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Abstract

Tor is used to communicate anonymously by millions of daily users, which rely
on it for their privacy, security, and often safety. In this paper we present a new
attack on Tor that allows a malicious USB charging device (e.g., a public USB
charging station) to identify which website is being visited by a smartphone user
via Tor, thus breaking Tor’s primary use case. Our attack solely depends on
power measurements performed while the user is charging her smartphone, and
it does not require the adversary to observe any network traffic or to transfer
data through the smartphone’s USB port. We evaluated the attack by training
a machine learning model on power traces from 50 regular webpages and 50 Tor
hidden services. We considered realistic constraints such as different network
types (LTE and WiFi), Tor circuit types, and battery charging levels. In our
experiments, we were able to correctly identify webpages visited using the official
mobile Tor browser with accuracies up to 85.7% when the battery was fully
charged, and up to 46% when the battery level was between 30% and 50%.
Both results are substantially higher than the 1% baseline of random guessing.
Surprisingly, our results show that hidden services can be identified with higher
accuracies than regular webpages (e.g., 84.3% vs. 68.7% over LTE).
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1. Introduction

Tor is an application-level low-latency network that enables anonymous com-
munication between a client and arbitrary Internet servers. Tor uses a collection
of onion routers [1], hosted by a number of volunteers, to unlink the identity
and the geographical location of the client from the server, and to conceal the5

identity of the server to any adversary that can observe the client’s network
activity (e.g., from the client’s Internet service provider). Users rely on Tor to
conceal their activities from hackers, governments, employers, and ISPs, since
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those might abuse, misuse, or accidentally leak sensitive information. Further,
Tor is frequently used to protect the safety and security of political activists, to10

overcome communication restrictions, and to evade censorship.
Given prior work on the security of widely-available public USB charging sta-

tions [2], in this work we investigate whether a malicious charging station can
infer which websites are accessed by the Tor user while she charges her smart-
phones. The ability to determine which website is being accessed through Tor15

using power consumption information, rather than by observing network traffic,
makes our technique a novel, hitherto unexplored, and potentially devastating
attack vector. We consider this type of attack significant, because: (1) political
dissidents and human right activists rely on Tor to dissociate speech from their
identities [3]. Disclosing which website they have visited is sufficient, in many20

circumstances, to endanger their freedom and life; (2) there is often a correla-
tion between which website a user visits, and some of her sensitive information,
including health (e.g., if the user visits a forum for cancer survivors, or a web-
site providing advices to HIV patients), political affiliation (e.g., when visiting
a party’s website), and sexual orientation (e.g., when visiting an LGBT forum);25

and (3) the core purpose of Tor, as stated by its authors, is “to frustrate at-
tackers from linking communication partners” [1]. Therefore, disclosing which
website is being visited by the user defeats Tor’s purpose.

Contributions. In this paper we introduce a new attack on Tor. This attack
enables a malicious charging station to identify which website is being visited via30

Tor by smartphone users. Our attack relies on power measurements performed
while the user is charging her smartphone, and allows the adversary to determine
which websites are visited.

In our evaluation, we were able to correctly identify websites accessed via the
Orbot/Orfox Tor browser [4] with accuracies between 34.5% to 85.7% under re-35

alistic constraints, such as different network types (LTE and WiFi) and battery
levels (30% to 50%, and 100%). In both cases, our accuracies were substan-
tially higher than the 1% baseline accuracy obtained using random guessing.
Further, our attack was successful in identifying not only regular webpages, but
also pages served by Tor hidden services, thereby increasing the scope of the40

threats identified in this work. We consider this a serious attack on Tor be-
cause: (1) public charging stations are becoming widely available, making the
attack scenario in this paper very realistic and widespread, and (2) the level of
privilege required to implement this attack is minimal, as it needs no access to
(or manipulation of) network traffic, no malicious servers, and no exploitation45

of bugs in the Tor software. Because the security of Tor is critical to guaran-
tee the safety and freedom of a large number of users around the world, any
low-privilege attack that reliably and accurately infers user activity should be
considered very seriously.

Energy and Loading Time Impact of Tor. Accessing web content via Tor has50

significant effects on webpage loading. When users browse webpages using Tor,
all requests and the corresponding responses are forwarded by three Tor relays

2



in the Tor circuit. Each relay encrypts and decrypts all data in transit. Since
the relays are geographically distributed, each packet can potentially travel a
long distance before reaching its destination, thus introducing large and vari-55

able network delays. Further, because Tor circuits are composed of randomly
selected relays, each circuit can introduce different delays, thus adding further
uncertainty and inconsistency when loading the same webpage. Finally, the con-
struction of Tor circuits consumes additional energy, thus adding background
noises to the power traces for webpage loading.60

To illustrate the effects of Tor on webpage loading, we measured the loading
time of six webpages on a Samsung Galaxy S6 with and without Tor. We loaded
each webpage 5 times. The results are shown in Figure 1.

Figure 1: Loading time for six public webpages without Tor (upper plot) vs. using Tor (lower
plot).

Using Tor not only increased the loading time (from 2 seconds to 10 seconds,
on average), it also introduced a larger variation within the loading time. The65

average relative standard deviation of loading time was 21.98% without Tor, and
40.54% with Tor. The effects of loading webpages with Tor are further reflected
in the power traces. Figure 2 shows the power traces collected while loading the
homepage of google.com. We compared the power trace when loading the same
webpage directly and using Tor (on the same smartphone and mobile browser).70

When loading google.com without Tor, most of the energy is consumed within
the first second. When using Tor, the energy consumption is spread across
a longer period (the first 7 seconds). The appearance of such random power
patterns leads us to question whether it is possible to identify webpages based
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on power signatures when using Tor.75
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Figure 2: Power traces collected during the first 10 seconds of loading google.com without
Tor (upper plot) vs. using Tor (lower plot). The x axis shows time from the beginning of the
webpage loading, and the y axis shows the power drawn from the USB port.

Organization. The remainder of this paper is organized as follows. We introduce
our experiment setup and collected datasets in Section 2. Section 3 details our
webpage identification technique. Evaluation of our technique is presented in
Section 4. We review the related work in Section 5. Our conclusion and future
work are in Section 6.80

2. Data collection

In this section, we first introduce the hardware, software, and network setup
for the collection of power traces. We then explain how webpages and Tor
circuits are selected. Finally, we present details on all datasets used in this
paper.85

2.1. Experiment Setup

Power supply. We powered the smartphone using a Rigol DP832 power sup-
ply [5], set to 5.5 V when the smartphone battery was fully charged, and to 9
V when the smartphone battery was charging from 30%. The latter setting is
supported by the Samsung Galaxy S6 and other smartphones compatible with90

Qualcomm Quick Charge [6], and it resulted in a wider power consumption
dynamic range.

Device connection. As per USB charging specification [7], we connected the
data pins (D+ and D−) of the USB cable using a 200 Ω resistor to allow for
charging currents above 500 mA. To measure the instantaneous smartphone95

power consumption from the USB port, we inserted a 0.1 Ω shunt resistor on
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the GND wire of the USB cable, and measured the voltage drop across the
resistor using a National Instruments USB-6211 DAQ [8]. The DAQ was set
to use a sampling rate of 200 kHz. We connected the DAQ’s output port to
a Thinkpad T440P laptop, which was used to store the power traces using the100

LabView software.

Tor software setup. To collect power traces, we used the official Tor apps on
Android, Orbot [9] and Orfox [4], on two Samsung Galaxy S6 smartphones,
denoted as phone A and phone B in the rest of this paper. Orbot implements
a local proxy that provides access to the Tor network. Orfox is a web browser105

based on the smartphone version of Firefox. It enhances Firefox by including
features that improve user privacy, such as HTTPS Everywhere [10]. Further,
it disables the execution of JavaScript code by default.

We connected Orfox to Tor using the Orbot instance on the smartphone. To
collect data reliably, we modified Orfox by disabling the Android flag FLAG SECURE110

to enable screenshot once a web page was loaded. This was used to manually
verify that all pages were loaded successfully. We also implemented a Tor option
that enables manual selection of the second relay, so as to create a “fixed” Tor
circuit.

Power trace collection. To load each webpage automatically, we developed an115

Android background service that cycled through our webpages (listed in tables 1
and 2). After loading each webpage, the service paused for 12 seconds, and then
logged which URL that was loaded, together with the corresponding timestamp,
to a file on the smartphone.

We synchronized each power trace with the corresponding URL using the120

following process. Before collecting each dataset (see Table 3), we used the same
NTP server to synchronize the clocks of the smartphone and of the laptop used
for recording the power traces. We then used the timestamps in the smartphone
log file and in the power traces to align the first data point associated with each
URL.125

Table 1: 50 webpages selected from Alexa top non-adult websites (as of Dec 2016).

google.com amazon.com ebay.com microsoft.com fc2.com

facebook.com twitter.com wordpress.com vk.com snapdeal.com

youtube.com sina.cn msn.com apple.com ask.com

yahoo.com weibo.cn pinterest.com imdb.com stackoverflow.com

wikipedia.org ok.ru paypal.com office.com netflix.com

dailymail.co.uk stackexchange.com booking.com indeed.com salesforce.com

nytimes.com daum.net dropbox.com whatsapp.com nicovideo.jp

thepiratebay.org wikia.com pixnet.net coccoc.com adf.ly

espn.com bbc.com sogou.com blogger.com mail.ru

github.com cnn.com naver.com rakuten.co.jp adobe.com

5



Table 2: 50 random selected hidden services (all with .onion as domain name suffix).

rougmnvswfsmd4dq yuxv6qujajqvmypv nql7pv7k32nnqor2 s5q54hfww56ov2xc sblib3fk2gryb46d

ityukvsoqjgzcimm kxojy6ygju4h6lwn cashis7ra6cy5vye 3g2upl4pq6kufc4m fdwocbsnity6vzwd

65px7xq64qrib2fx fzqnrlcvhkgbdwx5 clockwise3rldkgu libertygb2nyeyay xmh57jrzrnw6insl

hss3uro2hsxfogfq kpynyvym6xqi7wz2 fbcy5ylyoeqzqzcr undergunbgzlc2ey o6klk2vxlpunyqt6

vu2wohoog2bytxgr xfnwyig7olypdq5r 54ogum7gwxhtgiya slwc4j5wkn3yyo5j c3jemx2ube5v5zpg

answerstedhctbek tfwdi3izigxllure gjobqjj7wyczbqie ll6lardicrvrljvq aaaajqiyzj34rhjm

drystagepmi5msdm greendrgfjz7ks5f 4yjes6zfucnh7vcj abbujjh5vqtq77wg b34xhb2kjf3nbuyk

usjudr3c6ez6tesi 76qugh5bey5gum7l djypjjvw532evfw3 grams7enufi7jmdl w363zoq3ylux5rf5

nare7pqnmnojs2pg kbvbh4kdddiha2ht qputrq3ejx42btla zqktlwi4fecvo6ri ccxdnvotswsk2c3f

flibustahezeous3 74ypjqjwf6oejmax tetatl6umgbmtv27 jmkxdr4djc3cpsei hss3uro2hsxfogfq

Networks. We loaded all webpages using the WiFi network on the campus of
The College of William & Mary, and via the T-Mobile LTE network in Williams-
burg.

2.2. Datasets

To collect data, we used two types of Tor circuits—fixed, and automatic—to130

retrieve regular webpages, and to access Tor hidden services [11]. Details follow.

Collection of Data from Tor Hidden Services. In contrast with servers on the
public Internet, Tor hidden services are accessible only using the Tor network.
Hidden service providers reside on Tor relays or Tor clients, and offer various
services including web hosting, instant messaging, and SSH, while hiding the135

hidden service IP addresses. Each Tor hidden service hides behind several “in-
troduction” relays in the Tor network. When visiting a hidden service, the
Tor client first downloads the service’s public descriptor (identified by a unique
16-character name followed by “.onion”). Then, it creates a Tor circuit to a ran-
domly selected “rendezvous” relay, and it sends the rendezvous relay’s address140

to the hidden service through one introduction relay. The hidden service creates
a Tor circuit to the rendezvous relay, and the client uses the “rendezvous” relay
to exchange encrypted messages with the hidden service. In the rest of this
paper, we refer to the webpages hosted on public Internet servers as “public
webpage”, and to web content hosted on hidden services as “hidden service”.145

We collected power traces while loading selected public webpages and hid-
den services. Tables 1 and 2 list all websites used in our experiments. For
public webpages, we selected the home pages of the 50 most popular non-adult
websites accessible via Tor, based on the Alexa ranking. We excluded pub-
lic webpages that do not display content without JavaScript, because Orfox150

disables JavaScript by default. For hidden services, we randomly selected 50
websites from The Hidden Wiki [12] that were consistently available during the
experiments. Because 100 webpages represent only a small portion of the Web,
we consider this work as a proof of concept. However, even with this restriction,
our results conclusively show that substantial information is leaked when the155

adversary is able to monitor power consumption during page load.
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Selection of Tor Circuits. When a Tor client builds a circuit, it first selects three
relays from a public directory. The client then connects to the first relay (“en-
try”), and it uses this relay to extend the circuit to the second relay (“middle”).
The client finally uses the first two relays to extend the circuit to the last relay160

(“exit”). As it constructs the circuit, the client shares a unique symmetric key
with each relay.

We performed our experiments using two types of Tor circuits: “automatic”,
and “fixed”. For automatic circuits, we allowed Orbot to select a new circuit for
each webpage loading using the default path selection protocol [13]. By default,165

the entry relay is selected among a small group of long-term entry servers (guard
nodes), and it does not change for a relatively long time. However, Orbot
settings allow the user to disable using entry guard by setting “UseEntryGuards”
to 0. We used this option in our experiments to model the inability of the
adversary to use the same Entry Guard as the user.170

The circuit used to load a specific webpage changes every 10 minutes by
default. Because in our data collection the time between collection of subsequent
traces from the same webpage is larger than 30 minutes, power traces from the
same website were collected using different circuits.

With the fixed circuits, we manually chose all three Tor nodes in the circuit175

and used them to load all webpages. In our dataset, we denoted the circuit
composed of anonymiton (in Germany, entry node), torfa (in Hungary, middle
node), and Hermes (in France, exit node) as “Cir-1”. We denoted the following
circuit as “Cir-2”: inky (in Switzerland, entry), cry (in Netherlands, middle),
and hessel1 (in Romania, exit). Although in practice Orbot (or any modern180

Tor implementation) does not use a fixed circuit for loading multiple webpages,
we used this type of circuits to evaluate the scenario where training and testing
data were collected under conditions that were as consistent as possible. This
allowed us to quantify the loss of accuracy due to noise induced by the use of
different Tor circuits in training and testing.185

The datasets used in our experiments are listed in Table 3. For each config-
uration, we loaded all 100 URLs once, and then repeated this process 40 times.
If a webpage did not load successfully, we replaced that trace with a new one
from the same URL, collected at the end of the data collection session. As a
result, each dataset is composed of 40 power traces for each of the 100 URLs.190

The duration of each trace is 10 seconds, because this allowed Orfox to load
almost all webpages completely.
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Table 3: Configurations used to collect power trace datasets. We collected datasets #7 and
#8 under the same settings as #1 and #2. However, to minimize the effect of time difference
on the identification accuracy when comparing two different phones, #7 and #8 were collected
within 12 hours of each other’s time, while #1 and #2 were collected two days apart.

Dataset Phone Circuit Network Battery Level
1 A Automatic WiFi 100%
2 B Automatic WiFi 100%
3 A Automatic LTE 100%
4 B Automatic WiFi 30% to 50%
5 A Fixed #1 WiFi 100%
6 B Fixed #2 WiFi 100%
7 A Automatic WiFi 100%
8 B Automatic WiFi 100%

Effects of User Interaction on Power Traces. Prior work [2] has shown that user
interactions, such as taps and swipes on the smartphone’s touchscreen, affect
power traces, and therefore the success rate of the attack. For example, in [2]195

user interactions decreased the attack’s success rate by 16.7%-25.7%. We expect
that user interactions have similar effects on traces collected using Tor.

3. Feature selection and classification

To identify the public webpages and hidden services loaded on the smart-
phone, we first extracted time- and frequency-domain features from the power200

traces, and then trained a Random Forest classifier on the resulting feature
vectors. We used the trained classifier to predict the webpages on new power
traces.

3.1. Feature selection

We experimented with time-domain features, such as mean, RMS, and cor-205

relation coefficient, and frequency-domain features based on simple FFT, cep-
strum analysis [14], and spectrogram analysis. Our experiments demonstrated
that features based on spectrogram analysis led to higher accuracies compared to
other techniques. For instance, spectrogram features led to an increase in accu-
racy of up to 16% compared to FFT features. Figure 3 illustrates that different210

webpages have distinctive frequency spectrum patterns, where the magnitude
values in most frequencies are significantly different among these webpages. We
further divided each power trace into several overlapping 0.5-second segments.
We calculated the spectrogram of each segment (using window length of 1000
samples, and 50% overlap between windows). The spectrogram results contain215

the magnitudes of frequencies in the range of 0 Hz ∼ 100 kHz. We divided this
range into 125 equal-size bins to reduce the effects of noise of individual frequen-
cies, and calculated the average magnitude of all the frequencies in each bin as
its corresponding feature, thus transforming each power trace segment into a
feature vector of 125 elements, as shown in Figure 4. We can observe that the220

feature vectors between different webpages are significantly more obvious than
between traces for the same webpage.
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Figure 3: Spectrogram analysis on power traces sampled while loading six different websites.
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Figure 4: Features extracted from segments of power traces based on spectrogram analysis.

3.2. Classification

The classification problem can be abstracted as follows. We use X =
(x1, x2, . . . , xp) to denote a feature vector with p features. Variable Y repre-225

sents possible classes 1, 2, . . . ,K. Given a training dataset S with N observa-
tions (Xi, Yi), we first use S to train a classifier Ĉ(X) ∈ {1, 2, . . . ,K}, and then
use Ĉ(X) to predict the classes of testing feature vectors.

We used Random Forests [15] for classifier training. A random forest consists
of a set of decision trees. We use B to denote the number of decision trees to230

build for a random forest. There are three steps to train the random forest: (1)
from dataset S, each time we randomly draw N observations with replacement
to create a bootstrap dataset Sb for b = 1, 2, . . . , B, (2) from each Sb, we train
a decision tree C(Sb, X), and (3) the random forest classifier is the ensemble of
all C(Sb, X), and it uses majority vote to make prediction on testing feature235

vectors.
In the following, we give details of the above step (2). Each decision tree is

built from the root node. At each node, we randomly select a subset of all the
p features, denoted by F = {x∗

1, x
∗
2, . . . , x

∗
m},m = blog2p + 1c. For each feature

x∗
i , i = 1, 2, . . . ,m, we use Gi to denote the set of all possible x∗

i values in the240
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dataset. We try each possible test x∗
i < g, g ∈ Gi to split the current node,

and choose the test that generates the largest “information gain”. To calculate
the information gain, at each node, assuming Pi is the occurrence probability
of class i, i = 1, 2, . . . ,K, we first calculate the Shannon entropy as:

H = −
K∑
i=1

Pi log2 Pi (1)

Assume that the entropy at current node is H. After a splitting, there are L245

percent of observations in the left child and R percent of observations in the
right child. We use HL and HR to denote the entropy at the left and right child,
respectively. Then the average entropy after splitting is:

HAfter = HL × L + HR ×R (2)

The information gain of a splitting is defined as (H −HAfter). At each node,
our goal is finding the splitting to:250

maximize(H −HAfter) (3)

The above process recurses on each child until a stopping condition is satisfied,
such as all observations in the node belong to the same class, or the maximum
tree depth has been reached.

After all decision trees are trained, the random forest classifier is defined by:

Ĉ(X) = majority vote{C(Sb, X)}, b = 1, 2, . . . , B (4)

We used the WEKA [16] implementation of Random Forests. For each of our255

experiment scenario, we used 20 power traces per webpage to train the classifier,
and the other 20 power traces per webpage for testing. We trained the classifier
using segments of all training traces. To identify a testing power trace, we first
classified all the segments of this trace, and then used majority voting of these
segments to determine the class of this trace.260

4. Performance Evaluation

We first present the identification accuracies of our technique for our basic
configuration (i.e., using WiFi and fully-charged battery). We then discuss how
different variables, including using different phones for training and testing,
network types, and battery charging levels, affect identification accuracy.265

4.1. Identification Accuracy for Basic Configuration

We list the datasets corresponding to our basic configuration as #1 and #2
in Table 3. We evaluated the following three cases: (1) using all traces for both
public webpages and hidden services; (2) using traces from public webpages
for training and testing; (3) using traces from hidden services for training and270

testing. In each case, we used half traces for training, and the other half for
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testing. The results are shown in Table 4, which includes Rank-1 and Rank-
5 identification accuracies. With Rank-1, a trace is classified correctly if its
label is the output of the classifier with the highest confidence. With Rank-5,
traces are considered correctly classified if their label appear among the 5 labels275

identified by the classifier with the highest confidence.

Table 4: Webpage identification accuracy using WiFi and 100%-charged battery (basic con-
figuration)

Phone
All webpages Public webpage only Hidden service only

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
A 79.05 % 88.7% 76.3% 88.1% 87.3% 93.2%
B 85.7% 92.6% 82.2% 93.2% 89.2% 94.9%

We were able to identify hidden services with higher accuracy (87.3%) than
public webpages (76.3%), as shown in Figure 6. There are two possible reasons
for the accuracy difference between public webpages and hidden services. First,
we measured the loading time of six hidden services (shown in Figure 5). We280

observed that, compared to public webpages (see Figure 1), the loading time of
hidden service is more consistent (19.82% relative standard deviation, on aver-
age, compared to 40.54% for public webpages) and has smaller range (from 3.25
s to 10.63 s, compared to 2.81 s to 23.63 s for public webpages). Possible reasons
for these differences include: (1) hidden services are mostly simple static web-285

pages; and (2) their contents rarely change over a long time. In contrast, public
webpages usually contain large-size elements. Since public webpages need longer
loading time than hidden services, they have a higher chance of being influenced
by the instability of Tor circuits. As a result, there are more inconsistency and
noise in the training and testing power traces of public webpages.290

Figure 5: Loading time for six hidden services using Tor.
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Figure 6: Identification accuracy comparison among (1) hidden services, (2) public webpages
with content changes, and (3) public webpages without content changes.

Second, we examined the screenshots for each webpage loading, and we
found none of the 50 hidden services changed their displayed contents during
the data collection period (about 1 day). In comparison, 31 of the 50 public
webpages displayed different contents during the collection, which further affects
the consistency among power traces of public webpages. Figure 6 shows that295

public webpages without content changes have higher average accuracy than
public webpages with content changes.

The content changes of public webpages are either due to frequent website
updates (e.g. for news websites), or because different versions of the webpage
were loaded based on the geographical location of the Tor exit relay. For ex-300

ample, we checked the four public webpages with identification accuracy lower
than 40%, and we found two of them were loaded with different versions (based
on website language, content, and layout): there were 9 versions for paypal.com
(with accuracy of 30%), and three versions for dropbox.com. (with accuracy of
25%).305

To improve the identification accuracy, we tried to use a specific version
of these websites for training and testing. For example, we used the traces
for paypal.com/de instead of paypal.com and re-conducted the whole training
and testing. The identification accuracy was improved from 30% to 90% for this
specific webpage, and it increased from 79.05% to 79.65% for all webpages.310

4.2. Impact of Training and Testing on Different Smartphones

When we used the dataset collected from smartphone A to train the model
and used the model to identify traces from smartphone B, the original classifi-
cation method did not provide good results. To address this issue, we modified
the model as follows. By examining the spectrograms of power traces from315

different phones, we observed that beyond a specific frequency (about 3 KHz),
the difference in magnitude distribution among spectrograms depends more on
the smartphone being used than the webpage being loaded. To address this
issue, we increased the frequency resolution of the spectrogram, and we used
the magnitudes of the first 250 frequency points (ranging from 0 Hz to 3039.6320

Hz) as the feature vector for each power trace. We then used Sequential Min-
imal Optimization (SMO) algorithm [17] for model training and testing. The
resulting identification accuracies using two phones are presented in Table 5.
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Table 5: Webpage identification accuracy using different phones for training and testing

Train Test
All webpages Public webpage only Hidden service only

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
A B 43.13% 70.3% 48.75% 80.15% 47.05% 77.45%
B A 36.58% 63.78% 43.2% 74.7% 40.35% 69.3%

Even though the accuracy decreases when training and testing on different
smartphones (36.58% to 43.13% for all webpages using two phones, compared325

to 79.05% to 85.7% using the same smartphone for training and testing), it is
still significantly higher than that of random chance at 1%.

4.3. Impact of Network Characteristics

In dataset #3, we collected training and testing traces using LTE network.
The results in Table 6 show that the identification accuracy when training and330

testing on LTE (71.75%) is worse than that when using WiFi (79.05%, see
Table 4). Consistently with our experiments based on WiFi, we observed that
the accuracy for public webpages is lower than that of hidden services, and the
accuracy decrease for public webpages (68.7% using LTE, compared to 76.3%
using WiFi) is larger than the decrease for hidden services (84.3% using LTE,335

compared to 87.3% using WiFi).

Table 6: Webpage identification accuracy using LTE

All webpages Public webpage only Hidden service only
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
71.75% 84.7% 68.7% 84.4% 84.3% 93.2%

One possible explanation is that LTE network contributes to additional noise
in the power traces, compared to WiFi. We measured the loading time of six
public webpages using LTE. The results are shown in Figure 7. Compared with
the results of using WiFi (see Figure 1), the average loading time increased340

by 9.1%, which indicates that LTE introduced more unpredictable delays than
WiFi.

Figure 7: Loading time of public webpages using LTE network.
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We also trained the model with WiFi traces, and tested it using LTE traces,
and vice versa. The identification accuracies shown in Table 7 are significantly
lower than that when using LTE traces for both training and testing. This345

indicates that the adversary needs to train a different model for each network.

Table 7: Cross testing using LTE and WiFi networks

Train Test
All webpages Public webpage only Hidden service only

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
WiFi LTE 24.55% 49.4% 24.25% 54.2% 42.9% 69.8%
LTE WiFi 21.8% 47.25% 21% 47.05% 28.15% 63.2%

4.4. Impact of Battery Charging level

When the smartphone is charging, a large part of power is used to charge the
battery. In contrast, when the battery is fully charged, almost all current from
the charger is used to power the phone, including loading the webpage. Thus,350

battery charging level impacts the amount of information that can be inferred
from the power trace on webpage loading. We collected the power traces for
30% to 50% battery level. Before each round of the collection, we discharged
the phone battery to 30%. Then we shuffled the 100 webpages into a random
sequence, and we collected one trace for each webpage following this sequence.355

After collecting all 100 traces in one round, the battery level increased to about
50%. Then we discharged the battery to 30% again and repeated the above
collection process. This process was repeated 40 times in total. Dataset #4
includes the traces collected while the smartphone charging level was between
30% and 50%.360

We used half of dataset #4 for training, and the other half for testing.
The identification results are shown in Table 8. Although accuracy decreases
sharply when the battery is not fully charged, it is still significantly higher than
the baseline accuracy using random guessing (i.e., 1% for all the 100 webpages,
and 2% for the 50 public webpages or 50 hidden services). One reason is that the365

maximum charging current is capped by an upper limit (1.15 A in this case),
which is imposed by the smartphone’s charging circuit (see Figure 8), where
98.17% of the samples in the power trace have current value below 1.15 A.
This limitation distorts the power signals and decreases the effectiveness of our
technique. Further, we found that there were strong noisy signals periodically370

appearing in each trace. The same signals did not appear in the power traces
collected when the battery was fully charged.
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Figure 8: Capped current when smartphone battery is partially charged.

Table 8: Webpage identification accuracy when battery level is from 30% to 50%

All webpages Public webpage only Hidden service only
Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5

36% 52.1% 34.5% 58.5% 46% 65.9%

4.5. Impact of Tor Circuits Type

We evaluated the scenario in which training and testing data were collected
using the same fixed circuit. The corresponding datasets are indicated as #5375

and #6 in Table 3. Table 9 reports the identification accuracies when using fixed
circuits “Cir-1” and “Cir-2” on different phones. Compared to the results in
Table 4 obtained using automatic circuits, accuracies are not significantly higher,
or are even lower in some cases. One possible explanation is that the throughput
of each relay in the fixed circuits are always changing. This adds unpredictable380

delays for each webpage loading and increases the inconsistency between power
traces for training and testing. In our experiments, we observed that during
some periods the fixed circuits could not be used to load any webpages at all.
In contrast, automatic circuits are constructed using optimized path selection
protocol. In practice, our experiments show that the adversary should use385

automatic circuits to collect training traces.

Table 9: Webpage identification accuracy using fixed Tor circuits

Phone Circuit
All webpages Public webpage only Hidden service only

Rank-1 Rank-5 Rank-1 Rank-5 Rank-1 Rank-5
A Cir-1 78.1% 89.8% 79.6% 91.6% 84.8% 93.8%
B Cir-2 82.6% 91.3% 85.7% 93.4% 86.1% 93.7%

4.6. Comparison of the Attack with and without Using Tor

Previous work [2] evaluated the effectiveness of using power traces to iden-
tify webpages on smartphones. However, it did not consider web browsing
anonymization techniques, such as Tor. In this section, we investigate the390

impact of Tor on identification accuracies by comparing our results with the
accuracies reported in [2].

Collection of power traces in this work and in [2] was performed using the
same procedures and parameters, with the exception of trace length. Because
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webpage loading is usually completed within 2 seconds when not using Tor, and395

in 10 seconds with Tor (see Figure 1), we compare our results with 2-second
traces results from [2]. Table 10 summarizes the identification accuracy when
loading webpages via WiFi.1

Table 10: Comparison of webpage identification accuracy with and without Tor.

Battery Fully Charged Battery 30% Charged
Not using Tor 84.3% 75.2%

Using Tor 82.2% 34.5%

We observe that when the battery is fully charged, we achieved similar identi-
fication accuracies (82.2% with Tor vs. 84.3% w/o Tor). When the battery level400

is between 30% and 50%, the drop in website identification accuracy is more pro-
nounced with Tor, although still substantially higher than the random-selection
baseline of 2%.

5. Related Work

In this section, we review related work on attacks on Tor (Section 5.1), and405

on side-channel attacks based on power analysis (Section 5.2).

5.1. Attacks on Tor

There are a number of papers that focus on attacks on Tor. These papers
can be broadly categorized into passive attacks (i.e., based on traffic analysis)
and active attacks (based on traffic modification).410

Passive Attacks Based on Traffic Analysis. Fingerprinting attacks and traffic
confirmation attacks belong to this category. Website fingerprinting attacks
enable an attacker to detect patterns that are indicative for webpages in Tor
traffic. Herrmann et al. [18] presented a method that applies common text
mining techniques to the normalized frequency distribution of observable IP415

packet sizes, so as to reveal requested websites. Panchenko et al. [19] showed
that Tor did not offer sufficient security against website fingerprinting. Their
attack relies on volume, time, and direction of the traffic to reveal websites.
Cai et al. [20] presented a webpage fingerprinting attack that was able to defeat
several defenses against traffic analysis attacks, such as application-level defenses420

HTTPOS and randomized pipelining over Tor. Abbott et al. [21] provided an
attack to identify a fraction of the Tor users who used malicious exit nodes.
This attack tricked a user’s web browser into sending a distinctive signal over
the Tor network. Such signal could be detected by traffic analysis.

In traffic confirmation attacks, the adversary must be able to eavesdrop both425

ends of a communication over a long time period. Levine et al. [22] investigated

1In [2], authors report webpage identification accuracy on a Galaxy S6 exclusively on WiFi.
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timing analysis attacks on low-latency mixed systems, and proposed a technique
named defensive dropping to mitigate timing attacks. Hopper et al. [23] pre-
sented two attacks on low-latency anonymity schemes using the network latency
information. The first attack allowed a pair of colluding websites to predict430

whether two connections from the same Tor exit node are using the same cir-
cuit. The second attack enabled a malicious website to gain location information
about a client when he visits the website. Sun et al. [24] proposed asymmetric
traffic correlation attack on Tor with high accuracy, and increased the threat of
AS-level attacks significantly. Bauer et al. [25] demonstrated that routing opti-435

mization prevents Tor from providing strong anonymity. They proposed attacks
using low-resource Tor nodes to compromise the entrance and exit nodes on Tor
circuits. Kwon et al. [26] presented a passive attack against hidden services and
their users using circuit fingerprinting attack, where the adversary can identify
the presence of client or server hidden service activities. Murdoch et al. [27]440

introduced traffic-analysis techniques based on a partial view of the network.
Their attack could infer the nodes used to relay the anonymous streams and
therefore reduced Tor anonymity. Chakravarty et al. [28] presented a remotely-
mounted attack to expose the network identity of an anonymous client, hidden
service, or anonymizing proxy. They employed single-end bandwidth estimation445

tools and a colluding network entity to modulate traffic directed to the victim.
Some passive side-channel attacks try to infer sensitive information other

than user identities or traffic destinations from web application usage. For
instance, Schaub et al. [29] presented an attack on web search engines to retrieve
the user’s search query inputs. They first intercepted and analyzed the packet450

flow associated with the suggest boxes from the search engine for each input
character, then built a probability distribution of packet sizes for each letter.
They proposed a stochastic algorithm that utilized the distribution probabilities
to infer the complete query text.

Our work differs from the above studies mainly in the following aspects:455

(1) the attack presented in this paper is based on USB power analysis, rather
than network traffic analysis or modification; (2) in our model, the goal of the
adversary is to learn which websites have been accessed by Tor users, rather
than to obtain the user’s inputs entered in a search engine; (3) we focus on
web page identification for both regular web pages and web pages served by Tor460

hidden services; and (4) we study a side-channel attack on smartphones, rather
than on desktop or laptop computers.

Active Attacks Against Tor. Wang et al. [30] investigated the fundamental
limitations of flow transformations in achieving anonymity. They showed that
flow transformations could not necessarily provide the level of anonymity people465

expected or believed. Barbera et al. [31] introduced a new Denial-of-Service
attack against Tor Onion Routers. They exploited a design flaw used by Tor
software to build virtual circuits. Their attack only needed a fraction of the
resources required by a network DoS attack to achieve similar damage on the
Tor network.470

Our work differs from the above papers because it does not require active
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changes to the content of webpages, or traffic injection or manipulation.

5.2. Side-channel Attacks Based on Power Analysis

Clark et al. [32] measured power consumption data collected from hacked
wall outlets to identify webpages loaded on computers. Genkin et al. [33] ana-475

lyzed electric potential from computer chassis to extract encryption keys. Yang
et al. [2] first presented an attack on mobile devices that allows the adversary
to identify loaded webpages while the smartphone is charging by controlling
the USB charging port. The main differences between our attack, and the at-
tacks presented in these papers are: (1) all power traces used in this paper480

were collected while using Tor. This affects traces in several important ways,
because the use of Tor leads to the generation of complex power patterns due to
circuit types and composition, and geographic location of the Tor routers in a
circuit; and (2) besides regular webpages, we also consider hidden services that
are exclusively existent in Tor network.485

5.3. Covert Channels and Attack Countermeasures

Covert channels can be used for surreptitious exfiltration of sensitive data.
Spolaor et al. [34] developed a covert system to send data as power bursts from
a smartphone to a malicious charging station. Zhang et al. [35] demonstrated
that it is possible to build a covert communication channel by adjusting the490

silence periods of VoLTE traffic on smartphones. In general, covert channel
attacks require the smartphone to run a malicious apps for data transmission
purpose, while our applies to otherwise non-compromised devices.

Countermeasures to side-channel attacks have been investigated in several
papers. Kocher [36] proposed strategies to design and validate cryptographic495

devices against power-analysis attack, such as using short-lived session keys in-
stead of a long-lived initial key. More generally, Meng et al. [37] discussed how to
apply blockchain techniques to protect data privacy among collaborative intru-
sion detection systems. Because the focus of our work is to propose and evaluate
a new side-channel attack on Tor, we consider the study of countermeasures as500

future work.

6. Conclusion and Future Work

In this paper, we demonstrated a technique based on USB power analysis
that allows a malicious charging station to identify which webpages are loaded
on a smartphone using Tor. To our knowledge, this is the first work to study505

attacks on Tor based on smartphone power side-channels.
We validated our attack under realistic smartphone constraints by collecting

and analyzing power traces under several scenarios, including different networks
(WiFi and LTE), different devices, and different battery charging levels.

We correctly identified webpages visited using the official mobile Tor browser.510

We achieved accuracies between 36.58% and 85.7% when the battery was fully
charged, and between 34.5% and 46% when the battery level was at 30%-50%.
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In comparison, accuracy obtained by random website selection is 1% for all
websites, and 2% when considering hidden services or public webpages alone.

We consider this work the first step towards a full characterization of power515

side-channel attacks on Tor. To this end, there are several combinations of
variables that we did not consider, including user interactions during webpage
loading. We leave this and other configurations to future work. Additionally,
we plan to address countermeasure to the attack presented in this paper in
future work.520
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