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ABSTRACT
Video chat apps enable users to stay in touch with their
family, friends and colleagues. However, they consume a
lot of bandwidth and hence can quickly use up a monthly
data plan quota, which is a high-cost resource on smart-
phones. In this paper, we propose LBVC (Low-bandwidth
Video Chat), a user-guided vibration-aware frame rate adap-
tion framework. LBVC takes a sender-receiver cooperative
approach and reduces bandwidth usage as well as allevi-
ates video quality degradation for video chat apps on smart-
phones. We implement LBVC on the Android platform and
evaluate its performance on a series of experiments and user
study with 21 pairs of subjects. Compared to the default
solution, LBVC decreases bandwidth usage by 35% and at
the same time maintains good video quality without intro-
ducing extra power consumption under typical video chat
scenarios.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies

General Terms
Measurement, Design, Performance

Keywords
Video Chat, Frame Rate Adaption, Frame Interpolation,
Smartphones

1. INTRODUCTION
Nowadays various smartphone apps have been developed

for people to keep in touch with their family, friends and
colleagues. No matter whether apps of this kind have been
commercialized (such as FaceTime, GoogleTalk and Skype)
or not (such as CSipSimple, Linphone and SipDroid), almost
all of them support video chat function. Through video
chats, users not only hear people’s voice, but also observe
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other contexts such as people’s expressions and locations. As
4G service becomes prevalent, network speed is no longer
a bottleneck of performing mobile video chats. According
to recent reports, about 19% of Americans have contacted
others using video chats [14] and it is expected that there
will be 29 million smartphone video chat users in 2015 [3].

However, streaming a video chat is a data-intensive op-
eration and results in high bandwidth usage. For example,
the upload and download bandwidth requirements for low
quality video chats over Skype are both 300Kbps [12]. Tak-
ing T-Mobile [4] as an example, its 500MB monthly 4G data
plan, with the cost of $50 per phone, can support the use
of such low quality video chats over Skype only for 1.85
hours. Although some carriers offer unlimited data plans,
they come with significantly higher prices. For instance, the
cost of T-Mobile’s unlimited data plan is about 1.5 times
higher than that of its limited data plan. Moreover, it has
been reported that most carriers tend to only offer limited
data plans [49], and going over the data limit means either
higher cost or lower network speed [23]. Therefore, reducing
the bandwidth usage of video chat apps on smartphones is
imperative.

In this paper, we propose LBVC (Low-bandwidth Video
Chat), a user-guided vibration-aware frame rate adaption
framework. It reduces bandwidth usage as well as allevi-
ates video quality degradation for video chat apps on smart-
phones. LBVC provides a user-friendly interface to help
even non-technical users set an appropriate frame rate to
save bandwidth with great facility. To be informative, the
interface provides the estimated bandwidth usage and video
quality degradation of each candidate frame rate compared
to the default frame rate.

To save bandwidth and alleviate video quality degrada-
tion, LBVC introduces a vibration-aware sender-receiver co-
operative approach. The sender adopts the lower user input
frame rate to save bandwidth most of the time. It only
adopts the default frame rate when it detects severe smart-
phone vibrations with respect to inertial sensors (accelerom-
eter and gyroscope) readings. The receiver interpolates the
‘missing’ frames when the instant frame rate (calculated
based on frame interval) is smaller than the default one. The
purpose of the frame rate adaption at the sender is to keep
the scene change between consecutive frames small in order
to prevent strong artifacts from the frame interpolation.

It has been demonstrated that video streaming apps are
among the most popular smartphone apps [26]. However,
“they consume much more bandwidth than other apps” [18].
To lower the bandwidth requirement of video streaming,



many video encoding techniques [8] [17] [45] [48] have been
proposed. Rather than a new encoding technique, LBVC
introduces a novel frame rate adaption framework that re-
duces the number of frames that need to be encoded by video
chat apps on smartphones. Some works [23] [31] propose
solutions that lower the bandwidth usage of downloading
videos. They perform the trade-off between the quality of
outgoing videos and bandwidth usage only at video sender.
In contrast, LBVC reduces bandwidth usage more aggres-
sively at video sender and does not guarantee the quality
of outgoing videos. Instead, it utilizes extra techniques at
both video sender (vibration-aware frame rate control) and
receiver (frame interpolation) to guarantee the video quality
at the receiver.

The main contributions of this paper are summarized as
follows:

• We propose LBVC, a user-guided vibration-aware frame
rate adaption framework for video chat apps on smart-
phones.

• We implement LBVC as a framework extension to the
Android-based version of Linphone, a popular open-
source video chat app for smartphones.

• We validate LBVC using real system experiments and
a user study. The results demonstrate that LBVC
saves bandwidth by 35% compared to the default so-
lution and maintains good video quality.

The rest of the paper is organized as follows. We first
present the experimental measurements that motivate our
work. Then, the design and implementation of the LBVC
framework are described. Next, we present the real system
evaluation and user study. We finally discuss future work,
elaborate existing works and conclude the paper.

2. MEASUREMENTS
One intuitive way to reduce the bandwidth usage of video

chat apps on smartphones is to decrease frame rate. In this
section, we answer the following two questions through mea-
surements: (i) how does frame rate impact bandwidth usage
and power consumption; (ii) how does frame rate impact
video quality.

2.1 Measurement Platforms
In the measurements, we utilize two recent Android-based

smartphones: Galaxy Nexus and Nexus 4. We choose Lin-
phone [4], an open-source and lightweight smartphone VoIP
(Voice over Internet Protocol) app, as the prototype soft-
ware upon which we perform the measurements. Linphone
is one of the most popular video chat apps in Android Mar-
ket, with more than 100,000 downloads. It has support for
different platforms, including Android devices, iPhone and
desktop.

The Android version of Linphone is composed of a user
interface, a multimedia library (called Mediastreamer2 ) and
a library supporting SIP (Session Initiation Protocol) /RTP
(Real-time Transport Protocol). Mediastreamer2 is a native
C++ library for recording, encoding/decoding and playing
video and audio. We control the frame rate of video chats
by configuring the corresponding parameter in the Medi-
astreamer2 library. We keep the default configuration in
SILK [11], the codec used by Linphone for audio encod-
ing/decoding. We set H.264/AVC [17] as the codec for

video encoding/decoding in Linphone. It utilizes both the
intra-frame and inter-frame prediction techniques to com-
press video.

In H.264/AVC codec, the size of a compressed video de-
pends on the rate control method adopted. Some rate con-
trol methods, such as Bitrate (BR) and Average Bitrate
(ABR), fix the average encoding bitrate. Using these meth-
ods, the size of a compressed video is known in advance no
matter what frame rate of the original video is. In con-
trast, other rate control methods, such as Constant Quan-
tizer (CQ), Constant Rate Factor (CRF) and Lossless Mode,
control quality instead of bitrate. Using these methods, the
size of a compressed video varies with frame rates. Thus, this
group of rate control methods allow us to reduce bandwidth
usage through adopting lower frame rates. In this paper we
choose CRF, since CRF achieves the best subjective visual
quality without significant increase in video size [17]. We
set the target quality (CRF parameter) to 22. From real
world experience, this value is able to achieve satisfiable vi-
sual quality for most purposes [7].

2.2 Bandwidth Usage vs. Frame Rate
In this subsection, we investigate through measurement

how does the frame rate reduction decrease the bandwidth
usage? Since no data limit exists for smartphones when
data is transmitted through a WiFi network, we only do the
measurements over a cellular network.

We select 7 frame rates, which are 1, 2, 4, 8, 12, 16
and 20 fps (frames per second). The frame rates, ranging
from 12 ∼ 20 fps, are the typical ones adopted by existing
video chat apps on smartphones. For example, by default
Linphone records video chats with 12 fps, while SipDroid
records video chats with 20 fps. To be fair, we set the same
values to all parameters, except for the frame rate, in all
measurements. In each measurement, the Linphone app is
compiled with one of the selected frame rates and installed
on both smartphones. The video compression function in
H.264/AVC codec is enabled.

To capture the network traffic, we utilize an app called
Shark for Root [10] in Android Market. It is developed based
on tcpdump [13], a widely used software for capturing net-
work traffic. The captured network traffic is stored in pcap
files, which is then analyzed using WireShark [15].

At each selected frame rate, 10 pairs of subjects perform
10 video chats, each of which lasts for 6 minutes. We choose
6 minutes as the video chat duration in the measurements,
since it is recently reported as the average duration of mobile
video chats [1]. During each video chat, two smartphones
are separately held by two subjects who perform a typical
video chat using Linphone. These two smartphones access
Internet through the T-Mobile HSPA+ infrastructure. We
measure the average bandwidth usage of the Galaxy Nexus
in each video chat. The network traffic of the Nexus 4 is
symmetric. During the measurements, we disable all other
apps and services not required by Linphone and Shark for
Root.

We utilize WireShark to filter the captured packets of the
video chat app. These network packets include network con-
trol packets and data packets containing both audio and
video data. Then, we calculate the average total bandwidth
usage of the Galaxy Nexus during each video chat. We illus-
trate the box plot of the measured average bandwidth usage
at the selected frame rates in Figure 1.
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Figure 1: Total Bandwidth vs.
Frame Rate on Galaxy Nexus.
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Figure 2: Power Consumption vs.
Frame Rate on Galaxy Nexus in a
Cellular Network.
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Figure 3: Power Consumption vs.
Frame Rate on Galaxy Nexus in a
WiFi Network.

In the figure, when the frame rates of the video chat are
below 12 fps, we observe that the total bandwidth usage
rapidly decreases as the frame rate decreases. For example,
the total bandwidth usage at 12 fps is about 188% of that at
4 fps. Above 12 fps, the bandwidth usage increases slowly
since video compression techniques begin taking effects.

The observations are obtained when video compression
techniques in the codec (H.264/AVC) are involved. The ob-
servations indicate two facts below the typical frame rate
range (12∼20 fps): (i) the video compression techniques fail
to efficiently compress video chats when frame rate is low;
(ii) reducing frame rate is a feasible way to efficiently reduce
bandwidth usage below the typical frame rate range adopted
by existing video chat apps on smartphones.

2.3 Power Consumption vs. Frame Rate
In this subsection, we investigate through measurement

how does the frame rate reduction decrease the power con-
sumption of performing video chats? Since the power con-
straint exists for smartphones no matter what type of net-
work the data is transmitted through, we conduct the mea-
surements over a public college WiFi network and the T-
Mobile HSPA+ cellular network.

We use the Monsoon Power Monitor [5] to measure the
power consumption of performing video chats with Linphone
on Galaxy Nexus under different frame rates. We organize
a similar set of experiments as the one in the previous sub-
section. In experiments, we disable Shark for Root and all
other apps and services not required by Linphone. The av-
erage power consumption of each video chat is measured as
follows.

We first measure the average power consumption when
the smartphone’s screen is on but no video chat is ongoing.
Then, for each video chat, we measure its average power con-
sumption, which is subtracted by the first measured power
consumption to obtain the average power consumption of
sampling, processing, encoding/decoding, transmitting/rece-
iving and playing the video and audio.

We illustrate the box plot of the measured average power
consumption in Figure 2 and 3. From the figures, we ob-
serve that the power consumption increases as the frame
rate increases. It is because the smartphone has to process,
encode/decode and transmit/receive more video frames at
higher frame rates.

However, compared to the potential bandwidth usage re-
duction (5.24% ∼ 78.72% for the cellular network), the po-

tential power consumption reduction (2.66% ∼ 24.72% for
the cellular network and 0.5% ∼ 16.59% for the WiFi net-
work) is much smaller. It is because the continuous multi-
media stream keeps the smartphone networking component
active.

These observations are consistent with existing works [40]
and indicate that although reducing frame rate is able to re-
duce the power consumption of video chats, this power con-
sumption reduction is not a major benefit.

In this subsection, we introduce the video quality met-
ric we choose in this paper and illustrate the relationship
between video quality and frame rate with this metric.

To quantify the video quality under different frame rates,
we use a state-of-the-art non-reference objective video qual-
ity metric, TVM (Temporal Variation Metric), which is specif-
ically designed for measuring video quality on mobile de-
vices [22]. A non-reference metric is chosen, since no refer-
ring video exists at the receiver in a live chat.

TVM models the scene change occurred between consecu-
tive frames in a video frame sequence. The range of a TVM
score is from 0 to ∞. A lower score indicates that the scene
changes between consecutive frames are jerky, and hence the
video quality is low. A higher score indicates the opposites.

1 2 4 8 12 16 20

30

32

34

36

38

40

42

Frame Rate (fps)

T
V

M
 S

co
re

s 
(d

B
)

Figure 4: Video Quality vs Frame Rate.

2.4 Video Quality vs. Frame Rate
In the measurements, we use five 10-minute videos recorded

with 30 frames per second by 5 different subjects under
different backgrounds and light conditions. We adjust the
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frame rate of each video off-line by ffmpeg [2] and calculate
the TVM score for each video at each selected frame rate.
We depict the box plot of all the scores in Figure 4.

From Figure 4, we observe that the objective video qual-
ity decreases as the frame rate decreases. For example, the
TVM scores indicate that the mean square difference be-
tween consecutive frames at 4 fps increases by about 214%
compared to that at 12 fps [22]. The larger the difference be-
tween consecutive frames, the jerkier the video. It is also re-
ported that subjective video quality also decreases as frame
rate decreases [39].

Therefore, we cannot simply reduce the frame rate of video
chats to save bandwidth, because video quality degrades as
frame rate decreases.

3. LBVC DESIGN AND IMPLEMENTATION
To save bandwidth usage of mobile video chats, we present

the design and implementation of LBVC (Low-bandwidth
Video Chat), a user-guided vibration-aware frame rate adap-
tion framework.

3.1 LBVC Design

3.1.1 LBVC Architecture
Figure 5 depicts the architecture of LBVC with the com-

mon video chat app components in red and newly introduced
components highlighted in purple grid. During a video chat,
the communication is bi-direction and a smartphone is both
a sender and receiver.

At the sender side of LBVC, users can set the frame rate
for a video chat through a user-friendly interface. With re-
spect to this input frame rate and on-line inertial sensor
readings, a Frame Rate Controller adjusts the frame rate of
the media recorder for video recording. To compress video
frames and audio samples, the media recorder uses one of the
existing codecs (e.g., SILK [11] and H.264/AVC [17] used in
Linphone) to encode them. Then, the encoded data is trans-
mitted over SIP/RTP networks.

At the receiver side of LBVC, the data packets received
from the network is decoded into video frames and audio
samples. To maintain video quality, the receiver adopts fea-
sible frame interpolation technique to interpolate intermedi-
ate frames between any two received frames. The number
of intermediate frames to be interpolated is chosen as the

minimal number that makes the frame rate no smaller than
the default frame rate.

A frame interpolation technique needs two frames as in-
put. After a frame is decoded, the ‘missing’ (or interme-
diate) frames after it cannot be interpolated until the next
frame arrives. To ensure the video frames being played at a
constant speed, the former decoded frame cannot be played
until the accomplishment of the frame interpolation. Thus,
a delay should be added to the video player at the beginning
of each video chat.

To ensure a constant speed of video playing as well as syn-
chronize the audio and video, a Delay Queue adds a com-
mon delay to media player. The length of the common de-
lay is determined based on the sender-side input frame rate,
which the receiver obtains from the sender through SIP ne-
gotiation parameters [9]. Within the common delay, the
Frame Interpolation Component interpolates the intermedi-
ate frames when the instant frame rate (calculated based on
frame interval) is lower than the default one (e.g., 12 fps in
Linphone). We note that the delay penalty (e.g., 260ms at
4 fps) is only paid once at the beginning of each video chat,
and results in no desynchronization between audio and video
during playing.

It is worth emphasizing that LBVC is a generic design
for typical video chat apps on smartphones, and is indepen-
dent of lower layer components such as codecs and network
protocols.

3.1.2 Interface for Setting fps
The interface is designed to help users set an appropriate

frame rate to save bandwidth for video chats. Particularly,
it provides several candidate frame rates, which are smaller
than or equal to the default frame rate of a video chat app.
However, selecting a lower candidate frame rate not only re-
duces bandwidth usage, but also degrades the video quality
on conversation partner side. Without any indication, even
technical users may encounter difficulties in making a good
trade-off between bandwidth usage and video quality.

Therefore, the interface also provides the estimated band-
width usage and video quality degradation of each candidate
frame rate compared to the default frame rate. With this
knowledge, users are aware of the benefits and damages re-
sulting from selecting a frame rate. Thus, they have more
confidence when selecting an appropriate one with respect



to their needs. For example, a user who has sufficient data
plan quota can select a higher candidate frame rate for bet-
ter video quality. In contrast, a user who has limited data
plan quota can select a lower candidate frame rate to reduce
bandwidth usage.

3.1.3 Frame Rate Controller
Although the Frame Interpolation Component on the re-

ceiver side can rescue the video quality to some extent, even
the most advanced frame interpolation technique may pro-
duce strong artifacts when the scene change between con-
secutive frames is large [21]. Therefore, we design a Frame
Rate Controller that dynamically adapts frame rate so as to
avoid large scene changes between consecutive frames.

The Frame Rate Controller utilizes the user input frame
rate as the target frame rate. At run-time, it adopts the
target frame rate to save bandwidth and only adopts the
default frame rate, which is usually higher than the user
input frame rate, when it detects large scene changes.

To detect large scene changes, we may directly use frame
changes as the criteria. However, this method has a pitfall in
that it requires multiple frames to detect large scene changes
before making a decision. Waiting for multiple frames makes
it unpractical because they cannot timely response to scene
changes. For example, LBVC needs to wait 260ms for even
one frame at 4 fps.

We also note that the typical causes of large scene changes
between consecutive frames are severe smartphone vibra-
tions. Therefore, to let Frame Rate Controller response in
time, we design it to detect large scene changes by indi-
rectly detecting severe smartphone vibrations. In LBVC,
the Controller utilizes inertial sensors (accelerometer and
gyroscope) readings to determine whether a smartphone vi-
bration is severe or not during a video chat. In evaluation,
we will demonstrate that this indirect method is still good
enough for achieving acceptable video quality.

mA =

end∑
t=start

[|∂Ax(t)|+ |∂Ay(t)|+ |∂Az(t)|] (1)

mG =

end∑
t=start

[|∂Gx(t)|+ |∂Gy(t)|+ |∂Gz(t)|] (2)

The Frame Rate Controller utilizes metrics based on L1

norm of sensor reading changes [42] to quantify the smart-
phone vibration (See Equation 1 and 2). In the equations,
∂Ax(t), ∂Ay(t) and ∂Az(t) are the acceleration changes in
three measured dimensions; while ∂Gx(t), ∂Gy(t) and ∂Gz(t)
are the angular velocity changes in three measured dimen-
sions. In addition, start and end are the starting and ending
time stamps of each measuring period. L1 norm is adopted
because it rigorously captures the smartphone vibrations sig-
naled by sensor reading changes in any measured dimension.

In LBVC, the sampling rate of the sensors is set as 50 Hz
and the measuring period is set as 60 milliseconds, which is
small enough to quickly reflect the vibrations in real-time.
If the value of either mA or mG is larger than a threshold,
the smartphone vibration is considered severe. Otherwise,
the vibration is considered light.

Moreover, the degree of vibration the Frame Interpolation
Component can tolerate also depends on the input frame
rate. For instance, if the input frame rate is set as a large
value (such as 8 fps), it may generate intermediate frames

without any artifacts under typical smartphone vibrations.
However, if the input frame rate is set as a small value (such
as 1 fps), it may generate intermediate frames with strong
artifacts due to typical smartphone vibrations. Therefore,
the vibration threshold values for different frame rates are
different and should be determined experimentally by app
developers with the objective of preventing obvious artifacts.

3.1.4 Frame Interpolation Algorithm
To select a proper frame interpolation algorithm for LBVC,

we first investigate two optical-flow [21] [43] based algo-
rithms. However, we find that their execution time is long.
Take the algorithm in [43] as an example, we run it on a lap-
top which has even more advanced hardware configurations
(Intel Core i7-2760QM CPU @ 2.4GHz ×8 and a memory
of 12 Gigabytes) than recent smartphones such as Nexus
4. The input frames have similar resolution to the ones in
smartphone video chats. Based on the timing records, the
algorithm takes 825 seconds on average to interpolate one
frame. A comprehensive survey of the execution time of
various optical-flow based methods are listed in [6].

Since the optical-flow based algorithms are not practi-
cal in LBVC, we turn to the cross dissolve algorithm [32].
The cross dissolve algorithm is simple, since it only involves
adding two frames and multiplying a frame and a constant.
Moreover, it has been mathematically proved that “given
two images of a scene with small motion between them, a
cross dissolve produces a sequence in which the edges move
smoothly.” [32]. In LBVC, the Frame Rate Controller on the
sender is designed to prevent large scene changes between
consecutive frames.

An example of the input and output of the cross dissolve
algorithm is depicted in Figure 6. The time interval between
the two input frames is 300 ms. As indicated by the equa-
tion in Figure 6, the intermediate frames calculated earlier
obtain larger weights for the first input frame, while the
ones calculated later obtain larger weights for the second
input frame. Although the algorithm cannot generate the
exact intermediate frames as the original ones, it is able to
smooth the transition between the two input frames to some
extent. In addition, artifacts such as blurring are alleviated
when the interpolated frames are displayed in a short time
interval (e.g. 300 ms in Figure 6).

3.2 LBVC Implementation
We implement LBVC as an extension to Linphone, a widely

used open-source video chat app. Aside from Linphone, we
also investigate the potential of modifying other popular
open-source video chat apps, such as SipDroid and CSip-
Simple. We choose Linphone [4] as the base of our imple-
mentation because its software structure allows us to focus
on the implementation of the video processing functionali-
ties.

We implement the interface for user setting fps with An-
droid SDK 4.2 in Java and integrate it to the Android ver-
sion of Linphone. An example of the interface is shown in
Figure 7. The app developers can add more candidate frame
rates when they have the associated information.

The whole video streaming procedure in Linphone is im-
plemented as filter graphs in the native Mediastreamer2 li-
brary. Each filter in a graph is in charge of one task such
as video capturing, encoding, or displaying. When a video
stream starts, a thread called Ticker is scheduled to wake
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up every 10ms and executes the filter graphs. We implement
the Frame Rate Controller as a component at the beginning
of the Ticker thread. It collects the accelerometer and gy-
roscope readings through the Android NDK sensor library
API. For every 60ms, if the calculated vibration metrics is
larger than a specific threshold, the default frame rate (12
fps) is set for the video capturing and encoding filters; oth-
erwise, the user-specified lower frame rate is set.

We implement the Frame Interpolation Component as a
new filter between the video decoding and displaying fil-
ters. It utilizes the two most recently decoded frames as
the input to the cross dissolve algorithm and calculates the
intermediate frames. All the frames are put in a queue and
assigned proper time stamps including the common delay
for displaying. For each frame in the queue, it is not sent to
the displaying filter unless its time stamp is not smaller than
the current system time. The audio playing filter utilizes a
similar queue to add the common delay for audio playing.

4. EVALUATION
In this section, we evaluate LBVC with a series of experi-

ments and answer the following two questions: (1) How does
LBVC impact the bandwidth usage and power consumption
under typical video chat scenarios and mobility cases? (2)
How does LBVC impact the objective and subjective video
quality?

4.1 LBVC Configuration

Frame Rate (fps) 1 2 4 6 8

mA THRs (m/s2) 2.0 3.0 4.0 4.5 6.0
mG THRs (rad/s) 2.5 3.0 3.2 3.5 4.0
Common Delay (ms) 1100 620 260 240 200

Table 1: Selected Frame Rates and Their Associated
Parameters (Thresholds and Delay).

In the experiments, we use the implementation of the
LBVC extension to Linphone. We select 5 typical frame

rates that are lower than the default 12 fps, and summa-
rize them in Table 1. For each selected frame rate, we list
the thresholds for the Frame Rate Controller to adapt frame
rate and common delay added to synchronize the audio and
video (refer to the LBVC Architecture subsection). These
values are determined empirically. Particularly, the thresh-
olds are the minimal values that can prevent obvious frame
interpolation artifacts resulting from smartphone vibrations.
The delay is the upper bound of the frame interval observed
from extensive experiments.

4.2 Performance Under Typical Scenarios
In this subsection, we evaluate the performance impact

of LBVC at the selected frame rates in Table 1. We re-
cruit the same 10 pairs of subjects in measurement section.
Each pair performs video chats at all selected frame rates for
bandwidth and power measurements on a Galaxy Nexus and
Nexus 4. Each video chat lasts for 6 minutes. The subjects
are instructed to perform video chats as usual under typical
video chat scenarios such as sitting and standing. There are
no other physical constraints imposed on the subjects. Dur-
ing all video chats, we disable all unnecessary apps, services,
and radios on smartphones.

We perform bandwidth measurements over the T-Mobile
HSPA+ cellular network, and power measurements over a
public college WiFi network and the T-Mobile HSPA+ cel-
lular network. We separate the video chats for bandwidth
measurements from those for power measurements, since the
network traffic capturing software also consumes power.

4.2.1 Bandwidth Usage
In the experiments, we utilize Shark for Root to record

network traffic and WireShark to analyze bandwidth usage
on a server.

Figure 8 illustrates the measured total bandwidth usage
of uploading and downloading the video chats on Galaxy
Nexus. The red line depicts the average total bandwidth us-
age at the default 12 fps with LBVC disabled. The blue bars
illustrate the average total bandwidth usage at the selected
frame rates with LBVC enabled.
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Figure 8: Bandwidth Usage vs.
Frame Rate on Galaxy Nexus.
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Figure 9: Power Consumption vs.
Frame Rate in a Cellular Network
on Galaxy Nexus.
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Figure 10: Power Consumption
vs. Frame Rate in a WiFi Net-
work on Galaxy Nexus.

In the figure, we observe that the average total bandwidth
usage with LBVC enabled at 1 fps is even higher than that
at 2 fps. This is due to the small thresholds used for frame
rate adaption at 1 fps. Small thresholds allow some typical
smartphone vibrations to trigger switches from lower input
frame rate to higher default frame rate, resulting in larger
bandwidth usage. At 2 fps, the larger thresholds result in
less switches to the default frame rate, and hence the band-
width usage with LBVC enabled is smaller.

Moreover, when LBVC is enabled, we observe that the
bandwidth usage variances at 1 and 2 fps are larger than
those at higher frame rates. It is because that the thresh-
olds at 1 and 2 fps are smaller than those at higher frame
rates. Smaller thresholds allow smartphone vibrations to
trigger more switches between the input frame rate and the
default frame rate. The unstable runtime frame rate results
in large bandwidth usage variances. However, as the frame
rate increases, increased thresholds result in smaller band-
width usage variances.

Frame Rate (fps) 1 2 4 6 8
Galaxy Nexus (%) 39.1 43.2 35.2 22.3 13.0
Nexus 4 (%) 38.5 41.9 35.4 21.2 13.3

Table 2: Average Bandwidth Savings vs. Frame
Rates on Galaxy Nexus and Nexus 4 (Compared to
the Default 12 fps with LBVC Disabled).

We summarize the average bandwidth savings in Table
2. The average bandwidth savings for the two smartphones
are similar because the communication is symmetric. The
results demonstrate that LBVC is able to reduce the average
bandwidth usage of video chats by up to 43.2% under typical
video chat scenarios. Additionally, lower bandwidth usage
at clients reduces the traffic flow competition at the RTP
server, and consequently may result in less packet loss and
jitter.

4.2.2 Power Consumption
In the experiments, we utilize the Monsoon Power Monitor

[5] to measure the average power consumption of perform-
ing each video chat on Galaxy Nexus. However, the power
output interface of the monitor cannot be connected to the
battery pins of Nexus 4. Due to this hardware constraint,
we use the software PowerTutor [50] to measure the average
power consumption of performing each video chat on Nexus

4. In general, the measured power consumption includes the
power for sampling, processing, encoding/decoding, trans-
mitting/receiving and playing the video and audio. When
LBVC is enabled, it also includes the power of the sensors
and frame interpolation.

Figure 9 and 10 summarize the measured average power
consumption of all the video chats over the cellular and WiFi
networks on Galaxy Nexus. The red lines depict the aver-
age power consumption at the default 12 fps with LBVC
disabled. The blue bars illustrate the average power con-
sumption at the selected frame rates with LBVC enabled.

In the figures, we observe that the average power con-
sumption at 1 fps is larger than that at 2 fps. Higher power
consumption at 1 fps not only results from the frequent
adaption to the default frame rate, but also results from
more frame interpolation operations performed at 1 fps.

In addition, we observe that the power consumption vari-
ance with LBVC enabled at 1 fps is larger than those at
higher frame rates. This is due to the unstable runtime
frame rate. However, this variance is not significant com-
pared to the total power consumption.

Frame Rate (fps) 1 2 4 6 8
Gal.N.-WiFi(%) 8.9 13.2 10.4 7.8 6.6
Gal.N.-Cell(%) 9.7 10.1 8.8 5.2 3.6
Nexus4-WiFi(%) 10.1 14.0 11.2 8.6 7.4
Nexus4-Cell(%) 11.9 13.6 10.3 8.7 5.1

Table 3: Average Power Savings vs. Frame Rates
on Galaxy Nexus and Nexus 4 (Compared to the
Default 12 fps with LBVC Disabled).

The average power savings are summarized in Table 3.
From the table, we learn that although LBVC does not save
much power, the power saving resulting from frame rate re-
duction is large enough to offset the power consumption of
sensors and frame interpolation. Therefore, LBVC does not
introduce extra power overhead under typical video chat sce-
narios.

4.3 Performance in Mobility Cases
Since the Frame Rate Controller uses the inertial sensors

to adapt frame rate, the frame rate adaption is affected by
subjects’ mobility. In different mobility cases, the amount
of time during which LBVC works at the input frame rate is
different. Consequently, this affects the bandwidth savings.



In the previous section, we conducted experiments to dem-
onstrate the bandwidth and power savings of LBVC while
the subjects are stationary, such as sitting and standing. In
this section, we conduct the same group of experiments in
the other two mobility cases, walking, a representative of low
mobility, and sitting in a moving vehicle, a representative of
high mobility.

We summarize the percentages of time for LBVC to work
at different input frame rates in all the three mobility cases
in Figure 11. Since a higher input frame rate has a larger
threshold for frame rate adaption, we observe that as the
input frame rate increases, the percentage of time for LBVC
to operate at that frame rate also increases.

In Figure 11, we also observe that the stationary case has
the largest percentage of time for LBVC to work at user
input frame rates among all the cases. It is because there
are more smartphone vibrations in the other two cases. In
order to compensate the increased smartphone vibrations
and rescue video quality, the Frame Rate Controller has to
frequently adapt the instant frame rate to the default one.
In the stationary case, LBVC has the highest chance to save
bandwidth.
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Figure 11: Percentage of Time for LBVC to Work
at Different Input Frame Rates in Different Mobility
Cases.

Additionally, we observe that LBVC has the lowest chance
to work at input frame rates to save bandwidth in the walk-
ing case. It is because that the subjects do not control their
walking speed and gestures during video chats when they
are walking. Thus, in walking case, frequent speed changes
and slight jolts cause LBVC operating at the default frame
rate most of time.

In the walking case, although a subject’s head does not
have a significant relative movement in the screen during a
video chat, the background of the video chat continuously
changes. However, the fast background change is success-
fully compensated thanks to LBVC’s frequent adaption to
the default frame rate.

Finally, we observe that LBVC operates at input frame
rates for more time in the vehicle case than it does in the
walking case. It is because that the vehicles are usually
operated at almost constant speed near the speed limits on
the roads. At almost constant speed, acceleration changes
are not large enough to trigger the switch to the default
frame rate. However, different traffic conditions result in

different speed controls. The variances of the percentages in
the vehicle case are large.

In a vehicle, a subject’s head usually has a significant
relative movement in the screen when the vehicle changes
speed during braking, accelerating or hitting a speed bump.
In these scenarios, LBVC is triggered by the inertial sensors
to adapt the frame rate in order to compensate the relative
movement.

We summarize the bandwidth savings in Table 4. Al-
though the bandwidth savings in these two cases are smaller
than those under the typical scenarios, the extra consumed
bandwidth compensates the frequent smartphone vibrations
in order to alleviate video quality degradation. Since it is
hard to run the power monitor while the subjects are walk-
ing or sitting in a vehicle and power saving is not a major
benefit of LBVC, we do not perform power measurements
in these two cases.

Frame Rate (fps) 1 2 4 6 8
Walking Case

Galaxy Nexus (%) 0.7 1.6 3.0 3.1 4.5
Nexus 4 (%) 0.7 1.5 3.0 3.2 4.4

Vehicle Case
Galaxy Nexus (%) 4.2 11.2 13.9 8.6 8.6
Nexus 4 (%) 4.4 11.2 13.10 8.8 8.6

Table 4: Average Bandwidth Savings vs. Frame
Rates on Galaxy Nexus and Nexus 4 (Compared to
the Default 12 fps with LBVC Disabled) in the Two
Mobility Cases.

4.4 Video Quality
We perform a user study to evaluate the impact of LBVC

on video quality and demonstrate that LBVC can allevi-
ate the video quality degradation resulting from frame rate
reduction. In the study, we recruit 21 different pairs of
subjects (42 subjects in total) to perform video chats when
LBVC is either disabled or enabled under each selected frame
rate. Half of the subjects major in Computer Science, while
the others major in varying areas, including Physics, Applied
Science, Mathematics, Nursing, Education and Rhythmic
Gymnastic. Each video chat lasts for 6 minutes. We collect
both subjective and objective scores of each video chat.

To collect subjective scores, we carry out a Double Stimu-
lus Continuous Quality Evaluation (DSCQE) [16], in which
each subject rates a video chat by comparing it to a reference
video. The scores are from 0 to 100. An intuitive explana-
tion for the relationship between the video quality and score
is as follows: very annoying (0-20); annoying (21-40); fair
(41-60); good (61-80); excellent (81-100).

In each round of the DSCQE, we first ask each subject pair
to perform and score a video chat under the default 12 fps
with LBVC disabled and use this video chat as the reference
one. Second, we configure the Linphone using a randomly
chosen frame rate from Table 1 with LBVC either enabled or
disabled. Then, each subject pair is instructed to perform
and score a video chat under this configuration. During
each video chat, the subjects are also instructed to vibrate
the smartphone to simulate different mobility cases. We
repeat the second step until all the selected frame rates with
LBVC either enabled or disabled have been traversed by
each subject pair. In addition, we also query them whether
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Figure 12: TVM Scores vs. Frame
Rate. Error Bars indicate the
Standard Deviations.
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Frame Rate. Error Bars indicate
the Standard Deviations.
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Figure 14: The Ratio of the
Subjective Score with LBVC En-
abled to the Subjective Score with
LBVC Disabled for Each Pair.

the common delay affects the subjects’ video chat experience
or not.

To collect objective scores, we implement a recorder in
Linphone to automatically record all video chats during the
DSCQE. As in the measurement section, we use the Tem-
poral Variation Metric (TVM) [22] to measure the objective
video quality. We analyze the recorded videos by MATLAB
on a PC to obtain the TVM scores.

The objective and subjective scores are depicted in Figure
12 and 13. In these two figures, the red lines depict the
average score at the default 12 fps of Linphone with LBVC
disabled. The blue bars illustrate the average scores at the
selected frame rates with LBVC enabled, and the green bars
illustrate the average scores at the selected frame rates with
LBVC disabled.

Objective Scores Figure 12 demonstrates that LBVC is
able to alleviate the objective video quality degradation re-
sulting from frame rate reduction. For instance, the average
TVM scores at 4 fps indicate that the mean square differ-
ence between consecutive frames with LBVC enabled is de-
creased by 58% compared to that with LBVC disabled. This
significant decrease in the mean square difference between
consecutive frames results in smoother videos.

Subjective Scores Figure 13 summarizes the subjective
scores collected from the study. This figure demonstrates
that LBVC is able to alleviate the perceptual video qual-
ity degradation resulting from frame rate reduction. For
instance, the average subjective score at 4 fps with LBVC
enabled is improved by 25.3% compared to the one with
LBVC disabled. The score is even higher than that at 6 fps
with LBVC disabled.

When LBVC is enabled, we also notice that the relation-
ship between subjective score and frame rate is different
from that between objective score and frame rate. There
are two possible reasons. First, although the cross dissolve
algorithm interpolates intermediate frames to smooth the
video chats, the artifacts in the interpolated frames may also
impair the subjects’ perceptual experience. The lower the
frame rate, the larger the scene change between consecutive
frames, which consequently results in more artifacts in the
interpolated frames. Second, the frequent changes between
the default frame rate and input frame rate at lower frame
rates (e.g., 1 and 2 fps) also impair the subjects’ percep-
tual experience. In contrast, the TVM only measures the
video jerkiness but not the aforementioned artifacts. How-

ever, Figure 13 demonstrates that the subjective perceptual
experience is improved as a whole, although the artifacts
offset some improvements.

Notwithstanding the aforementioned limitation, we still
choose TVM for two reasons. First, very few non-reference
metrics are designed for measuring video quality with dif-
ferent frame rates. TVM is the newest metric of this sort
and specifically designed for mobile devices. Second, TVM
scores are accurate enough to demonstrate the effective al-
leviation of video quality degradation.

Figure 14 is a heat map of the ratio of the subjective score
with LBVC enabled and the one with LBVC disabled under
each frame rate. We calculate the score of each pair as the
average of the two subjects’ scores. We observe that LBVC
rarely worsens the video quality, and is able to alleviate the
video quality degradation for most of the time.

From both Figure 13 and Figure 14, we observe that the
video quality improvements are larger at 1 and 2 fps than
those at other frame rates. It is because the extreme video
jerkiness at 1 and 2 fps accentuates the smoothness brought
by frame interpolation and frame rate control.

Finally, almost all the subjects claim that the impacts of
the common delay during each video chat are acceptable and
even negligible when video chats are performed at 4 frames
per second and above. They also claim that there is no
obvious desynchronization between audio and video during
video chats.

From Table 2 and 3, and Figure 13, we notice that at 4 fps,
LBVC achieves about 35% bandwidth saving while still main-
taining good video quality without introducing extra power
consumption under typical video chat scenarios.

5. DISCUSSION AND FUTURE WORK
In this section, we discuss the assumptions and limita-

tions of LBVC. Then, we will discuss how to further improve
LBVC in the future.

First, in the design, LBVC utilizes the inertial sensor read-
ings to dynamically adapt the frame rate. One shortcoming
of this approach is being unaware of the object movements
in videos. For example, if the user’s head moves fast, but
the handheld smartphone does not, this approach may not
be able to instantly adapt the frame rate in order to com-
pensate for the fast head movement. However, since user’s
hand and head are connected through user’s body, it is the
usual case that user’s head moves fast and hands also move



significantly. From this perspective, we do not observe such
shortcoming frequently.

Second, we note that LBVC may miss some chance of
bandwidth savings when users are sitting in a moving vehi-
cle. Frequent vehicle speed changes make the accelerometer
readings highly dynamic and frequently trigger the switch
to higher default frame rate. To solve this problem, LBVC
may first use sensors, such as accelerometer and GPS, to
detect whether a user is sitting in a vehicle or not. With the
contextual knowledge of being in a vehicle, LBVC then only
uses the gyroscope to sense smartphone vibrations. We will
extend LBVC to address this special case in the future.

Third, in the design, LBVC switches to the default frame
rate when it detects severe vibrations with respect to the
thresholds of input frame rate. The principle of this design is
to provide enough quality for users under severe vibrations.
However, LBVC can further reduce bandwidth through a
more fine-grained frame rate adaption approach. In the ap-
proach, when a severe vibration is detected, LBVC does not
necessarily switch to the default frame rate, which is higher
than other candidate frame rates. Instead, it can increase
frame rate to a candidate, which is high enough for frame
interpolation to compensate the current vibration. With
this approach, LBVC has much less chance to switch to the
default frame rate, and in consequence has more chance to
reduce bandwidth usage. Meantime, it may worsen the over-
all video quality. Thus, to explore this alternative approach,
we should also investigate its impacts on video quality. We
will leave these works in future.

Finally, in Section 4.1, we empirically set up the threshold
values in such a way that they can prevent obvious frame in-
terpolation artifacts resulting from smartphone vibrations.
However, we are aware that different users may have dif-
ferent subjective criteria for whether interpolation artifacts
are obvious or not. In future, instead of pinning down the
thresholds manually for all users, we will explore the pos-
sibility of building a model that describes the relationship
between frame rate and threshold values. Once the model
is abstracted, it can be concreted for different users through
learning model parameters.

6. RELATED WORK
The initial idea of LBVC is presented in a poster [41].

We further improve our idea from 5 aspects: (i) we design
a user-friendly interface to help users with varying video
quality requirements set an appropriate frame rate to save
bandwidth with great confidences; (ii) we investigate the re-
lationship between power consumption and frame rate, and
the impact of our design on power consumption; (iii) we in-
vestigate bandwidth savings of our design in other mobility
cases such as walking and sitting in a vehicle; (iv) we orga-
nize a user study and collect subjective scores to investigate
whether our design can maintain subjects’ perceptual ex-
perience; (v) we also investigate other frame interpolation
algorithms, such as the optical-flow based algorithm in [43].

In this section, we articulate how LBVC is different from
existing works of video streaming bandwidth reduction, video
bitrate adaption, video streaming power reduction and im-
age interpolation.

Video Streaming Bandwidth Reduction. To lower the
bandwidth usage of streaming videos, many video compres-
sion techniques [8] [17] [25] [29] [45] have been proposed.

VP8 [8] and H.264 [17] utilize motion compensation tech-
nique that exploits the temporal correlation among frames
to reduce video sizes. SaVE [25] and SenseCoding [29] utilize
accelerometers to simplify existing motion estimation meth-
ods. In addition to the aforementioned video compression
techniques, existing works in compress sensing such as [37]
and context-aware compression [19] are also related.

In general, video compression techniques exploit various
information from video frames to reduce the number of nec-
essary bits to encode them. In contrast, LBVC is designed
to reduce the number of frames to be encoded, which is
equivalent to reducing the size of the input to video com-
pression techniques. Thus, LBVC and video compression
are orthogonal.

Video Bitrate Adaption. Video bitrate adaption tech-
niques take into account various information, such as net-
working conditions [24] [33] [44], video contents [35] and user
preferences [46], to control video streaming bitrate in order
to maximize video utility (or video quality) for video con-
sumer [27]. Compared to these quality-oriented video bi-
trate adaption techniques, LBVC adjusts video chat bitrate
to help user reduce their data plan quota usage and maintain
satisfiable video quality.

Some recent works, such as QAVA [23]and TUBE [28],
also propose techniques to help user economically use their
data plan quota for video streaming. LBVC is different from
these works from two perspectives. First, LBVC is designed
to reduce the bandwidth usage of streaming live and inter-
active video chats instead of downloading existing videos.
Second, QAVA and TUBE optimally perform the trade-off
between video quality and bitrate (or bandwidth usage) at
video sender in order to save date usage as well as guarantee
the quality of outgoing videos. In contrast, LBVC reduces
video bitrate more aggressively (through frame rate adap-
tion) at video sender and does not guarantee the quality
of outgoing videos. Instead, it utilizes extra techniques at
both video sender (vibration-aware frame rate control) and
receiver (frame interpolation) to guarantee the video quality
at the receiver. In short, LBVC has more capacity to reduce
bandwidth usage of video chats since it has more guarantees
for video quality.

Video Streaming Power Reduction. In [38], an inte-
grated power management method for video streaming is
proposed. It achieves architectural power optimizations on
CPU, register, and memory. It also includes an OS power-
saving mechanism - dynamic voltage scaling, and adaptive
middleware for video transcoding and network traffic regu-
lation. Empirical measurements performed in [36] demon-
strate that the chunk-based video streaming protocols are
the most power efficient for downloading videos on mobile
devices, since networking components on mobile devices have
more chance to sleep. The method in [30] shortens the ac-
tive duration of WiFi after each video prefetchings and cuts
off unnecessary video pre-fetchings with respect to users’
video viewing preferences. GreenTube [34] optimizes power
consumption for mobile video downloading by judiciously
scheduling downloading activities to minimize unnecessary
active period of 3G/4G radio.

In contrast, LBVC is proposed to mainly reduce band-
width usage of video chats streaming on smartphones, al-
though it has the capacity of, but not significantly, reducing
power consumption of video chats.



Image Interpolation. Exploring Photobios [32] also uti-
lizes the cross dissolve algorithm to interpolate intermediate
frames between two well-aligned images with the purpose
of creating a face animation with smooth face transitions.
InterviewVideo [20] provides a tool for automatically plac-
ing interpolated frames to make smooth transitions in in-
terview videos. Some methods such as [21] and [43] pro-
pose optical-flow based warping algorithms to interpolate
the frames. However, as we report in Section 3.1.4, warp-
ing algorithms usually involves complex operations, such as
image derivation and matrix multiplication. Thus, they are
more computationally intensive than the cross dissolve algo-
rithm [32] adopted in LBVC implementation. Some works
such as [47] utilize frame interpolation techniques to make
up the lost frames in video transmission. Although LBVC
also makes up frames, those frames are deliberately dropped
(not passively lost in [47]) to save bandwidth.

7. CONCLUSION
How to appropriately balance the mobile video quality

and bandwidth usage is a relevant but hard problem. Par-
ticularly, we attempt to address the problem in the scenario
of video chats by proposing LBVC. LBVC adapts the video
frame rate with respect to the smartphone vibrations at the
sender side and interpolates the ‘missing ’ frames at the re-
ceiver side. Through real system experiments and a user
study, we demonstrate that LBVC saves bandwidth by up
to 43% under typical video chat scenarios at the expense of
limited video quality degradation.

8. ACKNOWLEDGMENTS
The authors would like to express their gratitude to the

reviewers who provided insightful comments and suggestions
to improve the paper. The authors also wish to extend their
thanks to the subjects, who participated in the experiments
and user study. This work was supported in part by U.S.
National Science Foundation under grant CNS-1250180 and
CNS-1253506 (CAREER).

9. REFERENCES
[1] Average duration of mobile video chat.

http://goo.gl/ow9uDT.

[2] ffmpeg. http://www.ffmpeg.org/.

[3] Juniper research report. http://goo.gl/F5qvGz.

[4] Linphone. www.linphone.org.

[5] Monsoon power monitor. http://goo.gl/spM1pt.

[6] Optical-flow execution time. http://goo.gl/vcS1px.

[7] Rate control in h.264. http://goo.gl/7pfUp8.

[8] Rfc6386 - vp8 data format and decoding guide.
http://tools.ietf.org/html/rfc6386.

[9] Session description protocol. http://goo.gl/fcphyP.

[10] Shark for root. http://goo.gl/IRCUVw.

[11] Silk. http://dev.skype.com/silk.

[12] Skype bandwidth requirement.
http://goo.gl/apzY9s.

[13] Tcpdump. http://www.tcpdump.org.

[14] Us video call statistics. http://goo.gl/C7yjcO,.

[15] Wireshark. http://www.wireshark.org/.

[16] Methodology for the subjective assessment of the
quality of television pictures. ITU-R Rec. BT.500-11 ,
2002.

[17] H.264: Advanced video coding for generic audiovisual
service. International Telecommunication Union, 2013.

[18] White paper: Live and on-demand streaming video
with lifesize uvc video center. March, 2012.

[19] Xuan Bao, Trevor Narayan, Ardalan Amiri Sani,
Wolfgang Richter, Romit Roy Choudhury, Lin Zhong,
and Mahadev Satyanarayanan. The case for
context-aware compression. In Proc. of HotMobile
2011.

[20] Floraine Berthouzoz, Wilmot Li, and Maneesh
Agrawala. Tools for placing cuts and transitions in
interview video. ACM Trans. Graph., 31(4):67:1–67:8,
July 2012.
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