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Abstract

In this paper, we present Iterative Symmetry Comple-
tion Network (ISCNet), a single depth-image shape comple-
tion method that exploits reflective symmetry cues to obtain
more detailed shapes. The efficacy of single depth-image
shape completion methods is often sensitive to the accuracy
of the symmetry plane. ISCNet therefore jointly estimates
the symmetry plane and shape completion iteratively; more
complete shapes contribute to more robust symmetry plane
estimates and vice versa. Furthermore, our shape comple-
tion method operates in the image domain, enabling more
efficient high-resolution, detailed geometry reconstruction.
We perform the shape completion from pairs of viewpoints,
reflected across the symmetry plane, predicted by a rein-
forcement learning agent to improve robustness and to si-
multaneously explicitly leverage symmetry. We demonstrate
the effectiveness of ISCNet on a variety of object categories
on both synthetic and real-scanned datasets.

1. Introduction
Symmetry is an intrinsic geometric property present in

the vast majority of man-made and natural objects [12, 17],
and which has been exploited to improve the efficacy of ap-
plications such as shape matching [12], segmentation [13],
object retrieval [8], and robotic grasping [34].

In this paper, we aim to leverage symmetry as an aid
for the completion of shapes from partial observations [23,
24, 28]. Recently, Yao et al. [39] presented Front2Back, a
framework for 3D shape reconstruction from a single RGB
image. A key observation in Front2Back is that a (nearly)
complete 3D model can be effectively described by a pair
of 2.5D visible surface images taken from opposite views
(i.e., front and back views). Based on this observation,
Front2Back completes a shape by synthesizing a back view
using a global 3D reflective symmetry plane from a given
front view. However, the reconstruction quality is signifi-
cantly affected by the input front view angle (Figure 1(d)).
Moreover, Front2Back assumes the availability of a ‘per-
fect’ symmetry plane, which in practice is challenging to
obtain from partial observations [21, 22, 45].
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Figure 1. ISCNet more efficiently leverages symmetry cues for
robust shape completion from a single depth image compared to
prior methods.

We present ISCNet (Iterative Shape Completion Net-
work), a single depth-image shape completion method that
explicitly leverages symmetry cues. Our key insight is that
symmetry detection and symmetry-based shape completion
are complementary tasks that can provide constructive cues
to the other task. Symmetry detection can help shape com-
pletion by providing object-centric information about miss-
ing geometrical features, and shape completion can provide
more robust symmetry cues by filling in missing geometry.
Departing from existing work [33] that assumes an ideal
prediction of the symmetry plane, ISCNet iteratively refines
the symmetry plane and the reconstructed shape jointly.
Furthermore, unlike Front2Back [39], ISCNet does not rely
on the initial input viewpoint to a-priori fix the synthetic
back view camera position but instead leverages a trained
reinforcement learning (RL) policy to select optimal pairs
of reflection viewpoints at each iteration. We empirically
found that predetermining the viewpoints is less effective
than RL-based viewpoint selection which can more effec-
tively deal with the dynamic shape of a partial point cloud
during the refinement process.

Specifically, ISCNet takes as input a single depth im-
age and reprojects it to an incomplete point cloud. Instead
of explicitly detecting a symmetry plane, we estimate the
pose [30] that aligns the symmetry plane to the X-Y plane.
Based on the current estimate of the point cloud and sym-
metry aligning pose, an RL agent determines a pair of re-



flection viewpoints, reflected across the symmetry plane, for
extracting a pair of partial depth and normal maps that are
subsequently repaired using a novel 2D inpainting module.
By directly working on depth image pairs, our method is
independent of the size of the point cloud, and it can lever-
age geometry information from the symmetric counter view.
However, because the virtual depth images are reprojections
that differ from the input view, not all reprojected points are
valid (e.g., the backside of points visible through a ‘hole’).
Therefore, we first identify reliable pixels before perform-
ing depth inpainting in the projected image domain. Fi-
nally, we reproject the inpainted maps back to 3D and up-
date the point cloud. We progressively refine the point cloud
by alternating between estimating reflection viewpoints and
completing the point cloud for 20 iterations, updating the
symmetry plane every 4th iteration, to balance efficiency
versus efficacy. When updating the symmetry plane, we
‘reset’ the point cloud to its initial state to mitigate the im-
pact of prior inaccurate symmetry plane estimations on the
shape completion.

We validate that ISCNet produces more accurate shape
completions than existing methods (Figure 1) and confirm
the contribution of each component in our model via a thor-
ough ablation study. In summary, our contributions are: 1)
a novel robust joint symmetry-detection / shape completion
method; 2) a symmetric viewpoint-based 3D shape comple-
tion method for detailed high-resolution shape reconstruc-
tion; and 3) a reinforcement learning-based optimal reflec-
tion viewpoint selection solution for progressive shape com-
pletion.

2. Related Work
Symmetry Detection on 3D Shapes forms a key compo-
nent in many downstream applications ranging from shape
matching [12], to segmentation [13], to 3D object re-
trieval [8], to shape completion [23, 24, 27, 28] and to de-
formable object learning [36]. Symmetry detection of in-
complete shape observations is significantly more challeng-
ing, and recent learning-based solutions have explored the
use of multitask learning [21], sampling the distribution of
plausible shapes [22], and building 3D cost volumes [45]
to predict 3D symmetry planes. An alternative approach
to predicting arbitrarily oriented 3D symmetry planes is
to estimate a camera pose that aligns the local coordinate
frame such that the X-Y plane acts as a canonical symme-
try plane [30, 44]. Our symmetry detection module falls
in this latter category. However, unlike prior work that a-
priori fixes the symmetry information as a prior, we jointly
perform shape completion yielding a more robust and mutu-
ally reinforcing symmetry detection and shape completion.
Learning-based 3D Shape Completion of Partial Point
Cloud Observations have explored coarse-to-fine meth-
ods [15, 41], transformer-networks [37, 40], probabilis-

tic modeling [16], and topology-aware approaches [26] to
complete the 3D point cloud. However, these methods
are memory intensive and their scalability (e.g., beyond
≈ 16384 points) is limited. In contrast, our approach does
not impose such limitation on the number of 3D points as
our method leverages 2D depth inpainting.

Single-image Shape Reconstruction aims to complete ap-
proximately half of the shape either directly from a 2D im-
age [6, 7, 29, 31] or (indirectly) from a 2.5D input [25, 35,
39]. Front2Back [39] estimates, besides depth and surface
normals, also symmetry information to aid in the surface
completion task. However, Front2Back is limited to a single
front-back camera pair. Our method leverages an RL agent
to predict multiple virtual reflection viewpoints for shape
completion, and it takes better advantage of the symmetry
prior by inpainting symmetric image pairs. In addition, we
iteratively refine the symmetry plane to obtain more accu-
rate estimates of both shape and symmetry.

3. Iterative-Symmetry Completion Network

Our Iterative Symmetry Completion Network (ISCNet)
takes a single-view depth map of a target object as input and
iteratively completes the 3D mesh by alternating between
refining the symmetry plane, the virtual reflection view-
points, and the shape completion. To bootstrap the iterative
process, we first project the input single-view depth map to
an incomplete point cloud that is subsequently passed to a
symmetry detection module and point cloud transposition
operator. The symmetry detection module (subsection 3.1)
provides an estimate of the object’s symmetry plane that
is subsequently leveraged by the point cloud transposition
operator to align the point cloud symmetrically around the
estimated symmetry plane. Next, a novel 3D shape comple-
tion module (subsection 3.2) progressively completes the
3D point cloud based on a pair of reflection viewpoints
selected by an RL agent. For each reflection viewpoint
pair, a depth and normal map pair is extracted from the
partial point cloud. Due to the partial completion of the
point cloud, the extracted depth and normal map pairs ex-
hibit holes. To address this issue, we employ a specif-
ically crafted inpainting module, which not only repairs
these holes but also assigns a confidence score to each re-
paired pixel. Next, the inpainted depth and normal maps
are merged into the point cloud guided by their associated
confidence scores. Finally, to improve robustness, we itera-
tively refine the symmetry plane, the reflection viewpoints,
and the shape completion (subsection 3.3). We limit the
number of iterations to 20 and only update the symmetry
plane and reset the point cloud every 4th iteration to balance
robustness versus efficiency; Figure 2 visually summarizes
ISCNet.



Figure 2. Summary of ISCNet: a partial shape extracted from a single depth-image is aligned such that the X-Y plane corresponds to the
(detected) symmetry plane. Next, a pair of depth and normal maps are rendered from reflection viewpoints selected by an RL agent, and
each symmetric pair of synthetic depth and normal maps is inpainted in the image-domain (see also Figure 3). These inpainted maps are
then back-projected to a point cloud and merged. The symmetry plane is updated every 4th iteration, where the merged shape is then
visualized from 3 selected views, vV8 , vV12, and vV13 in this case, passing into the symmetry detection module separately, and the best-
detected symmetry plane (with the highest confidence score ) is used as input for the next iteration.

3.1. 3D Reflection Symmetry Detection

We estimate the symmetry plane of an object via a proxy
task, namely, camera pose estimation, such that the sym-
metry plane aligns in local coordinates with the X-Y plane.
Our Symmetry Detection Module follows the architecture
of DenseFusion [30]. We pass a depth image to obtain a
point cloud, pixel-wise features, and finally a pose estima-
tion. Different from DenseFusion, we only use depth in-
stead of RGB channels, and we do not require an object
segmentation stage. Instead of predicting the symmetry pa-
rameters directly, we found it more robust to estimate a ro-
tation matrix R ∈ SO(3) and a translation vector t ∈ R3

such that the symmetry plane’s center point ps and normal
direction ns are defined by:(

ps
ns

)
=

(
R−1 · ([0, 0, 0]− t)
R−1 · ([0, 0, 1]− t)

)
. (1)

3.2. 3D Shape Completion

Given a predicted symmetry plane, ISCNet progressively
completes the 3D shape. Our shape completion module
consists of three sequential sub-modules: viewpoint selec-
tion, 2D inpainting, and point cloud updating.
Viewpoint Selection Module: ISCNet completes 3D
shapes via 2D projected depth and normal maps. The ex-
act choice of virtual viewpoints from which these depth and
normals are generated is critical for robust shape comple-
tion, and it is sensitive to the irregular structures present
in the partially completed point cloud. As the shape of a
partial point cloud dynamically changes, it is impractical to
pre-determine viewpoints; see our supplementary material
for more details.

We model the problem of selecting a viewpoint vi as a
Markov decision process (MDP) because, similar to [38,

42], we are only concerned about the current state of a
partial point cloud. To this end, we leverage an RL agent
to select an optimal viewpoint trained with an Actor-Critic
Proximal Policy Optimisation (PPO) algorithm [20]. The
RL agent predicts an optimal viewpoint (i.e., action) based
on the current 3D point cloud (i.e., state) to maximize an
appropriately designed reward.

Specifically, the continuous action space of the RL agent
is defined by θ and ϕ angles (Figure 2), with corresponding
viewpoint:

x = a sin θ sinϕ, (2)
y = a cos θ, (3)
z = a sin θ cosϕ, (4)

where θ ∈ [0◦, 180◦] and ϕ ∈ [−180◦, 180◦]; a is set at
1.5m. The view direction is always aimed at the object cen-
ter.

The prediction action reward is determined by four fac-
tors: accuracy Ra, shape completeness Rs, number of re-
covered effective points Rp, and viewpoint diversity Rv .
Ra and Rs encourage an agent to choose a new viewpoint
that benefits the prediction of missing parts from the origi-
nal point cloud. Rp and Rv encourage the agent to increase
the viewpoint diversity. Formally, the reward function for



Figure 3. Detailed visual summary of the viewpoint selection and the 2D inpainting modules.

an action is defined as:

R = w1R
a + w2R

s + w3R
p + w4R

v, (5)

Ra =
1

N (P̂ )

∑
x∈P̂

min
y∈PGT

∥x− y∥22, (6)

Rs = S − S′, (7)

Rp = N ({d(x, P ′) < 0.002|x ∈ P̂}), (8)
Rv = (|θ − θ′|+ |ϕ− ϕ′|)/180 · π, (9)

S =
N ({d(y, P ) < 0.02|y ∈ PGT })

N (PGT )
, (10)

where P , P ′, and P̂ are the 3D points of the current point
cloud, previous point cloud, and recovered point cloud by
the action, respectively. Intuitively, P = P ′ + P̂ ; PGT

is the ground truth reference point set; d(x, P ) denotes the
shortest distance from a point x to a point set P ; S and S′

are defined based on P and P ′, respectively; N (·) counts
the number of points of a point set; w1, w2, w3, w4 are the
weights for balancing the contribution of the corresponding
reward, which are set to 25, 1, 1.5, and 2 in all experiments.

The architecture of the RL agent is simple yet effec-
tive; it contains an encoder, decoder, critic and actor heads
(Figure 3). We adopt a commonly used 3D point en-
coder [15, 18] which extracts features from the input point
cloud for downstream processing by the actor and critic.
The critic head is only used during training, and the ac-
tor head predicts a viewpoint based on the input 3D point
cloud.
The 2D Inpainting Module consists of three components:
mask generation, normal map inpainting, and depth-map in-
painting.

The mask generator takes as input symmetric depth map
pairs Di and D′

i corresponding to symmetric views vi and

v′i, and outputs two masks Mi and M ′
i that mark the areas

for each input map that need to be completed. To compute
Mi, we start from an initial completion mask M̂i obtained
by marking all ‘black’ areas of a depth map Di. However,
this initial mask misses two important corner cases. First,
not all ‘black’ areas should be completed. For example,
the space between the legs of a chair. Second, areas with
a missing front surface covered by a backside surface also
need to be filled in. To cover the first case, we utilize a
silhouette map generator to predict silhouette maps Ki of
the target object to exclude erroneous ‘holes’. The silhou-
ette generation is modified from a standard U-Net architec-
ture [19] by adding an extra input head and output head to
address the pairwise inputs and outputs. Furthermore, we
add pairwise skip connections between the two input and
output heads for exchanging symmetry information. To pro-
vide additional depth cues, we concatenate to each input Di

(and D′
i) the initial input depth map, DI , along the channel

dimension. To address the second corner case, we compute
a front-surface mask Hi by comparing the angle between
the camera view direction and the surface normal at each
point; we set the front-surface mask to 1 if the angle is less
than 90◦, or 0 otherwise (i.e., back facing). The final mask
Mi is then obtained by combining M̂i, Ki and Hi as:

Mi = (M̂i +Hi)⊙Ki, (11)

M̂i = Γ(Di), (12)
Hi = Ψ(Ni, vi), (13)

Ki,K
′
i = K (

[
Di, D

I
]
,
[
D′

i, D
I
]
), (14)

Γ(X),Ψ(Z, y) =

{
1 X = 0, ⟨Z, y⟩ > 0

0 otherwise
, (15)

where ⊙ is the element-wise multiplication; K denotes the



silhouette map generator; [·, ·] indicates a channel-wise con-
catenation operation; Γ(X) and Ψ(Z, y) are two indicator
functions, that only differ in the conditions for 1.

The normal inpainting submodule N takes as input a
pair of partial normal maps Ni and N ′

i corresponding to
symmetric viewpoints vi and v′i as well as their correspond-
ing masks Mi and M ′

i , and outputs a pair of completed nor-
mal maps N̂i and N̂ ′

i respectively:

N̂i, N̂
′
i = N ([Ni, 1 −Mi] , [N

′
i , 1 −M ′

i ]). (16)

The normal inpainting submodule is based on PConv [14],
a partial-convolution-layer-based UNet architecture that is
robust to irregularly shaped holes [9, 14]. We modify PConv
to accommodate the dual in and output by duplicating the
input head and last layer of the decoder and adding pairwise
skip connections. Note, PConv also applies a convolution
with a unit fixed kernel on the input mask to perform mask-
updating, and hence the target inpainting region should be
marked 0 in the mask (i.e., the inverse of mask Mi).

The depth-map inpainting submodule D takes as input
a pair of partial depth maps Di and D′

i corresponding to
symmetric viewpoints vi and v′i as well as their correspond-
ing masks (Mi and M ′

i ) and inpainted normal maps (N̂i and
N̂ ′

i ), and outputs a pair of completed depth maps D̂i and D̂′
i

and corresponding confidence maps Ci and C ′
i:

(D̂i, Ci), (D̂
′
i, C

′
i) = D(

[
Di, N̂i, 1 −Mi

]
,[

D′
i, N̂

′
i , 1 −M ′

i

]
). (17)

The confidence scores indicate the confidence of the in-
painted pixel (i.e., the distance of the estimated depth-map
to the ground truth map on missing regions). Our imple-
mentation of the depth inpainting submodule is also based
on PConv [14] with similar modifications to support the ad-
ditional input and output channels.
Point Cloud Update: We merge the inpainted depth, nor-
mal, and confidence maps into the previous point cloud by
reprojecting all points in each depth map and corresponding
normals to a point cloud if their confidence score exceeds a
threshold (set to 0.5 in our implementation).

3.3. Iterative Refinement

To improve the robustness of the symmetry plane esti-
mation and of the shape completion, we iteratively refine
the output of ISCNet. A key observation is that we can se-
lect any suitable viewpoint to generate a new depth image to
serve as input to update the symmetry plane. Because it is
unlikely that a single viewpoint would be ideal for all cases,
we project the updated point cloud from three pre-selected
trial viewpoints to generate their respective depth maps.
Next, the three depth maps are passed (separately) into the
symmetry detection module, and the symmetry plane with

the highest confidence score is subsequently used for the
remainder of our pipeline. The set of pre-determined view-
points (vV8 , vV12 and vV13 from VRCNet [16]) are empirically
chosen and kept constant for all experiments. The final up-
dated point cloud is converted to a mesh surface using Pois-
son Surface Reconstruction [11]; see Figure 2.

To balance computational cost versus gain in accuracy,
the number of iterations is set to 20 based on an experimen-
tal analysis on ShapeNet. We update the symmetry plane
every 4th iteration such that the RL agent can leverage the
progressively completed point cloud for improving the re-
flection viewpoint estimates. In addition, to avoid accumu-
lating incorrectly completed shape-parts due to an inaccu-
rate symmetry plane, we reset the point cloud to its initial
state when re-estimating the symmetry plane.

3.4. Loss Functions

ISCNet is trained in three stages. In the first stage, the
symmetry detection component and 2D inpainting module
are trained separately. In the second stage, all components
except the RL agent of ISCNet are then jointly fine-tuned.
Finally, we train the RL agent by using a PPO algorithm
with the parameters of the other components fixed using the
loss function from [20].
The first-stage symmetry detection loss is defined by:

LS = C(M(P, SE),M(P, SG)) + B(Θt1(S
N
E , SN

G ), 1),
(18)

where C measures the Chamfer Distance (CD) between the
reconstructed 3D points P reflected (via a reflection func-
tion M(·, ·)) over the estimated symmetry plane SE and ref-
erence symmetry plane SG. We further regularize this loss
via a binary cross entropy (BCE) loss (B) measuring the
acute angle similarity between SN

E and SN
G , the correspond-

ing normalized symmetry plane normals of the estimated
and reference, via an indicator function Θt1(X,Y ) defined
as:

Θt1(X,Y ) =

{
1 arccos(|⟨X,Y ⟩|) <= t1

0 otherwise
, (19)

with t1 a slack parameter set to 5◦.
The first-stage inpainting loss is defined as:

LI = LK + LN + LD, (20)
LK = B(KE,KG), (21)

LN = ∥NMG
E −NMG

G ∥1, (22)

LD = ∥DMG
E −DMG

G ∥1+
B(CMG

E ,Φt2(D
MG
E , DMG

G )), (23)

XMG = X ⊙MG, (24)

Φt2(X,Y ) =

{
1 ∥X − Y ∥1 <= t2

0 otherwise
, (25)



CD/MD (×102) Plane Cabinet Car Chair Lamp Sofa Table V essel Average

PCN◦ [41] 2.87/2.44 3.42/3.65 2.12/2.01 4.32/4.08 5.49/5.19 2.88/3.35 4.49/3.72 2.23/2.25 3.48/3.34
MSN◦ [15] 3.29/2.64 2.57/2.20 1.95/1.69 3.60/2.91 4.58/4.31 3.61/3.12 3.62/3.04 2.08/1.89 3.16/2.72
PoinTr◦ [40] 1.10/0.98 2.86/3.12 1.72/1.65 3.33/2.92 3.45/2.92 2.58/2.97 3.44/2.82 1.40/1.41 2.48/2.35
VRCNet◦ [16] 2.61/1.92 2.77/2.20 1.92/1.61 3.43/2.61 3.59/2.87 3.41/2.73 3.89/3.12 1.92/1.57 2.94/2.33
SnowF◦ [37] 1.08/0.83 2.83/3.02 1.73/1.66 3.08/2.81 3.53/2.78 2.46/2.51 3.51/2.86 1.52/1.30 2.47/2.22
VE-PCN◦ [32] 8.80/5.39 6.72/5.95 2.91/2.37 7.87/6.57 10.94/8.53 8.76/7.22 6.33/4.99 3.75/2.73 7.01/5.47
IFNet♢ [3] 1.33/1.36 5.17/4.77 3.16/2.97 3.13/3.24 1.74/1.66 3.61/3.87 2.26/2.41 2.26/2.52 2.83/2.85
Front2Back R5† [39] 1.44/1.33 3.14/2.59 1.94/1.92 2.49/2.31 2.48/2.30 2.53/2.21 3.02/3.02 1.88/1.49 2.36/2.15
Front2Back GT† [39] 1.19/1.18 2.78/2.21 1.90/1.77 2.00/1.86 1.69/1.77 2.13/2.00 2.03/2.26 1.53/1.51 1.91/1.82
Ours† (Iteration 20) 0.82/0.84 2.04/1.63 1.56/1.35 1.54/1.39 1.30/1.34 1.84/1.53 1.67/1.54 1.04/1.00 1.48/1.33
Unaligned ISCNet 1.43/1.43 2.56/2.09 2.15/1.88 2.10/1.92 1.76/1.87 2.33/1.99 2.33/2.25 1.66/1.60 2.04/1.88
No-Pair ISCNet 0.88/1.02 2.28/1.99 1.90/1.69 1.75/1.47 2.12/1.83 2.07/1.76 2.11/1.54 1.41/1.54 1.82/1.61
No-Normal ISCNet 1.08/1.07 2.41/2.04 2.18/1.86 1.89/1.53 1.91/1.78 2.27/1.81 2.14/1.81 1.61/1.59 1.94/1.69
Iteration 4 0.89/0.83 2.23/1.94 1.74/1.52 1.67/1.54 1.43/1.42 2.03/1.79 1.70/1.58 1.15/1.06 1.61/1.46
Iteration 8 0.85/0.87 2.19/1.73 1.66/1.44 1.60/1.45 1.32/1.39 1.92/1.63 1.73/1.62 1.10/1.04 1.55/1.40
Iteration 12 0.84/0.87 2.16/1.72 1.60/1.38 1.57/1.41 1.28/1.37 1.88/1.55 1.70/1.58 1.06/1.04 1.51/1.36
Iteration 16 0.83/0.84 2.11/1.67 1.57/1.36 1.55/1.40 1.26/1.36 1.92/1.62 1.67/1.54 1.04/1.00 1.49/1.35

Table 1. Quantitative evaluation of ISCNet compared to prior work on the synthetic ShapeNet dataset (◦ point cloud methods, ♢ implicit
function methods, and † image-based methods) in terms of a mesh-to-mesh symmetric L1 metric (MD) and the Chamfer Distance (CD)
(lowest, 2nd lowest, 3rd lowest error color coding). In addition, we show the errors on three ablation variants of ISCNet (without
symmetry plane alignment, without pair-wise inpainting, and without utilizing normal information), as well as the evolution of errors per
iteration.

CD/MD (×102) Cabinet Chair Lamp Sofa Table Average
PCN◦ [41] 9.76/10.44 6.27/7.60 9.60/10.45 6.02/7.63 11.83/11.94 8.70/9.61
MSN◦ [15] 5.71/5.17 5.86/5.40 5.74/4.77 4.95/4.01 6.43/6.86 5.74/5.24
PoinTr◦ [40] 8.33/7.68 6.40/6.33 9.66/9.19 6.12/5.21 7.84/8.47 7.67/7.38
VRCNet◦ [16] 5.05/3.98 5.87/5.56 5.95/5.03 4.45/3.64 6.00/6.60 5.47/4.96
SnowF◦ [37] 8.66/7.89 6.47/6.43 8.99/8.87 5.63/4.91 7.22/8.75 7.39/7.37
VE-PCN◦ [32] 9.26/6.92 6.38/5.98 6.12/5.48 5.64/4.70 8.06/7.73 7.09/6.16
IFNet♢ [3] 12.62/7.09 5.38/6.60 8.95/8.20 5.05/4.21 5.92/7.13 7.59/6.64
Front2Back GT† [39] 11.22/8.87 6.86/7.55 7.81/6.64 6.92/6.57 6.85/7.73 7.93/7.47
Ours † (Iteration 20) 4.88/3.89 3.67/3.99 4.62/4.16 3.27/2.86 4.53/5.16 4.19/4.01

Table 2. Quantitative evaluation of ISCNet compared to prior work on real-world ScanNet dataset. The notations and colors follow Table 1.

where LK, LD and LN measure the loss over: silhouette
mask K, depth D, and normal N between the estimated
(·E) and reference (·G) components. Φt2 is an indicator
function on the L1 distance between maps with a slack pa-
rameter t2 set to 0.02, and XMG is the masking operator
with a reference mask over a component X ∈ {N,D,C}.
At this stage, we do not yet explicitly enforce symmetry to
allow the inpainting network to converge to a good starting
point for the second stage.

The second-stage loss is the sum of both first-stage losses
plus an additional loss that explicitly enforces symmetry:

L = αLS + βLI + γLJ , (26)

LJ = Σ4
i=1(∥D

MG
i −F(D′

i)⊙MG∥1+
∥NMG

i −F(N ′
i)⊙MG∥1), (27)

where α, β, and γ are balancing weights, F is a 2D hori-
zontal mirror operator, and X and X ′ the respective com-
ponents from symmetric viewpoints.

4. Assessment

We implement ISCNet in PyTorch [10], and train and test
ISCNet for eight categories (airplane, cabinet, car, chair,
lamp, sofa, table, and vessel) from the ShapeNet dataset [2].
As in prior work [15, 41], we partition the dataset in 29,774
shapes for training and 1,200 for testing. We use the 26
viewpoints provided by VRCNet [16] to generate synthetic
depth images and normal maps for training and 8 randomly
generated viewpoints for testing. In addition, we also test
ISCNet with 456 scanned objects from ScanNet [5], ex-
cluding the categories not present in ScanNet (i.e. airplanes,
cars, and vessels). The corresponding reference shapes are
provided by Scan2CAD [1]; our and all competing methods
are only trained with ShapeNet.

To train ISCNet, we first pre-train the four submodules
separately for 50 epochs: symmetry detection using LS

(Equation 18), mask generation using LK (Equation 21),
2D normal inpainting using LN (Equation 22), and 2D
depth inpainting using LD (Equation 23). Finally, we re-
fine the complete network for an additional 10 epochs us-
ing L as loss and set the weight parameters α, β, and γ to
0.01, 0.05, and 1, respectively (Equation 26). While the



Figure 4. Visual comparison of shape completion quality of ISCNet versus prior work on the synthetic ShapeNet dataset; the observed
areas marked in red (the second column).

Figure 5. Visual comparison of shape completion quality of ISCNet versus prior work on real-world ScanNet dataset. Note that the sofa
and table are non-symmetric objects.

training datasets are generated from 26 pre-defined view-
points for the first training stage, the second stage (fine-
tuning) uses randomly selected viewpoints instead of the
viewpoints chosen by the RL agent. In the latter case, we
generate the corresponding ground truth depth images and
normal maps on the fly during the training process. As a
consequence of this phased training strategy, the distribu-
tion of (RL selected) viewpoints on the testing dataset cover

the whole sphere, thereby avoiding overfitting to the 26 pre-
selected viewpoints (see the supplemental material for more
details).

We train all networks with the Adam optimizer with a
learning rate of 2e−4 for pretraining and 4e−5 for fine-
tuning on a dual NVIDIA Gforce RTX 3090 setup. On this
setup, for 20 iterations, ISCNet takes 81 seconds to com-
plete a shape from a single depth map, where the image



rendering and point clouds merging take around 59 seconds.
For validation, we measure the reconstruction quality by

a mesh-to-mesh symmetric L1 distance (MD) [4] between
the reference and completed meshes. Further, to quantify
the reconstruction accuracy of surface details, we follow
Yao et al. [39] and use the Chamfer Distance (CD) on 100K
Poisson disk sampled [43] surface points from the recon-
structed and reference meshes. Finally, following Zhou et
al. [45] we quantify symmetry plane accuracy by compar-
ing the cosine distance between symmetry plane normals.

4.1. Quantitative Evaluation

3D Shape Completion. We compare the performance
of ISCNet to 8 competing methods subdivided in three
categories: Point-cloud completion methods (PCN [41],
MSN [15], PoinTr [40], VRCNet [16], ShowFlak-
eNet [37], VE-PCN [32]), implicit-function-based methods
(IFNet [3]), and image-based completion methods (2 vari-
ants of Front2Back [39]1). All competing methods are re-
trained on ShapeNet and tested with identical exemplars un-
der the same conditions. The quantitative comparisons (us-
ing the CD and MD metrics) are summarized in Table 1
and Table 2 for ShapeNet and ScanNet, respectively. From
these, we can see that ISCNet offers the best overall per-
formance for the majority of categories on both synthetic
and scanned data, followed by Front2Back [39]. SnowFlak-
eNet [37] performs better than ISCNet on the plane shapes
with a marginal accuracy gain. Compared to Front2Back,
we can see that ISCNet outperforms Front2Back with the
ground truth symmetry information. For completeness, Ta-
ble 3 compares ISCNet with Front2Back and IFNet for the
remaining five classes from ShapeNet, without retraining or
finetuning. Our approach still outperforms existing work
except for the rifle class compared to IFNet.

(×102) Bench Display Speaker Rifle Phone Average
(unseen-5 )

Average
(total-13)

C
D

F2B 2.37 3.19 3.40 1.72 3.13 2.76 2.24
IFNet 1.81 3.73 6.35 1.37 3.34 3.32 3.02
Ours 1.44 2.47 3.09 1.43 2.10 2.11 1.72

M
D

F2B 2.19 2.97 3.17 1.59 2.97 2.58 2.11
IFNet 1.77 3.65 6.24 1.35 3.28 3.26 3.01
Ours 1.41 2.45 3.01 1.42 2.07 2.07 1.61

Table 3. Quantitative evaluation of ISCNet compared to
Front2Back and IFNet for the remaining 5 classes of ShapeNet,
i.e., unseen-5 labels.

Figure 4 and 5 provide additional qualitative compar-
isons. Visually, ISCNet provides the ‘cleanest’ shape com-
pletion for all eight tasks. In particular, in the plane comple-
tion task, ISCNet is better able to retain high-frequency sur-
face details, and in the cabinet and lamp completion tasks

1The information in [39] was insufficient to replicate the symme-
try plane estimation module. Therefore, we include 2 variants, trained
and tested with the ground truth symmetry plane (Front2Back GT), and
with the reference symmetry plane normal perturbed within [−5◦, 5◦]
(Front2Back R5).

ISCNet is the only method to fully complete the surface
without holes. In the case of the chair and table comple-
tion tasks, ISCNet more robustly identifies areas to be com-
pleted without erroneously merging thin features. Although
our method is designed for symmetric objects, we also ob-
tain good reconstruction quality on non-symmetric objects
(sofa and table in Figure 5).

Symmetry Detection. To assess the accuracy of the sym-
metry plane estimation, we compare it against two state-of-
the-art single-view based pose estimation and symmetry de-
tection methods, RotationContinuity [44] and NeRD [45].
Figure 6a shows that ISCNet’s second update of the sym-
metry plane offers a similar performance as NeRD. Fur-
thermore, with increasing iterations, the accuracy of the
estimated symmetry plane improves (i.e., compared to the
first symmetry plane estimate2, the occurrence of symmetry
plane estimates with an error less than 5◦, improves from
32.86% to 56.96%), demonstrating the effectiveness of the
iterative refinement for symmetry plane estimation.

4.2. Ablation Study

Importance of Symmetry. We validate the effectiveness of
symmetry cues for shape completion in two ablation exper-
iments. As a first experiment (Table 1, Unaligned ISCNet),
we replace the estimated transformation that aligns the sym-
metry plane with the X-Y plane by a random rotation ma-
trix and a perturbed center (adding normal distributed noise
with σ = 0.1). Consequently, ISCNet cannot leverage any
symmetry cues. In a second experiment (Table 1, No-Pair
ISCNet), we process each of the reflection viewpoints sepa-
rately. From Table 1, we can see that the unaligned ISCNet
suffers a significant performance degradation; CD increases
by 0.56 on average, and MD increases 0.55 on average.
By aligning the shape to the symmetry plane, no-pair ISC-
Net is able to leverage symmetry implicitly (by learning to
copy from the negative Z coordinate). However, compared
to the full ISCNet, the no-pair ISCNet still sees a perfor-
mance drop (CD and MD are increased by 0.34 and 0.28,
respectively). We refer to the supplementary material for a
qualitative comparison of excluding explicit leveraging of
the symmetry cues.

Role of Normal Inpainting. To demonstrate the impor-
tance of performing normal inpainting, we eliminate the in-
painted normal as input from the depth inpainting submod-
ule (Table 1, No-Normal ISCNet). Without normal cues,
CD increases by 0.46 and MD by 0.36. We refer to the
supplementary material for a qualitative visualization of the
impact of omitting the normal inpainting step.

2The accuracy of first symmetry estimate is similar to that of DenseFu-
sion [30], as our symmetry estimation is based this method.



Impact of Iterative Refinement. To demonstrate that
both symmetry plane estimation as well as shape comple-
tion improve with additional iterations, we compare the MD
and CD errors per iteration (Table 1) as well as the symme-
try plane normal error progression per iteration (Figure 6b).
In both cases, we can see that the error improves per itera-
tion and the improvement diminishes per subsequent itera-
tion (justifying a 20 iteration stopping criterion).

Figure 6. Impact of the number of iterations on (a) the accuracy
of the symmetry plane estimation, and (b) the shape reconstruc-
tion CD/MD accuracy and average and median symmetry plane
estimation errors. ‘Our SP n’ refers to ISCNet’s n-th predicted
symmetry plane.

Limitations The main bottleneck in ISCNet is the image
rendering and the 3D point cloud processing step in each
iteration. Furthermore, ISCNet is only able to leverage a
single global symmetry plane, and thus its performance is
suboptimal when multiple symmetries are present.

5. Conclusion

We present ISCNet, a single-depth image joint symme-
try plane estimation and shape completion method that ex-
plicitly leverages symmetry cues. ISCNet alternates be-
tween estimating the symmetry plane and completing the
shape to enhance the accuracy of both components. Our
method is informed by two key insights: (1) shape comple-
tion and symmetry plane estimation are mutually beneficial
tasks, and (2) by selecting symmetric virtual viewpoints,
we can explicitly inform the inpainting module on symme-
try relations. Our experiments and ablation studies demon-
strate that ISCNet can yield more accurate shape comple-
tions from a single-depth image than competing methods.
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