
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 1

MEG: Memory and Energy Efficient Garbled
Circuit Evaluation on Smartphones

Qing Yang, Ge Peng, Paolo Gasti, Member, IEEE, Kiran S. Balagani, Member, IEEE, Yantao Li, Member, IEEE,
and Gang Zhou, Senior Member, IEEE

Abstract—Garbled circuits are a general tool that allows two
parties to compute any function without disclosing their respec-
tive inputs. Applications of this technique vary from distributed
privacy-preserving machine learning tasks, to secure outsourced
authentication. Unfortunately, the energy cost of garbled circuit
evaluation protocols is substantial. This limits the applicability
of garbled circuits in scenarios that involve battery-operated
devices, such as Internet of things (IoT) devices and smartphones.

In this paper, we propose MEG, a Memory- and Energy-
efficient Garbled circuit evaluation mechanism. MEG utilizes
batch data transmission and multi-threading to reduce memory
and energy consumption. We implement MEG on an Android
smartphone, and compare its performance and energy consump-
tion to state-of-the-art techniques using two garbled circuits
of widely different sizes (AES-128, and 256-bit edit distance).
Our results show that, compared to “plain” garbled circuit
evaluation, MEG decreases memory consumption by more than
90%. When compared with current pipelined garbled circuit
evaluation techniques, MEG’s energy usage was 42% lower for
AES-128, and 23% lower for EDT-256. Further, our multi-thread
implementation of MEG decreased circuit evaluation time by
up to 56.7% for AES-128, and by up to 13.5% for EDT-256,
compared to state-of-the-art pipelining techniques.

I. INTRODUCTION

Secure computation techniques allow two or more parties
to compute a joint function of their (private) inputs without
disclosing any information besides the output of the function.
This model of computation enables secure realization of count-
less functionalities, including electronic voting [1], privacy-
preserving data mining [2], and outsourced biometric-based
authentication [3], [4].

As Internet of things (IoT) devices become ubiquitous, they
increasingly collect, generate, and process sensitive informa-
tion. Therefore, the ability to run secure computation protocols
on these low-power, often battery-operated devices has become
an important factor towards their adoption. For example, when
an IoT device is part of a crowdsourcing system which
involves exchanging sensitive information among mutually
untrusted parties, secure computation protocols can be used to
achieve the system goal without disclosing any user-specific
private information [5], [6].

(Qing Yang and Ge Peng contributed equally to this work.)
Q. Yang, G. Peng and G. Zhou are with the Department of Computer

Science, College of William and Mary, Williamsburg, VA 23185, USA (e-
mail: qyang@cs.wm.edu; gpeng@cs.wm.edu; gzhou@cs.wm.edu).

P. Gasti and K. S. Balagani are with the School of Engineering and
Computing Sciences, New York Institute of Technology, New York, NY
10023, USA (e-mail: pgasti@nyit.edu; kbalagan@nyit.edu).

Y. Li is with the College of Computer & Information Science, Southwest
University, Chong Qing 400715, China (email: yantaoli@swu.edu.cn).

Garbled circuit evaluation [7] is a popular technique in the
case of secure two-party computation. With garbled circuits,
one party (the generator) transforms a function into a Boolean
circuit composed of wired binary gates. The generator then
“garbles” this circuit by assigning encryption keys to represent
0 or 1 values to each wire. The circuit generator sends the
garbled circuit, as well as its garbled input, to the other party
(the evaluator). The evaluator computes the output keys and
then decodes the function output.

For most non-trivial functions, garbled circuits are com-
posed of a large number of gates. For example, a typical AES
circuit implementation consists of more than 30,000 gates [8],
while 256-bit Levenshtein distance (edit distance) implemen-
tations typically require more than 9 million gates. Because of
the sheer number of gates in a circuit, the evaluation process
requires substantial computation and data transmission. This
causes significant memory and energy costs. On systems with
limited RAM, battery capacity, and computing power, such
as IoT devices and smartphones, garbled circuit evaluation
has only become practical—at least in limited scenarios—in
recent years [9]. However, current techniques tend to impose
severe tradeoffs between memory usage, computation time,
and energy consumption. To make garbled circuits practical
for resource-constrained devices, it is crucial to use techniques
that are simultaneously efficient in all these aspects.

To address this issue, in this paper we propose Memory-
and Energy-efficient Garbled (MEG), a novel garbled circuit
evaluation method that provides energy- and memory-efficient
fast evaluation of garbled circuits. MEG combines the advan-
tages of two popular garbled circuit evaluation techniques:
pipelined, and non-pipelined circuit evaluation. With non-
pipelined techniques, the evaluator stores the entire garbled
circuit in memory before starting evaluation. Because the
size of garbled circuits can be significant even for fairly
simple functionalities, non-pipelined techniques use a substan-
tial amount of memory during circuit evaluation. To reduce
memory usage, pipelined techniques (e.g., [10], [11], [12],
[13]) rely on the generator to send garbled gate one at a time,
as soon as they have been garbled. The evaluator only needs to
keep in memory one gate at a time. As a result, the pipelined
evaluation of garbled circuits requires a very small amount of
memory. Unfortunately, pipelined techniques tend to consume
substantially more energy than non-pipelined constructions, as
shown by our evaluation (see Section V). This is because data
is continuously sent from the generator to the evaluator, which
prevents the processor and network interface (i.e., the WiFi
module) of the evaluator from entering low power states.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 2

To reduce energy and memory consumption, while decreas-
ing circuit evaluation time, MEG utilizes batch transmission
and evaluation of circuit gates, and multi-threaded execution.
MEG is designed to carefully arrange computation and com-
munication to enable the smartphone’s network interface to
enter power saving mode between consecutive batches, and
to maximize data rate while the network interface is in use.
To our knowledge, MEG is the first technique that applies
variable-window batching to garbled circuit evaluation.

To evaluate MEG, we implemented a garble circuit evalua-
tion app on an Android smartphone, and circuit generation
on a laptop. We report our results on various batch sizes,
and compared the resulting memory and energy consumption
with current circuit evaluation methods. Further, we compared
single-threaded and multi-threaded implementations of MEG.
Our evaluation shows that MEG uses up to 42% less energy
than state-of-the-art pipelined implementations. Compared to
non-pipelined implementations, MEG uses between 8% and
28% more energy. However, while non-pipelined circuit evalu-
ation requires an amount of memory proportional to the size of
the circuit, MEG uses the same amount of memory regardless
of the functionality being evaluated, making it suitable for
devices with limited resources. Further, MEG reduces the
protocol running time compared to non-pipelined execution
by up to 57%. These factors make MEG better suited for low-
memory IoT devices with slow CPUs compared to current
implementations.

Without loss of generality, in this paper, we assume that the
output of the circuit must be disclosed to the battery-operated
device. For this reason, we focus on reducing memory usage,
energy cost, and computation for the circuit evaluator. When
the output of the computation must be disclosed only to the
circuit constructor, techniques such as [14] can be used with
no changes to MEG.

Organization. The rest of this paper is structured as follows.
In Section II we briefly summarize garbled circuit construction
and evaluation, and review the main problems of current
implementations. In Section III, we review related work.
Section IV introduces the system design of MEG. In Section
V we present the evaluation of MEG on smartphones. We
conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we summarize garbled circuit construction
and evaluation. We then discuss pipelined and non-pipelined
garbled circuit protocols. We assume that the circuit generator
and evaluator are malicious, i.e., that they can both arbitrarily
deviate from the correct execution of the protocol [15]. The
techniques discussed in the rest of the paper are secure against
malicious adversaries.

A. Garbled Circuits Construction and Evaluation

Garbled circuit protocols involve two mutually untrusted
parties: the circuit generator (Alice), with private input x, and
the circuit evaluator (Bob), with private input y. Bob wants
to compute z = f(x, y), where f is a mutually agreed upon

Oblivious 
Transfer

Garbling of all possible 
inputs for Bob

Bob’s input y

Garbled input yg

Gabled circuit cg , Alice’s garbled input xg

Evaluate cg with xg and yg to get garbled result 

Translate garbled result to actual bit values

Evaluator 
(Bob)

Represent function f to boolean circuit cf

Transform circuit cf to garbled circuit cg

Garble input x to xg

Generator 
(Alice)

Circuit Construction Phase 

Oblivious Transfer

Circuit Evaluation

Fig. 1: Basic garbled circuit evaluation process.

function. However, neither Bob nor Alice are willing to reveal
information on their inputs, beyond input size and what can
be leant from z. The basic garbled circuit evaluation protocol
calculates f(x, y) using the steps illustrated in Figure 1. A
simplified description of each block is presented next.

Circuit Construction Phase. In this phase, Alice performs
the following steps to construct a garbled representation of
the function that she wants to evaluate on her input, as well
as Bob’s:

1) Alice represents f as a Boolean circuit cf . Each circuit
gate is represented by a truth table consisting of four
entries. Every entry describes the Boolean values for the
gate’s two input wires (input columns) and one output
wire (output column).

2) Alice garbles circuit cf to obtain garbled circuit cg . For
each gate of cf , Alice generates an encryption key for the
two values that each input or output wire can assume. She
then encrypts the output column of the truth table using
the corresponding input wire keys. Alice then shuffles the
entries in the garbled truth table.

3) Alice garbles each bit of her input by representing it using
the encryption key of the corresponding input wire, as
defined by cg . Let xg be the result of this process.

4) Alice sends cg and xg to Bob
Intuitively, because cg is computed independently from

Alice’s input, it does not disclose any private information
to Bob.

Oblivious Transfer Phase. Bob receives garbled version (yg)
of his input by running an instance of the oblivious transfer
protocol [16] for each of his input bit. The input of each
oblivious transfer protocol instance is a pair of keys (k0, k1)
from Alice, and a selector bit b from Bob, while the output is
kb. Disclosing kb via oblivious transfer guarantees that k1−b

is not disclosed to Bob (and therefore Bob cannot compute



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 3

0 100 200 300 400 500 600 700 800

Time (s)

0

500

1000

1500

2000

2500

3000

3500

P
o

w
er

 (
m

W
)

Non-Pipelined Trace

Pipelined Trace

Start

Non-Pipelined End

Pipelined End

Fig. 2: Power traces of non-pipelined vs. pipelined garbled
circuit evaluation of 256-bit edit distance on a smartphone.
Values between Start and End refer to circuit evaluation.

the output of f for any input other than y), and that b is not
disclosed to Alice.

Circuit Evaluation Phase. Bob evaluates each gate in cg using
the elements of xg and yg as decryption keys. He then decodes
the final output keys into the corresponding bit value. Because
Bob is unable to evaluate the circuit on any input other than
x and y, and because he cannot “decode” any intermediate
result, the protocol discloses only z = f(x, y) to Bob.

Security Model. In this paper, we consider garbled circuit
protocol constructions secure against malicious adversaries.
There are many attacks that a malicious circuit generator might
try to implement in order to alter the result of the computation,
or to learn information about the evaluator’s input. These
attacks include: making arbitrary undetectable changes to
the circuit [17], generator’s input inconsistency attack [20],
selective failure attack [20], and the circuit generator’s output
authenticity attack [20].

Security against malicious circuit generators guarantees that
these and other attacks cannot be performed. It can be achieved
using cut-and-choose [18]. With this technique, Alice con-
structs multiple garbled versions of the circuit. Bob randomly
selects a subset of these circuits, and challenges Alice to prove
that these circuits are garbled correctly. If Alice is able to
prove that all circuits are correct, Bob evaluates the remaining
circuits, and uses the majority of the evaluation results as the
circuit output.

B. Pipelined and Non-pipelined Evaluation

In non-pipelined implementations (e.g., [19]), circuit eval-
uation does not start until the whole circuit is loaded into the
evaluator’s memory. The problem with this approach is that
even relatively simple functions can lead to very large circuits,
and therefore devices with limited memory cannot evaluate
most functionalities.

To address this issue, pipelined techniques can be used to
evaluate garbled circuits while loading in memory a single gate
at a time. Generation and evaluation of the garbled gates are
interleaved in time: when the evaluator receives one garbled
gate, it finds the corresponding gate of the circuit and begins to

evaluate it as soon as the necessary inputs are available. Gates
are deleted from memory immediately after they are evaluated.
As a result, the amount of memory required to evaluate a
garbled circuit using pipelining is small, and does not depend
on the size of the circuit.

Unfortunately, on modern embedded systems, pipelined
circuit evaluation requires substantially more energy than the
non-pipelined method. This is because continuously receiving
data at relatively low rates (due to the cost of performing
garbling and evaluation) keeps both the CPU and the network
interface in high power states for most of the computation.
(This is confirmed in our evaluation, shown in Section V-B.) In
contrast, without pipelining, transmission and evaluation of the
circuit are performed in distinct phases. This allows network
and CPU to be either fully active, and thus operating at maxi-
mum efficiency, or to be idling in a low-power state. Figure 2
shows this phenomenon during the evaluation of a garbled
circuit corresponding to the 256-bit Levenshtein distance using
non-pipelined and pipelined methods. In our experiments, the
resulting average power consumption was 30.6% higher when
using the pipelining. Further, the evaluation of a circuit using
pipelining took longer than the evaluation of the same circuit
without using pipelining. This is because with pipelining each
gate of the garbled circuit is requested separately once the
evaluator is ready to process it. Therefore, the evaluator must
wait a full round-trip time for each gate. Even with low-latency
LANs, this delay has a meaningful impact on the evaluation
time of non-trivial circuits.

We provide further details on three representative garbled
circuit implementations [13], [20], [21] in Section III.

III. RELATED WORK

Previous research on energy optimizations investigated how
bursting affects energy consumption in WiFi and LTE (see,
for instance, [22], [23]). There is a substantial amount of
prior work on garbled circuits and their optimizations. In what
follows, we present three representative implementations of
garbled circuit evaluation protocols. We then summarize the
main results in the areas of general garbled circuit optimiza-
tion and smartphone-specific optimization.

Representative Garbled Circuit Implementations. To our
knowledge, there are three representative garbled circuit im-
plementations: Huang et al. [13], Kreuter et al. [20], and Obliv-
C [21]. In contrast with MEG, none of these techniques has
been optimized for energy efficiency. Next, we provide a brief
comparison of these techniques.

Huang et al. [13] introduced a Java-based garbled circuit
implementation that leverages several known and new opti-
mizations for improving the running time and memory re-
quirements of garbled circuits evaluation. These optimizations
include fast m-to-n garbled gates to speed up table lookups
and pipelining. Their results show that these optimizations lead
to significantly faster garbled circuit implementations (between
16 and 4,176 times faster than previous implementations),
which are able to scale to very large circuits. [13] also provides
an extensive circuit library, which allows developers to build
a new circuit by composing and extending highly-optimized



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 4

sub-circuits. Finally, an important feature of [13] is its small
and clean codebase, which consists of about 1,500 lines of
code for the main framework, and about 700 lines of code
implementing the circuit library.

Kreuter et al. [20] implemented a highly optimized garbled
circuit evaluation framework, suitable for the evaluation of
billion-gate circuits. This result relies on several key opti-
mizations, including: (1) algorithmic optimizations for circuit
evaluation and for cut-and-choose; (2) heavy parallelization of
circuit evaluation, achieved using Message Passing Interface
(MPI). This interface enables efficient use of massively parallel
infrastructures, including cluster computers; (3) pipelining;
and (4) the use of hardware-accelerated cryptographic instruc-
tions, such as AES-NI, in contrast with [13] which relies on
SHA-1 for the encryption of gates. The framework of Kreuter
et al. [20] relies on a circuit compiler, which allows developers
to implement the circuit in a higher-level programming lan-
guage rather than by combining smaller circuits as with [13].

Obliv-C [21] is a clever extension to the C programming
language targeted at implementing data-oblivious protocols. It
supports all C features, and adds control structures that enable
data-oblivious computation. For instance, the oblivious condi-
tional statement (obliv if) implements branching on conditions
that are not known even at runtime because they are based
on private inputs. As a result, Obliv-C enables programmers
that do not have a deep background in cryptographic protocols
and circuit design to implement secure protocols for complex
functions. Performance-wise, Obliv-C is competitive with [20],
despite the lack of optimizations such as the use of AES-NI
instructions [21].

General Optimization of Garbled Circuit Protocol.
Kolesnikov et al. [24] introduced a garbled circuit construc-
tion method in which garbled XOR gates are replaced with
plain XOR operations. Therefore, XOR gates in a circuit
are evaluated “for free”, i.e., without requiring cryptographic
operations. This technique also reduces communication cost
of circuit evaluation, because no information needs to be sent
to the evaluator with respect to XOR gates.

Goyal et al. [25] proposed a method where the generator
uses a random seed to construct the circuits used for cut-and-
choose, and later only sends the seeds corresponding to some
of the circuits instead of the entire circuits to the evaluator.
This technique substantially reduces communication cost.

Pinkas et al. [8] analyzed several algorithmic improvements
to the original garbled circuits protocol, including garbled row
reduction and free XOR under non-correlation robust KDF.
They tested these optimizations using the AES-128 circuit,
and showed that evaluation of large circuits is indeed feasible.

Lindell et al. [18] presented an optimized garbled circuit
evaluation protocol based on cut-and-choose to achieve se-
curity against malicious adversaries. Their protocol is more
efficient than prior protocols based on cut-and-choose, and
requires a smaller number of circuits to be evaluated to achieve
the same level of security, compared to prior work.

Garbled Circuit Optimization for Smartphones. Huang et
al. [9] introduced a Java-based secure computation framework
for Android. Their results show that processing power, rather

than network bandwidth, represents the biggest performance
bottleneck for secure computation on smartphones.

Mood et al. [26] developed a new memory-efficient tech-
nique for generating garbled circuits. They used the standard
SFDL language for describing secure functions as input, and
designed a new pseudo-assembly language and a template-
driven compiler to generate circuit. The evaluation results
on Android devices showed up to 95.6% memory overhead
reduction for circuits implementing 2-party set intersection
protocols.

Šeděnka et al. [14] designed privacy-preserving protocols
for scaled Manhattan and scaled Euclidean verifiers, which
are secure against malicious clients and honest-but-curious
servers, and do not require cut-and-choose. In their protocol,
the circuit constructor learns the output of the protocol.

Carter et al. [27] created a new SFE protocol that allows mo-
bile devices to securely outsource the majority of computation
required to evaluate a garbled circuit. Their protocol contained
a new outsourced oblivious transfer primitive that requires
significantly less bandwidth and computation than standard
OT primitives, as well as an outsourced input validation
technique that guarantees that the cloud is executing the
protocol correctly.

Gasti et al. [3] proposed an outsourced privacy-preserving
protocol for continuous authentication. The goal of their
protocol is to minimize energy consumption during circuit
evaluation by offloading most of the computation from the
circuit evaluator (typically a smartphone) to an untrusted cloud
infrastructure. As a result, their protocol requires about 1,000
times less energy compared to evaluating the garbled circuit
entirely on the smartphone. While these improvements are
impressive, [3] achieves them by requiring the use of a third
party (the cloud), which must not collude with the circuit
constructor. In contrast, MEG reduces the cost of circuit
evaluation phase on the smartphone, and as such does not rely
on any third party. Further, MEG and [3] are composable, i.e.,
MEG can be used in the circuit execution phase of [3] in order
to reduce circuit evaluation time and energy for the cloud.

IV. DESIGN OF MEG

We use three techniques to reduce energy consumption
and circuit evaluation time in MEG: gates batching, multi-
threading, and slow start.

A. Gates Batching

With gates batching, the circuit generator garbles several
gates at once, and stores them in a buffer. When the buffer is
full, its entire content is sent to the evaluator. The evaluator
maintains a buffer of the same size, and uses it to store and
process a batch of incoming gates at once. When all gates in a
batch have been evaluated, the evaluator empties the buffer and
requests a new batch. The benefits of gates batching are two-
fold. First, because the size of the buffer is fixed (i.e., it does
not depend on the size of the circuit), the amount of memory
required for circuit evaluation can be set arbitrarily, based on
the evaluator’s resources. Second, batch transmission reduces
energy consumption, because CPU and network operate on



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 5

Start

Generate	Gates

Finish

Send	Gates

Receive	Gates

Evaluate	Gates

Generator Evaluator

Batched
Gates

Start

Finish

(a) Single-thread MEG

Create	Threads

Generate	Gates
to	Buffer	1

Wait	for
GATES_SENT

Write	Gates
to	Buffer	2

Notify
GATES_READY

Join	Threads

Notify
GATES_SENT

Wait	for	
GATES_READY

Send	Gates
in	Buffer	2

Generator

Start

Finish

Create	Threads

Receive	Gates
to	Buffer	2

Wait	for
GATES_PROCESSED

Write	Gates
to	Buffer	1

Notify
GATES_RECEIVED

Notify
GATES_PROCESSED

Wait	for
GATES_RECEIVED

Evaluate	Gates
in	Buffer	1

Evaluator

Start

Join	Threads

Finish

Batched
Gates

(b) Multi-thread MEG

Fig. 3: Workflows of single-thread and multi-thread MEG.

larger chunks of computation and communication compared
to standard pipelining. This allows the evaluator to operate
more efficiently, because neither the network nor the CPU are
throttled in a high-power state while they wait to receive or
process data.

B. Multi-Threading

With single-threaded implementations of garbled circuits
(such as [13]), the generator performs garbling and commu-
nication in the same thread. Similarly, the evaluator receives
and decrypts each gate using one thread. Figure 3a presents the
single-thread version of MEG. The problem with this approach
is that, although data transmission and circuit garbling/eval-
uation could run in parallel, they are instead forced to run
sequentially. As a result, circuit evaluation takes longer than
necessary—especially on devices with more than one CPU
core—while saving virtually no additional energy.

Our multi-threaded implementation of MEG addresses this
issue as follows. The circuit generator and the evaluator create
two threads. On the generator, one thread is used for gates
generation, and the other thread is for gates transmission.
These two threads use two signals (GATES READY and
GATES SENT) to notify each other about current running
status and synchronize. On the evaluator, one thread is used
for network communication, and the other for gates evalua-

tion. These threads use two signals (GATES RECEIVED and
GATES PROCESSED) to synchronize. This allows the two
threads to operate simultaneously, thus keeping the network
and the CPU consistently operating at consistent loads.

C. Slow Start

One issue with processing gates in batches is that if the
batch is very large (say, greater than 16MB), the evaluator
must pause for a relatively long amount of time before it
can start processing the first batch. For instance, the evaluator
might have to wait for about five seconds while it receives the
first 16MB batch at 22.7MBps (the average LTE connection
speed in the United States [28] in 2017). To address this issue,
we designed MEG to leverage the slow-start technique used
by the TCP protocol. With slow start, we set the initial batch
size to 0.25MB, and double it for subsequent batches until it
reaches a pre-determined value. For instance, for batch sizes
of 16MB, the size of the first few batches is 0.25MB, 0.5MB,
1MB, etc. With this technique, the evaluator only needs to
wait for about 0.1 second on the same LTE connection before
starting the evaluation of the first batch of gates.

V. EVALUATION

In this section, we present the results of our evaluation
of MEG. Our experiments focused on energy, memory con-
sumption, and execution time of MEG with respect to the
circuit evaluator. This is because the circuit generation is
usually performed on a system that is not energy- or memory
constrained, while the evaluation is run on a smartphone in
several common scenarios [3], [14]. 1

Evaluation Setup. All experiments were performed using a
Samsung Galaxy S4 smartphone as circuit evaluator, and a
ThinkPad T440p laptop as the circuit generator. The Samsung
Galaxy S4 has a 1.9GHz quad-core Qualcomm Snapdragon
CPU, and 2 GB of RAM. The ThinkPad T440p has a 2.4GHz
Intel Core i7 CPU, 12 GB of RAM, and runs Ubuntu 16.04.
For our evaluation, we created a controlled 802.11n WiFi
network using a Netgear WNDR3700v2 router as the access
point. Both the smartphone and the laptop were connected to
the access point via WiFi.

Implementation Details. We based our implementation of
MEG on the code of Kreuter et al. [20]. This code provides
a C++ implementation of pipelined and non-pipelined garbled
circuits. However, because the code is highly optimized for the
Intel x86 architecture, we ported it to ARM/Android systems
as a native application using the Android NDK framework.
The porting process included the following steps. (1) We
cross-compiled the dependent libraries (PBC, GMP, OpenSSL
etc.) to the ARM processor used by Android phones. (2)
The original C++ code relies on the Intel SSE instruction set
to support Single Instruction, Multiple Data (SIMD) parallel
computation. Because SSE instructions are not available on
ARM CPUs, we re-wrote all the SSE code using ARM NEON

1Although the security model of [3] assumes non-collusion between some
of the parties involved in the computation (namely, the server and the Cloud),
the technique presented in our paper directly applies to the protocol in [3].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 6

TABLE I: Information on the circuits used in our evaluation.

Circuit
AES-128 EDT-256

Number of binary gates 34,136 9,959,904
XOR gates (% of all gates) 22,546 (66%) 7,228,604 (73%)

Non-XOR gates (% of all gates) 11,590 (34%) 2,731,300 (27%)
Circuit size 343.83kB 80.27MB

instructions for SIMD. (3) Because Android does not support
Message Passing Interface (MPI) for parallel computing, we
modified the code from [20] that uses MPI by re-implementing
all the required functionalities on the smartphone. (4) Finally,
we used Android NDK to build the C++ code into an An-
droid shared object, and created an Android Java application
that interfaced to the shared object implementing [20] using
Android JNI.

To implement MEG, we made the following modifications
to the code in [20]. To implement gates batching, we modified
the circuit constructor to split the whole circuit into batches.
We modified the evaluator accordingly, in order to process
each batch at once, and added signaling code that enabled the
evaluator to notify the constructor when it consumed a batch.

We then implemented the sender and receiver using multiple
threads: one thread for constructing/evaluating the circuit, and
one for sending/receiving garbled gates. (See Figure 3 for a vi-
sual representation of the differences between single-threaded
and multi-thread MEG.) To achieve this, we used the C++
classes unique_lock and mutex for shared data locking,
lock_guard for lock ownership, and notify_one for
communication between threads.

In order to minimize waiting time at the beginning of
the circuit evaluation process, we also implemented a slow
start mechanism. This mechanism resulted in variable batch
sizes. As a result, we included batch size as part of the
metadata corresponding to each batch. A further benefit of
this modification is that it enabled us to implement a more
efficient gate encoding. In [20], the encoding of each garbled
gate includes the size of the gate. This is redundant, because
both parties know what each gate in the circuit is, and therefore
only need to know either how many gates are sent, or the
total size of the gates being sent in a batch. (We employed the
latter in our implementation because it substantially simplified
our code.) We indicate the implementation which removes
individual gate sizes from the gate encoding as “pipelined+”.

To summarize, our comparison included the following tech-
niques: (1) non-pipelined (the evaluator receives the entire cir-
cuit before the evaluation begins); (2) pipelined (the evaluator
receives one gate at a time, and evaluates it immediately);
(3) pipelined+ (same as pipelined, with the exception that
gates are sent using an efficient encoding); (4) single-thread
MEG; and (5) multi-thread MEG. For both single-thread MEG
and multi-thread MEG, we considered six batch sizes: 0.5MB,
1MB, 2MB, 4MB, 8MB, and 16MB.

To measure the energy consumption of the smartphone, we
used a Monsoon Power Monitor [29]. In our experiments, the
smartphone’s battery was removed, and the smartphone was
powered solely by the Power Monitor. We recorded power
consumption data at a rate of 5kHz.

Circuits. We evaluated MEG on two circuits: (1) AES-128,
which is a circuit that implements the AES block cipher with a
128-bit key. The generator’s input is a 128-bit string represent-
ing an AES key, and the evaluator’s input is a 128-bit block
of data; and (2) EDT-256, which is a circuit that implements
the Levenshtein distance (edit distance). The generator’s and
the evaluator’s inputs are 256-bit strings. Table I reports the
number of gates and the size of the two garbled circuits. In
addition to be common choices for evaluating secure two-party
protocols, these circuits are characterized by very different
ratios between their size and the number of their inputs.
Specifically, the non-XOR-gates-to-input-size ratio is 45:1 for
the AES circuit, and 5,334:1 for the EDT-256 circuit.

Because MEG affects only the circuit evaluation phase of
the garbled circuit protocol, our analysis focused exclusively
on this phase. We reported the energy consumption and
elapsed time on the smartphone using different evaluation
methods. To measure the net energy consumption for circuit
evaluation, we subtracted the average power consumption of
the smartphone when idle from the energy used during the
evaluation of the garbled circuit. Due to the low variance
between experiments, five protocol runs for each circuit/tech-
nique pair were sufficient to obtain reliable measurements.

Cut-and-choose requires the evaluation of multiple circuits
to achieve security against malicious adversaries. The number
of circuits to be evaluated depends on the cut-and-choose
technique used, and on the security parameter. For instance,
with a circuit constructor’s cheating probability of 2−40 (the
security parameter) the total number of circuits is 125 using the
technique in [30], and 40 using the technique in [31]. For this
reason, and without loss of generality, we report the average
cost of the circuit evaluation phase for a single evaluation
instance. Because the impact of MEG applies to each circuit
evaluation independently, the relative gains presented in our
analysis apply when using any cut-and-choose technique.

A. Results

Energy consumption. The energy consumption of all five
methods is shown in Figure 4. Tables II and III list the relative
energy savings of MEG with respect to the other circuit evalu-
ation techniques. Our results show that MEG is able to offer a
substantial reduction in energy consumption compared to state-
of-the-art techniques. Compared to pipelined evaluation, MEG
reduces energy consumption by 35% to 42% for AES-128, and
by 18% to 23% for EDT-256. Compared to pipelined+, MEG
decreases energy consumption by 19% to 28% for AES-128,
and by 8% to 14% for EDT-256.

With batch sizes larger than 2MB, the energy consumption
of MEG is very close to that of non-pipelined evaluation—
with only 1% to 8% additional overhead for AES-128, and
1% to 5% additional overhead for EDT-256.

Single-thread MEG and multi-thread MEG have similar
energy consumption. With both, an increase in batch size leads
to a decrease in energy consumption.

Execution Time. The execution time of all circuit evaluation
methods is shown in Figure 5. Execution time for multi-thread



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 7

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

Sing
le-

th
re

ad
 M

EG

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

M
ult

i-t
hr

ea
d 

M
EG

Evaluation Method

0.25

0.35

0.45

0.55

0.65
E

n
er

g
y 

(m
W

h
)

0.5M
1M
2M
4M
8M
16M

MEG Burst Size (Bytes)

(a) AES-128

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

Sing
le-

th
re

ad
 M

EG

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

M
ult

i-t
hr

ea
d 

M
EG

Evaluation Method

200

250

300

350

E
n

er
g

y 
(m

W
h

)

0.5M
1M
2M
4M
8M
16M

MEG Burst Size (Bytes)

(b) EDT-256

Fig. 4: Evaluator’s energy consumption for the evaluation phase of a single garbled circuit instance using MEG with different
batch sizes, in comparison with other methods.

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

Sing
le-

th
re

ad
 M

EG

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

M
ult

i-t
hr

ea
d 

M
EG

Evaluation Method

0.4

0.6

0.8

1

1.2

1.4

T
im

e 
(s

)

0.5M
1M
2M
4M
8M
16M

MEG Burst Size (Bytes)

(a) AES-128

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

Sing
le-

Thr
ea

d 
M

EG

Pipe
lin

ed

Pipe
lin

ed
+

Non
-P

ipe
lin

ed

M
ult

i-T
hr

ea
d 

M
EG

Evaluation Method

500

550

600

650

700

750

T
im

e 
(s

)
0.5M
1M
2M
4M
8M
16M

MEG Burst Size (Bytes)

(b) EDT-256

Fig. 5: Evaluator’s execution time for the evaluation phase of a single garble circuit instance using MEG with different batch
sizes, in comparison with other methods.

MEG is consistent across all the different batch sizes. Multi-
thread MEG is significantly faster than all other evaluation
methods for AES-128. In particular, it is 56.7% faster than
pipelined evaluation, 25.8% faster than non-pipelined eval-
uation, and 19.8% faster than pipelined+ evaluation. With
EDT-256, multi-thread MEG is 13.5% faster than pipelined
evaluation, and 12.6% faster than non-pipelined evaluation.
However, it is 1.5% slower than pipelined+ evaluation. This is
primarily due to the relatively higher number of XOR gates in
the EDT-256 circuit (73% of the circuit gates are XOR gates,
as listed in Table I) compared to the AES circuit (66% of the
circuit gates).

With single-thread MEG, circuit evaluation time increases
significantly as the batch size increases. When the batch size
increases above 2MB, the execution time increases by 21.6%
to 31.5% for AES-128, and by 3.8% to 8.4% for EDT-256.

Circuit evaluation with single-thread MEG is slower than with
multi-thread MEG in all settings.

Memory consumption. The memory consumption of MEG
is determined by the batch size, which ranges from 0.5MB to
16MB in our evaluation. Compared with the non-pipelined
implementation, MEG decreases the memory consumption
by 97.5% (from 80.27MB to 2MB) for EDT-256 without
incurring in a meaningful increase in energy consumption.

B. Results Discussion

MEG’s energy efficiency is explained by the efficient uti-
lization of CPU and networking resources. Specifically, these
resources are either used at their most efficient setting, or they
are completely idle for a relatively long period of time. The
latter enables both the CPU and the network interface to enter



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 8

500 1000 1500 2000 2500 3000

Power (mW)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n

 o
f 

D
at

a
Multi-thread MEG
Single-thread MEG
Pipelined
Non-Pipelined
Pipelined+

(a) AES-128

500 1000 1500 2000 2500 3000

Power (mW)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n
 o

f 
D

at
a

Multi-thread MEG
Single-thread MEG
Pipelined
Non-Pipelined
Pipelined+

(b) EDT-256

Fig. 6: Empirical cumulative distribution function (CDF) of power consumption during circuit evaluation (not including oblivious
transfer). The batch size for MEG is 2MB.

TABLE II: Energy cost of MEG compared to other techniques
for the evaluation phase of the AES-128 circuit. Negative val-
ues represent energy savings of MEG compared to Pipelined
and Pipelined+. Positive values represent energy overhead
compared to Non-pipelined.

(a) Single-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -35% -38% -39% -39% -40% -42%
Pipelined+ -20% -23% -25% -25% -26% -28%

Non-Pipelined +12% +8% +5% +6% +4% +1%

(b) Multi-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -35% -35% -38% -38% -39% -38%
Pipelined+ -19% -19% -23% -23% -24% -23%

Non-Pipelined +14% +13% +8% +8% +6% +7%

TABLE III: Energy cost of MEG compared to other techniques
for the evaluation phase of the EDT-256 circuit. Negative val-
ues represent energy savings of MEG compared to Pipelined
and Pipelined+. Positive values represent energy overhead
compared to Non-Pipelined.

(a) Single-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -18% -20% -21% -22% -22% -23%
Pipelined+ -8% -10% -11% -12% -13% -14%

Non-Pipelined +8% +5% +5% +3% +3% +1%

(b) Multi-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -18% -21% -22% -22% -22% -23%
Pipelined+ -8% -11% -13% -13% -12% -13%

Non-Pipelined +8% +5% +3% +3% +3% +2%

power-saving mode for a substantial amount of the circuit
evaluation time, without affecting the duration of the protocol
execution.

Figure 6 shows the cumulative distribution function (CDF)

of power consumption values during circuit evaluation for
AES-128 and EDT-256. Compared to pipelined and pipelined+
circuit evaluation, MEG consistently reduces the amount of
time spent in high power state (i.e., above 2000 mW), with
the exception of the range above 2400 mW for multi-thread
MEG and AES-128. This is due to short bursts of high-
energy networking and computation performed simultaneously
on MEG’s two threads.

Multi-thread MEG has a lower execution time compared
to single-thread MEG with batch sizes above 2MB. This is
explained by Figure 7, which shows the power traces of single-
thread and multi-thread MEG, recorded while evaluating EDT-
256 using 16MB batch size. Throughout the evaluation of the
circuit, single-thread MEG has multiple drops in energy con-
sumption, which occur at the end of the evaluation of a batch
of gates, i.e., when the evaluator receives the next gates batch.
While this behavior helps to reduce energy consumption,
because the CPU can stay at a low power state for a prolonged
amount of time, it also increases circuit evaluation time. In
contrast, with multi-thread MEG the CPU is continuously
decrypting gates, thus reducing overall evaluation time.

We also evaluated the time and energy consumption of MEG
when considering the cost of oblivious transfer (see Table IV).
The resulting energy savings were almost identical to the
energy savings obtained in the circuit evaluation stage alone
(presented in Table III), primarily due to the relative cost of
circuit evaluation and oblivious transfer.

Because our optimizations are independent of the specific
garbled circuit implementation, our evaluation is indicative
of the benefits of MEG on other pipelined garbled circuit
implementations, e.g., Obliv-C [21] and the implementation
of Huang et al. [9].

VI. CONCLUSION

In this paper, we present MEG, a memory- and energy-
efficient garbled circuit evaluation technique specifically de-
signed for embedded devices, such as IoT devices and smart-
phones. To reduce energy use during circuit evaluation, MEG
relies on batch data transmission, multi-threading execution,
and slow-start. Our experiments show that MEG is able to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 9

TABLE IV: Energy cost of MEG compared to other techniques
for both the oblivious transfer and the circuit evaluation phases
of the EDT-256 circuit. Negative values represent energy sav-
ings of MEG compared to Pipelined and Pipelined+. Positive
values represent energy overhead compared to Non-Pipelined.

(a) Single-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -17% -19% -20% -21% -22% -23%
Pipelined+ -8% -10% -11% -12% -13% -14%

Non-Pipelined +8% +6% +5% +4% +3% +1%

(b) Multi-thread MEG

Batch Size (MB)
0.5 1 2 4 8 16

Pipelined -18% -20% -22% -22% -22% -22%
Pipelined+ -9% -10% -13% -13% -13% -13%

Non-Pipelined +7% +5% +3% +3% +3% +2%

0 100 200 300 400 500 600 700 800
Time (s)

500

1000

1500

2000

2500

3000

3500

P
o

w
er

 (
m

W
)

Start
Single-thread MEG End

Multi-thread MEG End
Multi-thread MEG Trace

Single-thread MEG Trace

Fig. 7: Power traces of single-thread vs. multi-thread MEG.
The circuit used in this evaluation is EDT-256, and the batch
size is 16MB. Values between Start and End correspond to
circuit evaluation.

simultaneously provide the advantages of both non-pipelined
circuit evaluation (low energy consumption and low evaluation
time), and pipelined circuit evaluation (scalability, as the
amount of memory required to evaluate a circuit does not
depend on the circuit size).

Compared to non-pipelined circuit evaluation, MEG reduces
memory consumption by 97.5% for EDT-256 when the batch
size is 2MB. With respect to energy consumption, MEG re-
quires 42% less energy for AES-128 and up to 23% less energy
for EDT-256 than state-of-the-art pipelined evaluation tech-
niques. Further, compared to non-pipelined circuit evaluation,
MEG shows a very small additional energy overhead (between
1% and 8%). Additionally, the multi-threading implementation
of MEG significantly reduces the circuit evaluation time on
smartphones compared to previous techniques.

REFERENCES

[1] A. C. Yao, “Protocols for secure computations,” in Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science, ser.
SFCS ’82. Washington, DC, USA: IEEE Computer Society, 1982, pp.
160–164. [Online]. Available: http://dx.doi.org/10.1109/SFCS.1982.88

[2] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining.” IACR Cryptology ePrint Archive, vol. 2008, p.
197, 2008. [Online]. Available: http://dblp.uni-trier.de/db/journals/iacr/
iacr2008.html#LindellP08a

[3] P. Gasti, J. Šeděnka, Q. Yang, G. Zhou, and K. S. Balagani, “Secure, fast,
and energy-efficient outsourced authentication for smartphones,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 11, pp.
2556–2571, 2016.

[4] M. Blanton and P. Gasti, Secure and Efficient Protocols for
Iris and Fingerprint Identification. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 190–209. [Online]. Available: https:
//doi.org/10.1007/978-3-642-23822-2 11

[5] S. Nandha Premnath and Z. J. Haas, “Supporting privacy of
computations in mobile big data systems,” Future Internet, vol. 8, no. 2,
2016. [Online]. Available: http://www.mdpi.com/1999-5903/8/2/17

[6] G. Zhuo, Q. Jia, L. Guo, M. Li, and P. Li, “Privacy-preserving verifiable
set operation in big data for cloud-assisted mobile crowdsourcing,” IEEE
Internet of Things Journal, vol. 4, no. 2, pp. 572–582, April 2017.

[7] A. C. Yao, “How to generate and exchange secrets,” in Proceedings of
the 27th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’86. Washington, DC, USA: IEEE Computer Society, 1986, pp.
162–167. [Online]. Available: https://doi.org/10.1109/SFCS.1986.25

[8] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure
two-party computation is practical,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2009, pp. 250–267.

[9] Y. Huang, P. Chapman, and D. Evans, “Privacy-preserving applications
on smartphones.” in HotSec, 2011.

[10] W. Henecka, S. K ögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“Tasty: Tool for automating secure two-party computations,” in
Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. New York, NY, USA: ACM,
2010, pp. 451–462. [Online]. Available: http://doi.acm.org/10.1145/
1866307.1866358

[11] K. Järvinen, V. Kolesnikov, A.-R. Sadeghi, and T. Schneider,
Garbled Circuits for Leakage-Resilience: Hardware Implementation
and Evaluation of One-Time Programs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 383–397. [Online]. Available: https:
//doi.org/10.1007/978-3-642-15031-9 26

[12] L. Malka, “Vmcrypt: Modular software architecture for scalable
secure computation,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 715–724. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046787

[13] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits.” in USENIX Security Symposium,
vol. 201, no. 1, 2011.

[14] J. Šeděnka, S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure
outsourced biometric authentication with performance evaluation on
smartphones,” IEEE Transactions on Information Forensics and Secu-
rity, vol. 10, no. 2, pp. 384–396, 2015.

[15] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[16] M. O. Rabin, “How to exchange secrets with oblivious transfer,” 2005,
harvard University Technical Report 81 talr@watson.ibm.com 12955
received 21 Jun 2005. [Online]. Available: http://eprint.iacr.org/2005/187

[17] Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party
computation in the presence of malicious adversaries,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2007, pp. 52–78.

[18] ——, “Secure two-party computation via cut-and-choose oblivious trans-
fer,” Journal of cryptology, vol. 25, no. 4, pp. 680–722, 2012.

[19] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—a secure
two-party computation system,” in Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 20–20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251395

[20] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries.” in USENIX Security Symposium, vol. 12,
2012, pp. 285–300.

[21] S. Zahur and D. Evans, “Obliv-c: A language for extensible data-
oblivious computation.” IACR Cryptology ePrint Archive, vol. 2015, p.
1153, 2015.

[22] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: Exploiting
high bandwidth wireless interfaces to save energy for mobile
devices,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. New



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2017 10

York, NY, USA: ACM, 2010, pp. 107–122. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814446

[23] S. Deng and H. Balakrishnan, “Traffic-aware techniques to reduce 3g/lte
wireless energy consumption,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies,
ser. CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 181–192.
[Online]. Available: http://doi.acm.org/10.1145/2413176.2413198

[24] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor
gates and applications,” Automata, Languages and Programming, pp.
486–498, 2008.

[25] V. Goyal, P. Mohassel, and A. Smith, “Efficient two party and multi party
computation against covert adversaries,” in Proceedings of the Theory
and Applications of Cryptographic Techniques 27th Annual International
Conference on Advances in Cryptology, ser. EUROCRYPT’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 289–306. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788414.1788431

[26] B. Mood, L. Letaw, and K. Butler, “Memory-efficient garbled circuit
generation for mobile devices,” in International Conference on Financial
Cryptography and Data Security. Springer, 2012, pp. 254–268.

[27] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced
garbled circuit evaluation for mobile devices,” Journal of Computer
Security, vol. 24, no. 2, pp. 137–180, 2016.

[28] “2017 united states speedtest market report,” http://www.speedtest.net/
reports/united-states/, accessed: 2017-10-29.

[29] “Monsoon power monitor,” http://www.msoon.com/LabEquipment/
PowerMonitor/, accessed: 2017-10-9.

[30] A. Shelat and C. Shen, “Two-output secure computation with malicious
adversaries,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2011, pp. 386–
405.

[31] Y. Lindell, “Fast cut-and-choose-based protocols for malicious and
covert adversaries,” Journal of Cryptology, vol. 29, no. 2, pp. 456–490,
2016.


