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Accurately modeling and reproducing real-
world materials’ appearance are crucial for 
producing photorealistic imagery of digi-

tal scenes and subjects. The appearance of many 
common materials is due to sub-
surface light transport, which 
causes the characteristic “soft” 
appearance and the materials’ 
unique coloring. To efficiently 
model isotropic subsurface light 
transport, Henrik Jensen and his 
colleagues introduced the dipole-
diffusion approximation1 (see the 
“Diffusion Models” and “Related 
Work” sidebars). The scattering 
parameters needed to drive this 
approximation are typically esti-
mated by illuminating a homoge-
neous surface patch with either a 
collimated beam of light or, for 
spatially varying translucent ma-
terials, a dense set of structured 
light patterns. Most methods in-

volve a trade-off between acquisition time and the 
scattering parameters’ spatial density.

We have developed a method that estimates 
dense per-surface-point scattering parameters 
of a curved heterogeneous translucent material 

sample. Existing techniques employ spatial modu-
lation of the incident illumination to estimate a 
translucent material’s scattering parameters. Un-
like other methods, ours relies on angular modu-
lation of the incident illumination and surface 
curvature to infer the parameters. The acquisition 
cost is independent of the desired spatial resolu-
tion. In addition, our method obtains direct es-
timates of scattering parameters from only four 
cross-polarized measurements of the translucent 
sample under zeroth- and first-order spherical-
gradient illumination (see Figure 1). Although our 
method is in theory limited to isotropic diffusive 
materials and isotropically curved surfaces, it has 
produced good results on a variety of heteroge-
neous translucent objects.

Motivation
Wan-Chun Ma and his colleagues proposed em-
ploying (four) polarized spherical-gradient light-
ing conditions to estimate photometric normals 
for both diffuse reflection (via cross-polarization) 
and specular reflection (via polarization differ-
encing).2 Ideally, both sets of normals should be 
identical. However, Ma and his colleagues ob-
served that for translucent materials, the diffuse 
photometric normals were less sharp; this softness 
was wavelength dependent (see Figure 1e). They 

The proposed method 
acquires subsurface-scattering 
parameters of heterogeneous 
translucent materials. It 
directly obtains dense per-
surface-point scattering 
parameters from observations 
under cross-polarized 
spherical-gradient illumination 
of curved surfaces. This 
method does not require 
explicit fitting of observed 
scattering profiles. A variety 
of heterogeneous translucent 
objects illustrate its validity.
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speculated that one source of the apparent differ-
ence was subsurface light transport.

Here, we formalize the connection between a 
translucent material’s scattering properties and the 
reflectance observations under polarized spherical-
gradient illumination. First, we establish an em-
pirical connection to inform the formal deriva-
tions. We employ the cross-polarized reflectance 
observations where polarization-preserving scat-
tering events (specular reflections and single scat-
tering) have been canceled out. This leaves only 
the reflectance due to subsurface scattering.

Furthermore, as Abhijeet Ghosh and his col-
leagues noted,3 the reflectance observed under 
cross-polarized constant lighting is related to the 
reduced albedo a′, one of the three parameters 
required for the dipole-diffusion approximation 
of subsurface scattering.1 As in prior research, we 
fix the index of refraction h to 1.4 (the index of 
refraction of skin, and a good median for many 
organic materials), leaving the diffusion constant 
D as the only free parameter.

For materials for which the diffusion approxima-
tion is valid, the bidirectional surface scattering re-
flectance distribution function (BSSRDF) reduces to 
a 4D function Rd(xo, xi) between entrance points xi 
and exitance points xo over the object surface. We 

can then define the diffuse BSSRDF Rd as

R r D
x

d x
d

o

i i
( )=−

⋅∇( )( )
( )

n φ
Φ

,

where r x xo i= − .1

Inspired by this equation, which relates Rd and 
D via a spatial gradient, we look at the ratio of 
the observations under constant spherical light-
ing to the observations under gradient illumina-
tion along the surface normal (that is, n points 
toward the brightest point on the angular gradi-
ent, IN(w) = n ⋅ w, where w  is the direction) for a 
curved surface. First, we empirically observe that 
the ratio is approximately proportional to D and 
that the relation is roughly linear. Second, the 
slope is inversely proportional to the albedo and 
surface curvature.

This motivates us to consider a linear approxi-
mation of D for the dipole model as

D ratio Ratio
slope

= −( )min
k

,� (1)

where

■■ ratio is the observed reflectance under constant 

In the main article we assume that the diffuse subsur-
face light transport of a translucent material can be ac-

curately modeled by the dipole-diffusion approximation.1 
However, this model is strictly valid only for character-
izing multiple scattering in a highly scattering homo-
geneous translucent medium in a semi-infinite planar 
material sample (Pat Hanrahan and Wolfgang Krueger 
proposed an analytical solution to single scattering2). 
Although the dipole-diffusion model is limited, it remains 
popular for both rendering and modeling owing to its 
relative simplicity.

Since that model’s introduction, researchers have 
proposed more accurate or specialized models. Craig 
Donner and Jensen extended the model to multilayer 
translucent materials.3 Donner and Jensen also pro-
posed an extended source model to account for complex 
geometry, internal blockers, and so on.4 However, these 
methods still rely on the diffusion approximation—
namely, that the light distribution in a translucent medium 
becomes isotropic after a sufficient number of scatter-
ing events.

Donner and his colleagues developed a data-driven 
model to represent the full spatial and angular distribution 
of subsurface scattering.5 However, this model is limited 
to planar, single-layer, semi-infinite translucent-material 

samples. Recently, Eugene D’Eon and Geoffrey Irving pro-
posed the quantized diffusion model, which is based on 
a modified diffusion theory.6 This model can accurately 
model translucent material that is highly absorbing or 
consists of thin layers.
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spherical lighting divided by the observed reflec-
tance under a linear spherical-gradient illumi-
nation (aligned along n),

■■ minRatio = 1.184 is the ratio for a nontranslu-
cent material, and

■■ slope is empirically determined as (2(1 – Rd)2 + 
0.75)(0.8 + 2/(100k)), where Rd is the diffuse 
albedo and k is the mean surface curvature.

The ratio assumes a linear spherical gradient with 
intensities ranging from 0 to 1 along the surface 
normal’s direction.

Figure 2 shows simulated plots of this approxi-
mation versus the true diffusion constant for dif-
ferent spherical surfaces. The estimated scattering 
parameters’ overall accuracy is very good for high-
curvature surfaces (that is, a small radius), while 
degrading gracefully with decreasing curvature 
(that is, an increasing radius).

The Analytic Formulation
The linear approximation in Equation 1 shows 

that the scattering and absorption coefficients, 
a spatial property, can be inferred from observa-
tions under angularly varying lighting. The linear 
approximation yields good estimates of scattering 
parameters for typical ranges of albedo, trans-
lucency, and curvature. However, it remains an 
empirical approximation with significant errors 
for very low albedo values and flat surfaces with 
low curvatures. So, we formally derived an ana-
lytic formulation relating ratio and D based on the 
dipole-diffusion theory.

In particular, we observe the material sample 
under these four lighting conditions: IX(w) = wx, 
IY(w) = wy, IZ(w) = wz, and I1(w) = 1, where wx, wy, and 
wz are the x, y, and z components of w. We polarize 
the incident lighting according to the polariza-
tion pattern proposed by Ma and his colleagues,2 
which lets us use cross-polarization to eliminate 
polarization-preserving reflectance (that is, spec-
ular reflections and single scattering) toward the 
camera. So, we observe only diffuse reflectance, 
which we approximate at xo in direction wo by

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Estimating diffusion parameters. Under cross-polarized zeroth-order and first-order spherical-
gradient illumination conditions, we observe the (a) diffuse albedo and the (b) x, (c) y, and (d) z gradients. We 
use the (e) diffuse normals to determine the curvature. The observations enable us to obtain the per-surface-
point diffusion parameters for (f) translucency and (g) absorption. The estimated scattering parameters can 
subsequently be used in (h) dipole-diffusion rendering.
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where Li(xi, wi) represents the incident lighting 
from wi at xi.1 Ft is the Fresnel transmittance term 
with the index of refraction h, which we assume 
is constant over the sample. n(xi) is the surface 
normal at xi, and Rd is the diffuse subsurface 
scattering between xi and xo.

We now consider the canonical cases in which 
Li is the constant-lighting condition I1 and the 

gradient aligned with the surface normal at xo 
is IN(w) = n(xo) ⋅ w. Without loss of generality, 
we express variables in the normal’s coordinate 
system (z points up, so IN(w) = wz):
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We observe that Ft(h, n(xi) ⋅ wi) (n(xi) ⋅ wi) is a sym-
metric function around n(xi). This allows us to fol-
low a similar reasoning as Ma and his colleagues’ 

Capturing and modeling the bidirectional surface scat-
tering reflectance distribution function (BSSRDF)1 of 

translucent materials is a challenge. Most techniques rely 
on the diffusion approximation, which reduces from eight 
to four the number of BSSRDF dimensions to sample.2 
Henrik Jensen and his colleagues introduced the dipole-
diffusion model to describe homogeneous translucent 
materials, which relies on a only few parameters (absorp-
tion and scattering).3 Jensen and his colleagues inferred 
these parameters from observations of a homogeneous 
planar translucent-material sample illuminated by a tightly 
focused beam of white light. However, no such compact 
model exists for heterogeneous subsurface-scattering 
materials, and acquisition is difficult.

Michael Goesele and his colleagues modeled the sub-
surface-scattering properties of heterogeneous translucent 
materials by directly using the subsurface responses ob-
served from sequentially scanning the translucent object’s 
surface with a laser.4 Pieter Peers and his colleagues sped 
up the acquisition of heterogeneous subsurface scattering 
by projecting and shifting a dot pattern over the surface, 
effectively observing multiple subsurface-scattering pro-
files at once.5 Xin Tong and his colleagues inferred scattering 
parameters by sweeping a laser strip over the sample.6 All 
these methods rely on some form of spatial scanning to infer 
per-surface-point subsurface-scattering parameters. So, the 
acquisition cost is directly proportional to the desired spatial 
resolution. In contrast, the acquisition cost of our method 
(see the main article) is independent of the spatial resolution.

Another class of methods focuses on a particular sub-
class of materials such as human skin. Tim Weyrich and 
his colleagues observed that skin’s BSSRDF varies slowly 
spatially.7 They proposed capturing per-region subsurface-
scattering properties using a specially designed probe. 
Similarly, Abhijeet Ghosh and his colleagues captured 
a per-region BSSRDF from observations of the subject 
illuminated by a single dot pattern.8 Craig Donner and 

his colleagues inferred the per-surface-point concentra-
tion of chromophores in human skin from multispectral 
observations under constant illumination.9 Although 
these methods’ capture cost is small and independent of 
the spatial resolution, they are suited only for modeling 
skin’s subsurface-scattering properties. In contrast, for a 
comparable acquisition cost, our method provides a per-
surface-point estimate of the BSSRDF of arbitrary translu-
cent materials.
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derivation for diffuse reflectance.2 Taking the in-
ner product over IN(wi) with Ft(h, n(xi) ⋅ wi)(n(xi) ⋅ 
wi) yields the z component of nz(xi) times a constant 
Cz(h) that depends only on the index of refraction 
and that is independent of the surface normal:
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Furthermore, we assume that the shape of the 
curved surface sample’s local neighborhood is 
isotropic and can be expressed in terms of the 
mean spherical curvature k: nz(xi) = cos(kr), where 
r x xi o= − .

Rewriting in terms of polar coordinates (r, q) 
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Similarly, setting Li(wi) = I1(wi)  yields
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where Cf(h) is the corresponding constant for Ft(h, 
n(xi) ⋅ wi)(n(xi) ⋅ wi) under I1, and Rc(xo, 0) (times 
2p) is equivalent to the diffuse albedo Rd at xo.1

Equations 2 and 3 both consist of one part 
that depends solely on the index of refraction 
and another part that depends on the scatter-
ing parameters (including the index of refrac-
tion) and curvature. Whereas Cz(h) and Cf(h) 
vary significantly with the index of refraction, 
their ratio Cf(h)/Cz(h) is approximately constant 
for common indices of refraction (that is, mono-
tonically decreasing from 1.5 for a 1.0 index of 
refraction to 1.454 for a 1.5 index of refraction). 
So, we can approximate the ratio of the observed 
reflectance under constant spherical lighting to 
the observed reflectance under normal aligned 
spherical-gradient lighting by
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(c)
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Figure 2. Simulated plots of the true diffusion constant 
(solid lines) versus the linear approximation (dashed 
lines), for radii of (a) 10, (b) 30, and (c) 100 mm. Rd is 
the diffuse albedo, D is the diffusion constant, and ld 
is the translucency. We obtained the approximations 
from the ratio of the observed reflectance under 
constant spherical lighting to the observed reflectance 
under spherical-gradient (aligned along the surface 
normal) lighting for different albedos and spherical 
surfaces (with different curvatures k = 1/radius).



	 IEEE Computer Graphics and Applications� 39

ratio x
L x
L x

R x
R x

o
I o o

I o o

c o

c

N

( ) = ( )
( )

≈
( )

1

1 456
0

,
,

.
,

w
w

oo ,k( ) ,� (4)

where we opt for Cf(h)/Cz(h) ≈ 1.456 (that is, the 
ratio for h = 1.4).

Next, we derive analytical expressions for Rc(xo, 
0) and Rc(xo, k) and show how to estimate the 
spatially varying a′(xo) and D(xo) from L xI o o1 ,w( )  
and ratio(xo), respectively. For compactness and 
clarity, we omit xo.

To estimate a′, we first note that
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Jensen and his colleagues proposed the following 
analytical solution for Rd:
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where A is the internal reflection that depends on 
h.1 We employ Newton’s method for finding a′ 
from Rd, and thus from the constant observations 
LI o1 w( ) , assuming h = 1.4 and setting the initial 
starting point at 1 – ϵ.

To find an approximate analytical expression 
for Rc(k), we replace the cosine by a second-order 
Taylor expansion around zero (see the sidebar, 
“An Analytical Formulation for Rc(k)”). Using the 
shorthand notations
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Combining Equations 4, 5, and 6 yields
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Figure 3 shows simulated plots of estimates ob-
tained from Equation 7 versus the true diffusion 
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Figure 3. Simulated plots of the true diffusion 
constant (solid lines) versus the analytic formulation 
(dashed lines), for radii of (a) 10, (b) 30, and (c) 100 
mm. We obtained the approximations from the ratio 
of the observed reflectance under constant spherical 
lighting to the observed reflectance under spherical-
gradient (aligned along the surface normal) lighting 
for different albedos and spherical surfaces.
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constant for different spherical surfaces. The esti-
mated parameters’ accuracy is very good for most 
cases, except very translucent materials on high-
curvature spheres.

Practical Considerations
The previous derivation assumes ideal spherical-
gradient illumination conditions that include neg-
ative intensities and thus are impossible to create 
physically. Similarly to Ma and his colleagues,2 
we instead employ shifted gradient patterns with 
intensities ranging from 0 to 1 (0.5(IX + I1),  
0.5(IY + I1), and 0.5(IZ + I1)), and adapt Equation 7 
to compensate for this shift:
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Furthermore, the spherical-gradient lighting 

conditions are aligned with the global x-, y-, and 
z-axes, which are unlikely to align with the surface 
normal as required for measuring L xI o oN ,w( ) . 
However, we note that
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You can easily see this by considering the two 
gradients orthogonal to each other and IN. Ow-
ing to the symmetry of Ft(h, wi)(n(xi) ⋅ wi) around 
n(xi), both orthogonal gradients’ responses will be 
zero, and only IN yields a nonzero response. Fur-
thermore, these spherical gradients are equivalent 
to first-order spherical harmonics, so we can write 
each gradient (for example, IX, IY, and IZ) as an 
affine combination of IN and the two orthogo-
nal gradients. The previous equality then follows 

To derive an analytical expression for Rc(k), which is the 
(approximate) diffuse subsurface scattering on a curved 

surface with curvature k, we employ the dipole-diffusion 
approximation for
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This reduces the problem to finding an analytical 
solution to
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This integral only makes sense physically over the upper 
hemisphere (that is, the scattering’s influence does not 
wrap around the k-curvature sphere horizon). Combining 
this observation with the exponential fall-off behavior of 
Rp(c, r) lets us approximate cos k u c2 2+( )  by a second-
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Combining Equations A and B yields the approximate 
analytical expression for Rc(k) in Equation 6 in the main 
article.

An Analytical Formulation for Rc(k)
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directly from light transport’s linearity and the 
transformation’s affineness.

Finally, to estimate k, we rely on the “diffuse” 
normal maps obtained from the spherical-gradient 
observations using Ma and his colleagues’ tech-
nique.2 We compute the curvature as the angle be-
tween neighboring pixels scaled by the conversion 
factor for changing pixel-to-pixel distance into 
millimeters.

Testing Our Method
To validate our method’s accuracy, we compared the 
scattering parameters obtained by our method with 
those obtained by illuminating a surface point with 
a narrow beam and fitting scattering parameters 
to the observed subsurface-scattering response. As 
Table 1 shows, the two sets of parameters agree.

Results
Figure 1 shows the spatially varying diffuse albedo, 
translucency, and absorption of a female subject 
acquired using an LED sphere with 156 lights. To 
aid in re-rendering the estimated appearance pa-
rameters, we also acquired high-resolution geom-
etry from a stereo camera pair using Ma and his 
colleagues’ technique.2

Figure 4 compares rendering results for the 
hybrid-normal rendering technique of Ma and his 
colleagues and dipole diffusion. Both approaches 
achieve similar qualitative results in the face’s 
well-lit regions. However, hybrid-normal render-
ing, being a local shading technique, does not 
model soft shadow boundaries and misses the 
characteristic “color bleed” effect of subsurface 
scattering that is modeled by dipole diffusion. 
Both these renderings used the same four mea-
surements under spherical-gradient illumination 
to obtain the model parameters.

Figure 5 shows the scattering parameters esti-
mated from a selection of translucent materials, 
using an LED sphere with 346 lights. We visualized 

the subsurface-appearance parameters by reproject-
ing the data onto the Stanford dragon model.

All the synthesized results in this article were 
rendered on the GPU in real time. If the texture 
and geometry were in correspondence, we used Eu-
gene d’Eon and his colleagues’ texture-space diffu-
sion.4 This was the case for the female subject in 
Figure 1, in which we captured the geometry and 
texture from the same vantage point. If no such 
natural correspondence was available, we used 
screen-space diffusion5 (for example, see Figure 5).

Discussion
Our method requires a translucent sample with 
sufficient curvature; otherwise, the variation 
in the ratio in Equation 4 becomes too small to 
measure accurately. However, if the curvature be-
comes too large, then for certain ranges of D and 
a′, a significant portion of the diffusely scattered 
reflectance will reside beyond the virtual sphere’s 

(a) (b)
Figure 4. Renderings with (a) hybrid normals and (b) dipole diffusion. 
The two renderings match closely in the face’s well-lit areas. However, 
Figure 4a does not model soft shadow boundaries and misses the 
characteristic “color bleed” effect of Figure 4b.

Table 1. Translucency (ld) parameters of a single surface point for a variety of facial areas and materials. We compared the parameters 
obtained by our method to reference parameters obtained by fitting scattering parameters to directly observed subsurface-scattering 
responses.

Facial area or 
material Curvature (mm–1)

Linear-approximation ld Analytical ld Reference ld

Red Green Blue Red Green Blue Red Green Blue

Forehead 0.108 2.42 2.01 1.79 2.30 1.97 1.79 2.26 1.97 1.75

Cheek 0.085 2.34 1.91 1.74 2.33 1.99 1.79 2.21 1.82 1.69

Lips 0.130 1.89 1.49 1.37 1.87 1.63 1.46 2.00 1.68 1.45

Red wax 0.181 2.98 1.90 1.65 2.27 1.78 1.64 2.74 1.75 1.53

Marble 0.086 7.37 5.04 3.65 6.73 5.39 4.46 7.80 5.16 4.74

Sandstone 0.101 6.62 5.17 4.02 6.95 5.38 4.18 6.04 5.38 4.28
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horizon. Although such a situation is mathemati-
cally valid, it makes no sense physically. Figure 3a 
clearly shows this for a translucency (ld) greater 
than 5. (Our simulations take into account only 
diffuse scattering from the upper hemisphere, to 
better reflect physical constraints.) As a rule of 
thumb, we set ld < 0.5radius as a soft limit. A re-
lated source of error is the approximation of the 
cosine in Rc(k) by a second-order Taylor expansion, 
especially when ld → 0.5radius.

In areas with significant concavities, the mea-
surements can also suffer from a small amount of 
bias due to interreflections. Also, as we mentioned 
before, our method assumes an index of refraction 
of 1.4. When the true physical index of refraction is 

not 1.4, the estimates will have some errors. Gener-
ally, the larger the error on the index of refraction, 
the larger the error on the estimated scattering 
parameters. In particular, for indices of refraction 
larger than 1.4 and low translucency and low cur-
vature, the numerator in Equation 7 can become 
negative, failing to produce a valid estimate for D.

Furthermore, surfaces cannot always locally be 
characterized by the mean curvature (for example, 
surfaces with anisotropic curvature). We compute 
the curvature from diffuse normals that can be 
biased due to interreflections and subsurface light 
transport. However, because we compute the mean 
curvature as the angle between normals, its er-
ror is generally lower than the absolute error on 

(a) (b) (c) (d)
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the surface normals. Finally, the dipole-diffusion 
approximation is strictly accurate only for semi-
infinite planar surfaces. Nevertheless, despite these 
limitations, our results show that our method can 
obtain accurate scattering parameters.

Possible avenues for future research include im-
proving accuracy by using a higher-order Tay-

lor expansion to model curvature. This will let us 
investigate a more general description of surface 
curvature that can account for anisotropic surface 
geometry features. Although we have applied our 
method to the classic dipole-diffusion model, it 
might be possible to extend it to newer subsurface-
scattering models by employing measurements of 
higher-order spherical gradients.�
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