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Abstract
This paper presents a deep learning based method for estimating the spatially varying surface reflectance properties from a
single image of a planar surface under unknown natural lighting trained using only photographs of exemplar materials without
referencing any artist generated or densely measured spatially varying surface reflectance training data. Our method is based
on an empirical study of Li et al.’s [LDPT17] self-augmentation training strategy that shows that the main role of the initial
approximative network is to provide guidance on the inherent ambiguities in single image appearance estimation. Furthermore,
our study indicates that this initial network can be inexact (i.e., trained from other data sources) as long as it resolves the
inherent ambiguities. We show that the single image estimation network trained without manually labeled data outperforms
prior work in terms of accuracy as well as generality.

CCS Concepts
•Computing methodologies → Reflectance modeling;

1. Introduction

Modeling the appearance of a spatially varying material is a chal-
lenging problem that has spurred significant research interest over
the past decade. Recent solutions have endeavored to estimate spa-
tially varying surface appearance from a single image of a pla-
nar surface under a variety of lighting conditions, ranging from
flash lights [AAL16, DAD∗18] to uncontrolled natural illumina-
tion [LDPT17]. Appearance estimation from a single image is espe-
cially difficult and a highly ill-posed problem, resulting in a variety
of ambiguities that are resolved by exploiting prior knowledge on
either the lighting or material properties. For example without mak-
ing any assumptions, one trivial (and undesired) solution would be
to bake in the lighting, normal variations, and specular properties
in the diffuse albedo texture.

In this work, we focus on estimating the spatially varying appear-
ance from a planar surface under unknown and uncontrolled natural
lighting. Recently, Li et al. [LDPT17] proposed to use deep learn-
ing to leverage prior knowledge of natural materials. A key chal-
lenge for any deep learning solution is to gather a sufficiently large
labeled training dataset. Li et al. introduce a novel training strategy
named self-augmentation that leverages the information embedded
in a large set (> 1000) of unlabeled photographs of spatially vary-
ing materials to augment a rough approximative convolutional neu-
ral network trained on a very small set (< 100) of labeled training

data consisting of a diffuse albedo map, a normal map, and specular
reflectance properties for each training material.

In this paper we explore two fundamental questions via a se-
ries of carefully crafted experiments regarding Li et al.’s self-
augmentation training strategy in the context of single image ap-
pearance estimation under uncontrolled lighting. First, can self-
augmentation train a network from only unlabeled data? Second,
what role does the initial approximative network play in the train-
ing process? Is it possible to relax the accuracy of this initial net-
work? To answer these questions, we design a synthetic test dataset
and perform a series of experiments. From these experiments we
conclude that self-augmentation cannot resolve the inherent ambi-
guities in single image appearance estimation without proper guid-
ance from the labeled training data. Furthermore, we also show that
the initial network does not need to be trained on labeled data from
the same distribution as the unlabeled training data, as long as it
resolves the ambiguities inherent to spatially varying appearance
estimation of the target material distribution under unknown nat-
ural lighting from a single image. We denote such a training set
as inexact in contrast to the commonly used exact training data
drawn from the exact same distribution as the target distribution.
We leverage this knowledge, and propose a method for synthesiz-
ing inexact labeled data (i.e., spatially varying appearance maps
drawn) directly from the unlabeled dataset that yields a network
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that not only outperforms Li et al.’s [LDPT17] solution, but also
produces a single network suited for multiple material categories.

In contrast to prior and concurrent work that either uses multi-
ple images [AWL15, HSL∗17], requires a specific lighting condi-
tion [DAD∗18,LSC18], or requires labeled training data [LDPT17,
DAD∗18, LSC18], our method has the ability to predict spa-
tially varying reflectance properties using only information gath-
ered from photographs mined from uncontrolled online photo-
repositories, and without the need for artist generated or densely
measured spatially varying appearance training data.

In summary, our contributions are:

• a synthetic training dataset for qualitative and quantitative eval-
uation of deep learning training strategies on spatially varying
appearance;
• novel insights regarding self-augmentation and the introduction

of inexact but ambiguity free supervision; and
• a novel method for training a general network for estimating real-

world spatially varying appearance from a single image under
unknown natural lighting using only unlabeled training data.

2. Related Work

There exists an extensive body of prior research on reflectance
modeling. For brevity, we focus our discussion of related work
on methods that estimate the surface reflectance from a single
RGB image. We refer to the comprehensive surveys of Dorsey et
al. [DRS08] and of Weinmann and Klein [WK15] for an in-depth
overview of general reflectance modeling. Modeling surface re-
flectance from a single image is an ill-posed problem, and several
strategies have been employed to better constrain the system by ei-
ther restricting the material properties, or by constraining the light-
ing.

Restricted Material Properties Early work in reflectance esti-
mation from a single image assumes a homogeneous object with
known geometry and exploits either prior distributions of (un-
known) natural lighting and/or natural materials [RZ10, LN12,
LN16]. Rematas et al. [RRF∗16] leverage a convolutional neural
network to estimate the reflectance map from a single photograph
of a homogeneous object of unknown shape and under unknown
illumination. This work was further extended [GRR∗17] to esti-
mate the reflectance properties. Unlike the above methods that are
limited to homogeneous materials, Barron et al. [BM15] allow for
spatial albedo variations for purely Lambertian materials, and solve
for shape, (low frequency) lighting, and albedo and normal maps.
Our method is not limited to diffuse and/or homogeneous materials.

Constraints on Lighting Conditions An alternative strategy to
better constrain the estimation of reflectance properties relies on
active illumination. Wang et al. [WSM11] use a step-edge light-
ing condition to infer spatially varying surface normals, as well
as the reflectance properties, of a homogeneous material. Xu et
al. [XNY∗16] recover piecewise constant surface reflectance from
an optimized near-field observation lit by a directional light source.
Aittala et al. [AAL16] exploit the self-similarity of stationary ma-
terials to estimate spatially varying normals and reflectance prop-
erties using a deep texture synthesis framework from a single pho-
tograph of a planar material sample under flash lighting. Instead of

relying on active illumination, Oxholm and Nishino [ON12,ON16]
rely on passive but known illumination to recover the shape and
homogeneous surface reflectance from a single photograph of an
object under natural illumination. All these methods require either
active illumination or full knowledge on the lighting, which ex-
cludes their applicability to input photographs acquired under un-
controlled capture conditions, such as those mined from internet
image repositories. Our method does not make any assumptions on
the incident lighting, while retaining the capability to estimate plau-
sible spatially varying surface reflectance properties from a single
image.

Deep Learning based Methods In concurrent work, Deschaintre
et al. [DAD∗18] use a flash-lit photograph as input to a convolu-
tional neural network designed to consider global information pro-
vided by local lighting and texture detail to estimate spatially vary-
ing surface reflectance. In other concurrent work, Li et al. [LSC18]
propose a new network architecture and a differentiable densely
connected conditional random field post-processing step trained on
a large synthetic training data set for single image reflectance re-
covery under arbitrary environment lighting augmented with addi-
tional flash lighting to further regularize the process. Li et al. also
demonstrate that their architecture is suited for reflectance recov-
ery from environment lighting only. Both the concurrent works of
Deschaintre et al. [DAD∗18] and Li et al. [LSC18] introduce im-
proved deep learning architectures for reflectance estimation, while
relying on large synthetic training data sets. In this paper, we focus
on the complementary problem of reducing the required amount of
labeled training data.

Closest related to our work is Li et al.’s [LDPT17] convolu-
tional neural network based solution for estimating spatially vary-
ing surface reflectance for a particular material class (e.g., wood,
plastic, and metal) from a single photograph under an unknown
natural lighting condition. A key issue in training such a net-
work is to gather a sufficiently large training dataset of densely
measured spatially varying surface reflectance. Li et al. propose
a novel training strategy called “self-augmentation” that only re-
quires a small labeled training set augmented by a larger collection
of unlabeled photographs of the target class of materials. In self-
augmentation, an initial approximative convolutional neural net-
work is first trained from a small set of labeled training data consist-
ing of spatially varying reflectance parameters and corresponding
images of the material under natural lighting. Next, the network is
refined in an iterative fashion using the unlabeled training data and
knowledge of the exact inverse process of the target network (i.e.,
rendering of reflectance parameters under natural lighting). The
current approximative network is used to generate provisional re-
flectance parameters from the unlabeled photographs, and for each
set of provisional reflectance parameters, a corresponding image is
rendered under a randomly chosen natural lighting condition. This
rendered image, in conjunction with the provisional reflectance pa-
rameters, forms a valid labeled training pair and is used to further
train the estimation network. To avoid drift, self-augmentation al-
ternates between training from labeled training data and generated
training data (from the unlabeled images).

In this paper, we build on, and significantly expand on Li et
al.’s self-augmentation training strategy by removing the need of
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labeled data, enabling us to train a network from just unlabeled
photographs. Furthermore, the resulting network is not geared to-
wards a particular material class, but general.

3. Empirical Study of Self-augmentation

Before introducing our novel training method for convolutional
neural networks for estimating the spatially varying surface re-
flectance of a planar exemplar from a single image under unknown
lighting in Section 4, we first conduct a series of experiments to
answer two fundamental questions regarding Li et al.’s [LDPT17]
self-augmentation training strategy, namely: (1) what is the role of
the initial approximative network, and (2) how exact does this ini-
tial network need to be. The answers to these questions will in-
form the design of our novel training strategy that allows us to train
such networks from only a collection of unconstrained photographs
of spatially varying materials, i.e., without relying on any labeled
training data.

To conduct our experiments and answer the above two questions,
we first introduce a novel synthetic training dataset (Section 3.1) for
spatially varying appearance modeling. Modeling the appearance
distribution of real-world materials is a challenging and interest-
ing research question. However, we note that in order to explore
the fundamental questions we do not need to exactly model the
space of physical appearance, but only need a synthetic dataset that
shares the typical characteristics of real world appearance. Given
this synthetic dataset, we perform two carefully crafted empirical
experiments (Section 3.3 and 3.4) to better understand the limits
of self-augmentation as well as to gain a better intuition on the
role of the initial approximative network in self-augmentation. The
outcome of this empirical study leads us to conclude that (1) self-
augmentation requires an approximative initial network to resolve
the ambiguities inherent to reflectance estimation from a single im-
age, and (2) the labeled data used to train the initial network does
not need to be exact, and can be sampled from a different material
distribution as the unlabeled images (and thus the target distribu-
tion), as long as it resolves the ambiguities embedded in the target
distribution.

3.1. Synthetic Training Dataset

Ideally, the study of the properties of self-augmentation in the con-
text of surface reflectance estimation from a single image under un-
known lighting should be performed on real measured datasets that
perfectly reflect the properties of the target materials. However, one
of the key motivations of Li et al. [LDPT17] for introducing self-
augmentation was to address the lack of sufficiently large measured
spatially varying appearance datasets. The lack of such datasets
also impedes our study of the properties of self-augmentation as
we also require a large enough validation and training dataset. In-
stead we opt to create a synthetic training and validation dataset.
However, such a dataset needs to be carefully designed to mimic
the relevant properties of real-world materials. Accurate procedu-
ral modeling of physical materials is still an open research problem.
Fortunately, we note that for the purpose of the empirical study,
we do not require an exact replica of the distribution of real-world
materials, but only require a dataset that covers a wide range of

texture distributions that include low frequency and high frequency
features, and supports easy generation of samples.

As in Li et al. we will focus on spatially varying materials with
a homogeneous specular component and spatially varying diffuse
texture and surface normals. We will rely on a random mixture
of two procedural texture primitives based on Perlin noise [Per02]
for the spatially varying diffuse albedo and surface normals, and
a Ward BRDF [War92] with random parameters for the homoge-
neous specular component.

Procedural Texture Primitives We define the spatially varying
diffuse albedo map and normal map through two procedural texture
primitives: a smooth map fp and a map that exhibits sharp texture
features fe.

We directly use the Perlin noise function [Per02] as the smooth
texture primitive: fp(x,y,s), where x and y are the 2D surface co-
ordinates, and s is the seed vector of random variables. The Perlin
noise grid is defined by a spacing of distance d where 1/d is uni-
formly sampled (per texture) in [10.0,20.0]. The random sampling
of d ensures that our synthetic dataset contains multiple scales of
smooth features.

Natural textures exhibit not only smooth features, but also sharp
edges. We therefore define a second texture primitive to model this:

fe(x,y,s)=


0, 0≤ fp(x,y,s)< 0.499
0.5( fp(x,y,s)−0.499), 0.499≤ fp(x,y,s)≤ 0.501
1, 0.501 < fp(x,y,s)≤ 1.

(1)

Diffuse Albedo Map We procedurally generate diffuse albedo
maps as a mixture of smooth and sharp texture features:

A(x,y) = c0 +
m

∑
i=1

ci fp(x,y,si)+
n

∑
i=1

c(m+i) fe(x,y,s(m+i)), (2)

where ci are random RGB color triplets, and c0 is the texture’s
base color. Thus each diffuse texture is characterized by the set:
(c0, ...,c(m+n),s). We set m and n, the number of smooth and sharp
components respectively, such that m+ n is either equal to 1 or 2.
We generate the same number of diffuse albedo textures for each
of the 5 combinations of m and n.

To ensure a uniform color distribution over all diffuse albedo
textures, we perform a histogram regularization over all pixels and
textures.

Normal Map The normal maps are generated from the gener-
ated diffuse albedo maps by converting each diffuse albedo map
to a height field based on each pixel’s intensity. To ensure a good
distribution of height variations, we normalize each height map to
the [0,1] range, and subsequently scale it by a global scale fac-
tor uniformly chosen from [−0.1,0.1]. Finally, we convert to the
height map to a normal map via discrete differentiation. Note how-
ever, that we do not “link” the generated normal and albedo maps;
during training we will consider all possible combinations (Sec-
tion 3.2).

Specular Surface Reflectance Modeling We assume a homoge-
neous specular component over the surface modeled by a Ward
BRDF [War92] with the logarithm of the specular albedo uniformly
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Width×Height×Channel Convolution (3×3 kernel, stride 1) + BN + ReLU

Width×Height×Channel Convolution (3×3 kernel, stride 2) + BN + ReLU

Width×Height×Channel Bilinear upsample + Convolution (3×3 kernel, stride 1) + BN + ReLU

FC Output Fully connected layer + ReLU

a) Network for homogeneous parameter b) Network for spatially varying map
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Figure 1: Overview of the network structure. The left network
structure is used for estimating the homogeneous specular albedo
and roughness parameters. No activation layer was used for the
last fully connected layer, and we predict the logarithm of the re-
spective parameters. The right network is similar to the network
structure by Li et al. [LDPT17] and it estimates the spatially vary-
ing diffuse albedo and normal maps. The last convolution layer
foregoes batch normalization and uses a Sigmoid activation func-
tion instead of the common ReLU function.

sampled in [log(0.01), log(0.4)] and the logarithm of the roughness
uniformly sampled in [log(0.01), log(0.6)].

3.2. Network Structure and Training Settings

Convolution Neural Network Structure Our network structure
follows Li et al.’s [LDPT17] network structure, with a slightly mod-
ified specular subnetwork as we observed some overfitting in Li et
al.’s network. Figure 1 summarizes our network structure. Identical
to Li et al., our network for estimating the diffuse albedo map and
normal map follows a U-net structure which consists of a down-
sampling encoder stage followed by a upsampling stage with cor-
responding layers linked through “jump links”. The network struc-
ture for estimating the specular albedo and roughness uses an iden-
tical downsampling encoder stage as the diffuse albedo and normal
map networks. The decoder stage consists of two fully connected
layers: the first reduces the output to a 512 length vector, and the
second fully connected layer reduces this further to a single output
value, i.e., the logarithm of the specular albedo and roughness re-
spectively. We use four fully separated networks to estimate each
of the four components (i.e., spatially varying diffuse albedo map,
spatially varying normal map, (log) specular albedo, and (log) spec-
ular roughness). The four networks are trained using a L1 loss on
each of the components as opposed to the L2 loss used by Li et
al. [LDPT17]. We use this network structure for all experiments
in this paper. To provide a fair comparison, we also retrain Li et
al.’s SA-SVBRDF networks for wood, metal, and plastic using this
network structure and the L1 loss functions.

Decorrelated Training As we generate normal maps directly from
the diffuse albedo maps, the variations between both will be corre-
lated. To cover a broader range of materials, we decorrelate dif-
fuse albedo textures and surface normals maps using a novel outer-
product training strategy. At the beginning of each epoch, we place

all diffuse albedo maps, normal maps, specular albedos and rough-
ness in four separate sets (i.e., one for each reflectance compo-
nent). Then, we generate new training samples by randomly select-
ing and combining a component from each of the four sets. This
process corresponds to taking a random sample from the outer-
product space of the four reflectance component sets. Over a large
number of epochs this will result in the network being trained on
each possible combination from the outer-product over each of the
components. This training strategy does not only decorrelate dif-
fuse albedo textures and normal maps, it also increases the size of
the learned appearance space. We apply this outer-product training
strategy to all experiments in this paper.

Training For self-augmentation we require both labeled and un-
labeled training exemplars. We generate 5,000 labeled exemplars
(i.e., we synthesize 5,000 diffuse albedo maps, normal maps, spec-
ular roughness values, and specular albedo values), and apply a
random reordering of the components to decorrelate diffuse albedo
and normals. Similar to Li et al. [LDPT17] we also generate, dur-
ing training, a corresponding input image under a randomly chosen
and rotated environment map. We also generate 10,000 unlabeled
exemplars. We follow a similar process as for the labeled exem-
plars, except that we render (and retain) the corresponding image
before training, and discard the reflectance components. We also
generate 1,000 validation exemplars similar to the labeled data, for
which we pre-render and fix the images before training, and we
retain all reflectance components. We use the same validation set
(and corresponding rendered images) for all experiments.

We train the reflectance estimation network using the Adam
optimizer. We first train the initial approximative network for
50,000 iterations on labeled training data, followed by 50,000 self-
augmentation training steps. For each self-augmentation step, we
train on a mini-batch of 16 labeled data exemplars, and a mini-
batch of the same size of unlabeled data. We set the initial learn-
ing rate to 0.001 and apply an inverse time decay (rate = 0.0001):
learningrate = 0.001/(1+0.0001∗ step).

3.3. Experiment 1: Ambiguity

Estimating the surface reflectance from a single image under un-
known lighting is a highly ill-posed problem with many ambi-
guities. For example, a trivial solution would be to assign all re-
flectance to the diffuse albedo texture, with zero specular, and set
the normals to the equivalent of a flat surface. To resolve such am-
biguities, classic data-driven methods bias the solution to a pre-
ferred solution embedded in the training data. Self-augmentation
has a similar requirement to ensure correct resolution of ambigui-
ties. We posit that the self-augmentation training strategy requires
complete (i.e., ambiguity free) labeled training data in order to train
a correct network, and that no matter how much unlabeled training
data is used, ambiguities unaddressed by the labeled data cannot
be corrected. We validate this conjecture empirically, and generate
three different target spaces using the texture primitives described
in Section 3.1:

• Regular Target: is the full target space as described in Sec-
tion 3.1.

• Trivial Target: is the target space where all reflectance is as-
signed to the diffuse albedo texture. To construct this space, we
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Model Diffuse Loss (e-2) Normal Loss (e-2)
Specular Albedo

Loss (e-1)
Specular Roughness

Loss (e-1)
Regular Target 4.843 3.179 3.470 3.844
Trivial Target 11.25 6.768 41.49 18.25

Mixture Target 8.605 6.748 7.335 7.258

Table 1: Average loss for each of the reflectance components for the models trained on the Regular, Trivial, and Mixture targets.
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Figure 2: A comparison of the estimated reflectance component
results from the networks trained on the regular (2nd column), triv-
ial (3rd column), and mixture (last column) targets. From top to
bottom shows the rerendered image, recovered diffuse albedo map,
normal map, and the specular BRDF applied to a sphere under
a directional light source. The “rendering” row shows the input
image for the “reference” column, and the rendering of estimated
components under the input lighting for the other columns.

gather all the rendered images from the training dataset, and
change their reflectance labels such that the diffuse albedo tex-
ture equals the rendered image, the normal map is uniformly
aimed up, and the specular albedo and roughness are set to
fixed values indicating very weak specular (0.001 and 0.5 re-
spectively).
• Mixture Target: consists of 50% from the regular target and

50% from the trivial target.

Both the regular and trivial target space are complete, but mutually
ambiguous, and the mixture target is highly self-ambiguous. For
each set we generate a labeled, an unlabeled, and a validation set
as described before, and train a reflectance estimation network with
self-augmentation. Note that due to the construction, the unlabeled
training data is the same for all three cases.

Table 1 and Figure 2 show the results for each of the three cases.
The network trained for the regular target space produces plausi-

ble results for the validation test set, and the model is able to suc-
cessfully separate the diffuse and specular components for a given
image. Similarly, the network trained on the trivial target space,
produces the expected output where all the specular reflectance is
assigned to the diffuse albedo. Finally, the network trained on the
mixture target produces a result that is neither fully separated or
fully diffuse, defaulting to a mix of both. Hence, this network is
unable to solve the ambiguities inherent to single image reflectance
estimation when the labeled training data does not adequately re-
solve these ambiguities.

From this experiment we conclude that although self-
augmentation uses a perfect inverse mapping (i.e., rendering) to
refine the network from the unlabeled photographs, it ultimately
relies on the initial network trained on the labeled data to disam-
biguate the unlabeled training data. If the labeled training data is
ambiguous (e.g., as in the case of the mixture target), then self-
augmentation cannot correct the behavior of the network. Further-
more, even if all labeled training data are complete with respect to
a specific space (e.g., all reflectance is due to the diffuse albedo),
then self-augmentation cannot alter the networks disambiguation
preference to another space (e.g., correctly separated diffuse and
specular reflectance).

Conclusion The role of the initial approximative network, and thus
labeled training data, is to provide cues on how to disambiguate the
input in the target domain.

3.4. Experiment 2: Exactness of Initial Network

A key unwritten constraint in most data-driven methods is that the
labeled training data is drawn from the same distribution as the tar-
get space. However, in practice it is not always possible to collect
such labeled data, for example because the target distribution is not
known, or because it is very expensive to generate labeled train-
ing samples. In many cases, using inexact labeled training samples
drawn from a different distribution incurs a performance penalty.
The goal of this second experiment is to validate the robustness of
the self-augmentation training strategy, and in particular of the ini-
tial approximative network, with respect to inexact training data.
The experiment detailed in this subsection will show that self-
augmentation does not require exact labeled training data, and that
any inexact set of labeled training data can be used as long as it
correctly addresses the ambiguities in the desired target space.

For this experiment we again create three different training sets
based on the synthetic texture primitives introduced in Section 3.1:

• Regular Target is the full target space as before and as described
in Section 3.1.

• Smooth Target only uses the smooth texture primitive fp.
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Test set Model Iterations Diffuse Loss (e-2) Normal Loss (e-2)
Specular Albedo

Loss (e-1)
Specular Roughness

Loss (e-1)

Sharp

Regular 50k 5.710 2.514 3.695 4.856
Regular-to-Sharp 100k 5.258 2.370 3.492 3.831

Regular-to-Smooth 100k 6.874 2.684 3.711 3.906
Sharp-to-Sharp 100k 4.237 1.750 3.157 4.038

Sharp-to-Smooth 100k 6.094 3.500 3.854 5.344
Smooth-to-Sharp 100k 11.91 6.210 10.48 16.50

Sharp 50k 4.714 1.852 3.467 5.091
Smooth 50k 15.87 10.96 12.30 13.62

Smooth

Regular 50k 5.724 4.252 4.298 4.694
Regular-to-Sharp 100k 5.842 4.942 4.102 3.910

Regular-to-Smooth 100k 5.342 4.244 4.107 3.637
Smooth-to-Smooth 100k 4.718 3.285 3.132 3.042
Sharp-to-Smooth 100k 10.33 8.957 6.739 7.222
Smooth-to-Sharp 100k 6.761 6.086 3.733 3.678

Sharp 50k 9.808 8.072 6.534 6.793
Smooth 50k 4.895 3.532 3.412 3.433

Table 2: Average loss for each of the reflectance components on networks trained on different combinations of the Regular, Sharp, and
Smooth targets for the labeled and unlabeled datasets. The loss is computed for the Sharp and Smooth validation test sets.

Sharp
Reference

Regular-
to-Sharp

Regular-
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Baseline
Sharp-
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Reference

Regular-
to-Sharp

Regular-
to-Smooth

Baseline
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Figure 3: Two selected examples of reflectance estimation with a network trained on inexact labeled data. The input of the first example (left)
is drawn from the Sharp validation set, and from the Smooth validation set for the second example (right). A baseline comparison is shown
for each example (Sharp-to-Sharp and Smooth-to-Smooth respectively).

• Sharp Target only uses the sharp texture primitive fe.

We also generate two additional validation test sets in the smooth
and sharp target space. To demonstrate the exactness of the train-
ing dataset, we consider different combination of labeled training
exemplars and unlabeled exemplars drawn from the different target
spaces. We will denote by “x-to-y” the network with the initial net-
work trained with labeled data drawn from “x” and self-augmented

with unlabeled training data drawn from “y”. Table 2 shows the av-
erage loss for each network when validated on a test set drawn from
the smooth or sharp target spaces. Figure 3 shows a visualization
of two selected examples from this experiment.

From these results we can see that:

• regular-to-sharp outperforms regular-to-smooth on the sharp
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Unlabeled photographs

Texture
synthesis

Normal 
map

generation

Self-augmentation 
training

Diffuse maps Normal maps

Specular roughness and albedos

Random 
generation

Decorrelation 
outer-product 
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Figure 4: Summary of our self-augmentation method with inexact supervision for surface reflectance estimation from a single image under
unknown natural lighting.

validation set. We see a similar result on the smooth validation
set.
• sharp-to-sharp outperforms the sharp (without self-

augmentation) on the sharp validation set. Again, a similar
result holds for the smooth validation set.
• regular-to-sharp outperforms regular (without self-

augmentation) on the sharp validation set. regular-to-sharp does
not quite achieve the same accuracy as sharp or sharp-to-sharp.
Note that the sharp target space is a subset of the regular target
space and thus the ambiguities inherent to the sharp target space
are resolved in the regular target space.
• smooth-to-sharp does not univocally perform better than only

smooth. The smooth target space does not overlap the sharp tar-
get space, and it is therefore unlikely to completely address the
ambiguities in the sharp target space. Again, we can draw similar
conclusions for sharp-to-smooth on the smooth target space.

Conclusion Self-augmentation does not require that the labeled
training data is drawn from the same distribution as the target
distribution. However, it does require that the ambiguities inher-
ent to the problem are clearly disambiguated. In most cases, self-
augmentation will succeed from inexact labeled training data if the
distribution of the labeled training data has significant overlap with
the target distribution.

4. Self-augmentation with Inexact Supervision

Our experiments in Section 3 indicate that self-augmentation can-
not succeed without labeled training data to resolve the ambiguities
inherent to appearance estimation from a single image. Further-
more, our empirical study also indicates that the labeled data does
not need to be drawn from the target distribution, as long as it ad-
dresses the ambiguities in the target distribution. In this section we
will leverage this knowledge and design a pipeline to train a real-
world single image surface appearance estimation network from
unlabeled photographs only. While this goal seems to contradict
our first observation regarding the need for labeled training data,
we will exploit the second observation by synthesizing an inexact
labeled training set directly from the unlabeled images without the
need for manual labeling.

4.1. Labeled Data Synthesis

A key ambiguity in single image reflectance estimation is to cor-
rectly prorate the observed reflectance to the diffuse and specular

reflectance. The labeled data, thus, provides guidance on how to
decide which observed image structures are due to diffuse albedo
variations and which are due to the specular reflections. Ideally, we
would like to synthesize labeled training data that retains the diffuse
albedo texture structures without specular “pollution”. Removing
the specular reflections directly from the unlabeled photographs is
exactly what we would like the final network to do. To overcome
this conundrum, we exploit the prior result that the labeled data
does not need to be sampled from the same distribution as the tar-
get distribution. Hence, any set of labeled training data that comes
from a similar, but different, distribution and which addresses the
ambiguities suffices as a starting point for self-augmentation. Our
solution is to synthesize the diffuse albedo maps, using neural tex-
ture synthesis, from the unlabeled photograph. The key idea is that
the texture synthesis will retain the essence of the diffuse albedo
structure, while destroying the undesired spatial structure of the
specular reflections.

4.2. Practical Implementation

To synthesize the diffuse albedo maps, we largely follow the neu-
ral texture synthesis method of Gatys et al. [GEB15] with minor
modifications. Instead of using 5 layers from the VGG feature map
to compute the Gram matrix, we instead only use the 3 first layers
(i.e., conv1_1, pool1, and pool2) to place more emphasis on the low
level texture features. We synthesize slightly larger textures (10 ad-
ditional pixels on all sides) and crop the center to avoid artifacts at
the boundaries.

Normal maps and specular reflectance properties are synthesized
following a similar process as in Section 3.1; we generate the nor-
mal map by converting the synthesized diffuse albedo maps to
height maps, and randomly generate specular roughness and albe-
dos. Since we have no knowledge on the presence or absence of
correlations between the different reflectance components, we de-
fault to the least restrictive, and assume there is no correlation. We
therefore, adopt the same decorrelation outer-product training strat-
egy as in Section 3.2. Our labeled data generation process is sum-
marized in Figure 4. Note how the synthesized textures shown in
this pipeline overview differ significantly from the input texture;
the specular structure is destroyed, while the essence of the diffuse
texture is maintained.
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Figure 5: Estimated reflectance components obtained with a network trained with self-augment and inexact supervision. The “rendering”
column depicts the input image for the reference, and a re-rendered image under the same lighting of the recovered reflectance components.
We also show a rendering under “new lighting”.

4.3. Results and Discussion

Training We collect an unlabeled dataset of 4827 images from
the OpenSurfaces dataset [BUSB13] for three types of materials:
wood, metal, and plastics. Unlike Li et al. [LDPT17], we train a
network on all three types of materials simultaneously. From this
unlabeled dataset, we generate a labeled dataset of also 4827 ex-
emplars. With exception of the training data, we follow the same
training settings and procedures as in Section 3.2.

Results We validate the quality of the surface reflectance estimated
by our network on the set of artist modeled spatially varying surface
reflectance for wood, metal, and plastics from Li et al. [LDPT17],
and render an image for each under a randomly chosen environment
map. Figure 5 compares recovered surface reflectance with refer-
ence reflectance components. As can be seen, the network trained
from just unlabeled images is able to infer visually plausible diffuse
albedo maps, normal maps, and homogeneous specular reflectance,
and the re-rendered results exhibit the same visual qualities as the
input image.

In addition, we also compare to a network trained using
self-augmentation only (cf. [LDPT17]) with 60 labeled train-
ing exemplars and the same set of 4827 unlabeled images (Fig-
ure 6). Note: we employ our improved network structure for
both estimation networks. Overall the network trained from un-
labeled images produces better results compared to classic self-

augmentation [LDPT17]. More specifically, the diffuse albedo map
exhibits less artifacts (examples: 1,2,3,4,5,7,9). The normal maps
produced also appear sharper (examples: 1,2,3,6,7,8). Finally,
the predicted specular BRDF is also more accurate (examples:
1,5,6,7,8). We suspect that the synthesized inexact “labeled” train-
ing data exhibits a larger variety. Even though the synthesized la-
beled training data does not exactly match the target distribution, it
contains a denser sampling compared to sparse sampling of materi-
als in the 60 labeled training exemplars [LDPT17]. A similar result
can be observed in Table 3 which compares the average losses over
12 random crops from 25 artist labeled materials each rendered un-
der 5 randomly selected lighting conditions; a total of 1,500 sam-
ples.

While Li et al. [LDPT17] suggest to train a separate network
per material class, we found that this only provides minor quality
improvements. As shown in Figure 6, our network trained with self-
augmentation and inexact supervision outperforms both the general
self-augmented network as well as a per-material class trained self-
augmented network. The latter is trained according to the settings
in [LDPT17] with a labeled dataset size of 40, 30, and 30 for wood,
metal, and plastic respectively, and we use the subset from the 4827
image that matches the material class as the unlabeled training data.

Figure 7 shows results of our single image reflectance estima-
tion network applied to selected photographs mined from online
photo repositories captured under unknown conditions. In this case
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Figure 6: Comparison of reflectance components estimated with our model trained with self-augmentation and inexact supervision (SA +
IS), Li et al.s’ [LDPT17] network trained with only self-augmentation on all materials classes (Full SA), and on Li et al.’s per material
class trained self-augmentation network (SA). The “rendering” column shows the input image for the “reference” row, and the rendering of
estimated components under the input lighting for other rows.

Model
Diffuse Loss

(e-2)
Normal Loss

(e-2)
Specular Albedo

Loss (e-1)
Specular Roughness

Loss (e-1)

Rerendering
input lighting

(e-2)

Rerendering
novel lighting

(e-2)
Self-augmentation

with Inexact Supervision
4.469 3.374 6.553 4.473 0.556 1.148

Self-augmentation [LDPT17] 4.625 3.403 6.001 5.715 0.882 1.193

Table 3: Average loss over a validation set of 1,500 images (obtained from 12 random crops from a set of 25 reference materials rendered
under 5 random lighting conditions) for each of the components and rendered images on networks trained with our self-augmentation with
inexact supervision training strategy and Li et al.’s original self-augmentation strategy [LDPT17] jointly trained on all material classes.
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Figure 7: Reflectance components estimated from photographs
mined from (crops from) online photo repositories (rows 1 to
6; photographs courtesy of fireloopcreative, Chris Pond, Vincent
Tcheng Chang, Barta IV, Jimmy Coupe, Mr Thinktank distributed
under CC BY) and from captured photographs (rows 7 to 12).

we do not have access to the ground truth reflectance components
for comparisons. Nevertheless, visualizations under novel lighting
conditions indicate that the recovered reflectance components are
plausible when the photographs and materials match the conditions
for which the network is trained such as a homogeneous specular
layer, absence of shadows, normal view, and natural lighting con-
ditions.

Discussion A key issue in training neural networks for re-
flectance estimation is to gather a sufficiently large training set.
Self-augmentation attempts to resolve this issue by only using a
small labeled dataset augmented by a large unlabeled dataset. Li et
al. [LDPT17] only use tens of labeled dataset. While this greatly re-
duces the need for acquiring labeled data, it also affects the quality.
First, self-augmentation does not offer any guarantees outside the
space spanned by the labeled data. In higher dimensions, “spanned
space” is difficult to quantify, and thus essentially one needs to stay
close to the labeled data. From the perspective of resolving ambi-
guities, the “spanned space” refers to the space in which the labeled
exemplar provides the necessary guidance to resolve the ambigui-
ties. Second, during self-augmentation, half of the training batches
consists of labeled data. Hence, the model is biased towards the
relatively small space “spanned” by the limited amount of labeled
data.

The proposed method relies on synthesis to overcome the diffi-
culty of gathering labeled data. The property that the initial approx-
imative network can be trained from a different distribution allows
us to generate a large collection of “labeled” training exemplars.
However, the synthesis process needs to be carefully designed and
embed prior knowledge in how to avoid the inherent domain spe-
cific ambiguities. We have designed explicit strategies for this pur-
pose:

1. We use neural texture synthesis to break the specular reflection
patterns (as opposed to the much harder problem of completely
removing the patterns).

2. We have included a decorrelation outer-product training strategy
to avoid baking in the correlations between the diffuse albedo
maps and normals (as a consequence of the fact that normal
maps are generated from the diffuse albedo maps).

3. We exploit robustness with respect to the exactness of the la-
beled data, and use a labeled training set with a different distri-
bution as the unlabeled data.

A key contribution of our empirical analysis is the observation
that the labeled training dataset does not need to be sampled from
the exact same distribution as the target space. This allows us to
use a straightforward texture synthesis technique for generating the
labeled training data. Note, however, that such a synthesized tex-
ture dataset is unsuited for directly training with labeled data only.
While it is possible to manually craft and fine-tune a procedural
texture generator, it will require significantly more user input to
ensure that sufficient properties suitable for training of real-world
textures are maintained.

While our method greatly eases training of convolutional neu-
ral networks for reflectance estimation from a single photograph,
it is not without limitations. We assume that the lighting is distant,
and our method will fail for photographs illuminated by strong lo-
cal lights or when the whole image is covered by a highlight. Our
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method assumes a homogeneous specular component, and will fail
in the presence of strong spatial variations. Our network is trained
for normal view directions and without taking in account shad-
ows from self-occlusion; deviations from these conditions will ad-
versely affect the plausibility of the results. We also assume that
the normal maps can be defined by a height map. This excludes
non-integrable surface normals (e.g., when the surface features are
smaller than a pixel). Finally, we assume that the images are ac-
quired with a fixed field of view (i.e., 60 degrees). While the method
is robust to some variation, when the field of view deviates signif-
icantly, so will the structures in the reflections, and potentially the
network will be unable to disambiguate diffuse albedo texture and
reflections.

5. Conclusion

We presented an empirical study on the properties of Li et
al.’s [LDPT17] self-augmentation training strategy in the context
of spatially varying reflectance estimation from a single image un-
der unknown natural lighting. Our experiments lead us to conclude
that (1) self-augmentation requires an initial approximative net-
work that informs the network on how to resolve the inherent am-
biguities of reflectance estimations from a single image, and (2)
the labeled data required to train this initial network does not need
to be sampled from the same distribution as the target distribution,
as long as it provides guidance on how to resolve the ambiguities
present in the target space.

Based on these two conclusions, we design a novel self-
augmentation training strategy for spatially varying reflectance es-
timation that only requires unlabeled training data. The required
labeled data for training the initial network is synthesized directly
from the unlabeled training data using a neural texture synthesis
method.

For future work we would like to investigate the properties and
constraints on the unlabeled training data, and design automated
gathering strategies that maximize the accuracy of the method. Fi-
nally, our self-augmentation training strategy with inexact supervi-
sion is specifically geared towards reflectance modeling. Our syn-
thesis strategy incorporates domain knowledge to obtain complete
labeled training data. An interesting avenue for future research
would be to generalize this strategy to other problem domains.
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