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Figure 1: Comparing measured MERL BRDFs with adaptively fitted microfacet BRDF models (Cook Torrance, GGX, GGX with
V-Groove shadowing term, GGX with approximate multiple-scattering, GGX with V-Groove based multiple scattering, and
GGX with Smith based multiple scattering) under 2 different lighting environments.
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1 INTRODUCTION
Microfacet-based reflection models are widely used in visual effects
applications ranging from computer games to animation and fea-
ture film rendering. However, standard microfacet BRDF models
do not account for light transport that scatters more than once
on a rough surface, which can lead to significant energy loss. As
physically based rendering becomes more prevalent in production

∗Joint first authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’21 Technical Communications, December 14–17, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9073-6/21/12. . . $15.00
https://doi.org/10.1145/3478512.3488601

applications, this lack of energy preservation becomes problem-
atic. To preserve energy, a number of multiple scattering BRDF
models have been introduced. Heitz et al. [2016] leverage a volu-
metric approach for modeling multiple scattering accurately, but
its stochastic evaluation results in increased variance. Xie and Han-
rahan [2018] and Lee et al. [2018] introduced an efficient analytical
multiple scattering model, albeit with a singularity in the direction
of mirror reflection. Turquin [2019] build on the work of Kula et
al. [2017] and derive an efficient to evaluate and importance sample,
albeit approximate, multiple scattering model. While these multiple
scattering BRDF models are based on sound theoretical foundations
(i.e, energy preservation and color saturation in rough metals due
to multiple scattering), their practical relevance for modeling real
world materials is unknown.

In this paper, inspired by Ngan et al.’s [2005] experimental analy-
sis of 7 single scattering BRDF models, we present the first compre-
hensive experimental analysis of multiple scattering BRDF models,
using both a traditional cosine weighted L2 BRDF fitting metric as
well as an image based adaptive metric [Bieron and Peers 2020]
on the MERL material database [Matusik et al. 2003] (Figure 1).
We show that, although physically based multiple scattering BRDF
models slightly reduce fitting errors for rough materials, the per-
ceptual visual difference between multiple scattering BRDF models
and a standard GGX BRDF model is negligible for the majority of
measured materials. Our experiments show that a blend of a Lam-
bertian and a GGX lobe can fit most of the rough MERL materials
well, except for a few materials that exhibit phenomena beyond the
capabilities of a microfacet BRDF model (with or without multiple
scattering), such as inter-fiber scattering (in fabrics), or complex
subsurface scattering in between the top coating layer and the
diffuse substrate.
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Figure 2: An example of cosine weighted L2 BRDF fitting
overestimating the diffuse component.

2 METHODOLOGY
Similar to Ngan et al. [2005], we perform our experimental analysis
on the MERLmaterial database [Matusik et al. 2003] of 100 isotropic
measured BRDFs.

2.1 Microfacet Models with Multiple Scattering
We perform our experimental analysis on 3 GGX-based extensions
designed to model multiple scattering effects: a microflake-based
multiple scattering for GGX with the Smith shadowing term pre-
sented by [Heitz et al. 2016] (denoted by Heitz); a multiple scatter-
ing model for GGX with a V-groove based shadowing term [Xie
and Hanrahan 2018] (MSVG); and a compute efficient approximate
multiple scattering model for GGX [Turquin 2019] (GGXSMS). To
serve as a baseline, we include 3 single scattering BRDF models:
the single scattering GGX BRDF model with the Smith shadowing
term [Walter et al. 2007] (GGX ); the GGX BRDF with a V-groove
based shadowing term (GGXVG); and the classic Cook-Torrance
BRDF with the Smith shadowing term (CT ).

.

2.2 Parametric Fitting
We follow common practice and use a composite BRDF 𝑓 consisting
of a Lambertian diffuse lobe and a specular lobe chosen from the
above set of microfacet reflection lobes. Since our specular models
have the same 5 input parameters, all composite BRDF models have
8 parameters: diffuse albedo, specular albedo, roughness (𝛼), and
the index of refraction (𝜂).

We quantify a BRDF model’s ability to represent a real world
material𝑀 as the minimal fitting error achieved by any set of pa-
rameters 𝑝 for the BRDF 𝑓 compared to the measured values of
𝑀 . Finding the set of minimizing parameters 𝑝 typically requires
a non-linear optimization: argmin𝑝 𝐸 (𝑓 (𝑝), 𝑀), where 𝐸 is an ap-
propriate error/fitting metric. Additional constraints can be added
to enforce physical plausibility of the fitted parameters such as
energy conservation. However, in this paper we do not add such
constraints, and focus our investigation on the raw ability of the
model to represent the measured data.

2.3 Fitting Metric
The most common error/fitting metric is the cosine weighted 𝐿2
measure, and which was also used in Ngan et al.’s [2005] experi-
mental analysis. However, minimizing this error measure typically
does not lead to a good visual match when comparing renderings

of the fitted BRDF and measured BRDF under some target lighting.
This mismatch is especially prevalent for measured materials with
strong specular peaks that tend to dominate the fitting error, and as
a consequence over or under estimate the diffuse term (Figure 2).

To strike a balance between data fidelity and visual fidelity,
Bieron and Peers [2020] presented a two stage, image based adaptive
fitting metric: in the first stage data fidelity is maximized according
to a set of generalized error metrics 𝐸𝛾 , yielding a set of candidate
fits 𝑓𝛾 for each measured material𝑀 :∑︁
𝜃𝑖 ,𝜃𝑜 ,𝜙𝑑

𝑤 (𝜃𝑖 , 𝜃𝑜 ) ( [𝑓𝛾 (𝜔𝑖 , 𝜔𝑜 )𝑐𝑜𝑠𝜃𝑖 )]
1
𝛾 − [𝑀 (𝜔𝑖 , 𝜔𝑜 )𝑐𝑜𝑠𝜃𝑖 )]

1
𝛾 )2,

(1)
where 𝛾 ∈ [1, 3] and 𝑤 = sin𝜃𝑖 sin𝜃𝑜 cos𝜃𝑜 1. Note when 𝛾 = 1,
equation 1 is the same as the cosine weighted 𝐿2 metric. In the
second stage, an image based metric (CSSIM or LPIPS) is used to
select among {𝑓𝛾 }, the BRDF fit with the best visual match on a
set scene for a given material𝑀 (i.e., a sphere lit by the Eucalyptus
Grove light probe).

We perform our experimental analysis of multiple scattering
BRDF models using both error metrics: the cosine weight 𝐿2 error
as well as the adaptive image based metric using CSSIM.

Cosine weighted L2 Fitting for 100 MERL Materials

rough smooth

Figure 3: Cosine weighted L2 error for the different BRDF
models sorted by the error on the Cook-Torrance model.

3 ANALYSIS OF FITTING RESULTS
We present error graphs for the cosine weighted 𝐿2 fitting and
CSSIM based adaptive fitting in Figures 3 and 4 respectively.

To simplify our analysis, we split the 100MERL materials in two
equal groups of 50 materials that roughly correspond to smooth
and rough materials. The classification is done using the median
roughness 𝛼 of the Cook-Torrance (CT ) BRDF fits.

To improve visual clarity in the error plots, we divide the 6
models into 2 groups of 4, using theGGX and CT models as baseline
anchors across the two groups. Since the CT model has the largest
error range for both 𝐿2 and adaptive fits, all materials are sorted in
order of the CT fitting error in all graphs.
1The term sin𝜃𝑖 is the Jacobian of (𝜙𝑖 , 𝜃𝑖 ) with respect to solid angle, and the term
sin𝜃𝑜 cos𝜃𝑜 is the Jacobian for the projection of the visible hemisphere of outgoing
directions (𝜙𝑜 , 𝜃𝑜 ) to a disc [Bieron and Peers 2020].
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Adaptive BRDF Fitting for 100 MERL Materials

rough smooth

Figure 4: CSSIM error for each model fitted with the adaptive
image-based BRDF fits.

Single Scattering BRDF Models. For smooth materials, we observe
for classic single scattering BRDF models (CT, GGX, and GGXVG)
that there is little difference in terms of data fidelity (Figure 3, right-
bottom). However, there is more difference in the models’ ability
to visually match the materials, and the choice of the microfacet
distribution dominates the CSSIM error (Figure 4, right-bottom). Un-
surprisingly, we see that the GGX distribution is much better than
the Beckmann distribution in replicating the specular appearance
of real materials. For rough materials, we observe that the shadow-
ing and masking term impacts the data fidelity for single scattering
BRDF models (Figure 3, left-bottom, green-curve vs blue/red curve)
as well as visual fidelity (Figure 4, left-bottom). In both cases, we
observe that the V-groove based shadowing and masking term is
less effective than the Smith shadowing and masking term.

Multiple Scattering BRDF Models. Multiple scattering BRDF mod-
els (Heitz, MSVG, GGXSMS) are designed to account the scattering
of light, most prominent in rough materials. For smooth materials,
we expect that multiple scattering plays a much smaller role. This
expectation is validated by the fitting results shown in the error
plots on the right side of Figures 3 and 4, where all three multiple
scattering BRDF models have almost identical 𝐿2 fitting error and
adaptive fitting error as the standard GGX model. A notable excep-
tion is the Heitz BRDF model, which shows a higher CSSIM error
for a number of smooth materials. This increased CSSIM error is
likely due to the stochastic nature of the Heitz BRDF model which
can lead to higher variance (even though we use 8𝑘 samples per
pixel for image generation).

For the 50 rough materials, we observe notable, and unexpected,
differences between the error curves for the MSVG and Heitz mod-
els compared to the GGXVG and GGX BRDF models. First, the
MSVG model yields a lower data fidelity (i.e., higher 𝐿2 fitting error)
compared to all the other BRDF models (Figure 3 left-bottom). We
conjecture that this is due to the singularity in the MSVG model’s
multiple scattering lobe, causing an overestimation of the BRDF’s
diffuse term to compensate for the error in the specular term as
illustrated in Figure 5. A second notable difference is that the sto-
chastic nature of the Heitz model causes it to exhibit a generally

Pearl-Paint GGX MSVG

Figure 5: TheMSVGmodel results in a too diffuse fit (top row)
for the Pearl-paint material due to the model’s singularity
in the reflected direction, visible under directional lighting
(bottom row).

Yellow-Plastic GGX Heitz

Figure 6: BRDF slices at 𝜙𝑑 = 90◦ show that the fitted GGX
and Heitz BRDFs for the Yellow-Plastic material are missing
the Fresnel peak present in themeasured BRDF (bottom row),
resulting in the yellow rim highlight to be missing from the
rendered images (top row).

higher 𝐿2 error than the GGX and CT BRDF models (Figure 3 left-
top). However, the Heitz model’s adaptive image error is generally
lower (Figure 4 left-top). Furthermore, the CSSIM errors of the Heitz
models fitted using the cosine weighted 𝐿2metric also shows similar
or better visual fidelity compared to the standard GGX model 2.
However, the visual improvement is subtle for the vast majority of
the rough materials, mainly due to two reasons: Multiple scattering
transport is not the main source of fitting errors and visual similarity
of single scattered and multiple scattered reflectance.

Multiple scattered Transport is not the Main Source of Fitting Errors.
We focus our investigation on the top 10 rough materials with
the worst visual errors when using the GGX model (those with
CSSIM greater than 0.01) and observe little difference in visual
errors between GGX and Heitz models (the red box enclosed region
in Figure 4 left-top). For these materials we observe that there are
two main types of fitting errors:

• Poor fitting of the specular highlight. Metals in MERL dataset
often show a soft specular fall off in addition to an intense
specular peak. This dual specular lobe appearance falls out-
side the representative space of what can be modeled by a

2This error graph is provided in the supplementary report
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Figure 7: The Utah Teapot under environment lighting with
GGX and Heitz BRDF models using their fitted parameters
for Alum-Bronze and difference(𝑥2) images (left to right):
|𝐻𝑒𝑖𝑡𝑧 (𝑝𝐻𝑒𝑖𝑡𝑧) −𝐺𝐺𝑋 (𝑝𝐺𝐺𝑋 ) | ∗ 2, 𝐺𝐺𝑋 (𝑝𝐺𝐺𝑋 ), 𝐻𝑒𝑖𝑡𝑧 (𝑝𝐻𝑒𝑖𝑡𝑧),
𝐺𝐺𝑋 (𝑝𝐻𝑒𝑖𝑡𝑧), and |𝐻𝑒𝑖𝑡𝑧 (𝑝𝐻𝑒𝑖𝑡𝑧) −𝐺𝐺𝑋 (𝑝𝐻𝑒𝑖𝑡𝑧) | ∗ 2.

single GGX lobe. Heitz et al. [2016] showed that the multiple
scattering lobe looks like a scaled-down version of the single
scattering lobe. As a consequence, these multiple scattering
models also cannot model this second soft specular fall off.

• Poor fitting of grazing reflections. Burley [2012] noted that the
grazing reflectance behavior includes Fresnel and grazing
retro-reflection in rough material in the MERL dataset due to
subsurface scattering and fiber scattering. These effects can
not be modeled by the linear combination of a Lambertian
and a microfacet model, as shown in Figure 6 where we
compare cosine weighted 𝜙𝑑 = 90◦ slices of the Yellow-
Plastic material (i.e., one of the worst fitted rough materials)
fitted with the GGX and Heitz BRDF models. While the Heitz
model exhibits a brighter grazing specular peak in the slice
image, the yellow highlight stripe near the Fresnel peak is
missing for both models.

Visual Similarity of Single Scattered and Multiple Scattered Re-
flectance. Due to the inclusion of multiple scattering, rendering the
Heitz model using the same parameters as the GGX BRDF for a
rough material would result in a brighter image as more energy
is preserved (right most image in Figure 7 shows the difference
between the Heitz and GGX models using fitted parameters from
the Heitz model for Aluminum-Bronze). Yet, the visual differences
between the fitted Heitz and GGX BRDF models are barely visible
for the majority of the rough MERL materials (left most image in
Figure 7 shows the difference between the fitted Heitz and GGX
models for Aluminum-Bronze), because the fitting procedures com-
pensate by increasing the specular albedo and roughness for the
standard GGX model. We show in our supplementary report that
for most of the rough materials, the specular albedo and rough-
ness 𝛼 for the GGX model fits are higher than the corresponding
parameters in the Heitz BRDF fits. 3

From the above observation we can conclude that even though
the standard GGX microfacet BRDF model loses energy for rough
materials, it is possible to compute an appropriate 𝑎𝑙𝑏𝑒𝑑𝑜 ′ and
𝛼 ′ such that 𝐺𝐺𝑋 (𝑎𝑙𝑏𝑒𝑑𝑜 ′, 𝛼 ′) closely matches the behavior of
𝐻𝑒𝑖𝑡𝑧 (𝑎𝑙𝑏𝑒𝑑𝑜, 𝛼); see Figure 7. While our experiments confirm that
the Heitz BRDF model is an accurate model of multiple scattering
reflection effects on rough surfaces, it is expensive to compute and
its stochastic nature often requires 8𝑥 samples for convergence.
Instead, computing an adaptive image based fit of a GGX BRDF to
match the appearance of the Heitz model, means we can approxi-
mate the effects of multiple scattering efficiently and accurately in
real time applications as well as physically based rendering systems
without the computational overhead of the Heitz model.

3We scaled the difference images in Figure 7 by 2x to make them more visible.

4 SUMMARY
We provide an experimental confirmation of prior observations
by Burley et al. [2012] on single scattering models and Heitz et
al. [2016] on multiple scattering through a comprehensive anal-
ysis of three single scattering microfacet models and the three
GGX-based multiple scattering models using the MERL dataset.
In addition, we presented several new insights on the ability and
limitations of these models:

• The shape of the microfacet distribution function is most
important for smooth materials, as indicated by the dramatic
difference in fitting quality difference between the Cook-
Torrance and GGX based models for metals.

• The impact of the shadowing and masking term increases
with roughness, as shown by the decrease in fitting quality
of the V-groove vs. Smith shadowing and masking term for
rough materials vs. smooth materials in the MERL dataset.

• The combination of a Lambertian component and a GGX
specular lobe can well approximate the appearance of MERL
materials without a double specular highlight or strong graz-
ing highlight.

• For most of MERL materials, a regular single scattering GGX
specular lobe can approximate the appearance of a Heitz
multiple scattering specular lobe by appropriately adjusted
parameters.

In the future, we would like to include physical constraint such
as energy conservation and plausible Fresnel values in the fitting
procedures and evaluate whether the above conclusions still hold.
Furthermore, wewould also like to explore using the adaptive fitting
method to perform parameter inversion to account for multiple
scattering effects in microfacet models.
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