 × 10−05 MSE = 1.81 × 10−4 MSE = 4.85 × 10−3

Original 𝜅𝑚𝑎𝑥 = 10−4 𝜅𝑚𝑎𝑥 = 10−3 𝜅𝑚𝑎𝑥 = 10−2
34,999 vertices 34,856 vertices 33,120 vertices 16,038 vertices

MSE = 8.28 × 10−8 MSE = 2.38 × 10−7 MSE = 1.94 × 10−6

Fig. 6. Visualizations of the solution of a Poisson equation with a spike placed on a near-developable vertex (top) or on a vertex with high curvature (bottom).
The equation is solved directly on the “raw” simplified mesh to better show the impact of simplification.

Intrinsic Simplification (Ours) Spectral Simplification Intrinsic Simplification (Ours) Spectral Simplification

Intrinsic Simplification (Ours) QEM Simplification Intrinsic Simplification (Ours) QEM Simplification

Fig. 7. Solutions of a Poisson equations computed on simplified meshes obtained with Spectral Mesh Simplification (SMS) and QEM. The Bunny was reduced
to 1,715 vertices (88.00% reduction) via our intrinsic simplification algorithm and QEM. The Frog was reduced to 4,440 vertices (80.99% reduction) via our
intrinsic simplification and SMS. All solutions are computed on the “raw” simplified mesh to better show the impact of simplification.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Intrinsic Simplification by Edge Flipping
	5 Results and Evaluation
	6 Limitations and Future Work
	7 Conclusion
	8 Acknowledgements
	References

