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ABSTRACT
Along the trend pushing computation from the network core to the
edge where the most of data are generated, edge computing has
shown its potential in reducing response time, lowering bandwidth
usage, improving energy e�ciency and so on. At the same time,
low-latency video analytics is becoming more and more important
for applications in public safety, counter-terrorism, self-driving
cars, VR/AR, etc. As those tasks are either computation intensive or
bandwidth hungry, edge computing �ts in well here with its ability
to �exibly utilize computation and bandwidth from and between
each layer. In this paper, we present LAVEA, a system built on top of
an edge computing platform, which o�oads computation between
clients and edge nodes, collaborates nearby edge nodes, to provide
low-latency video analytics at places closer to the users. We have
utilized an edge-�rst design and formulated an optimization prob-
lem for o�oading task selection and prioritized o�oading requests
received at the edge node to minimize the response time. In case of
a saturating workload on the front edge node, we have designed
and compared various task placement schemes that are tailed for
inter-edge collaboration. We have implemented and evaluated our
system. Our results reveal that the client-edge con�guration has
a speedup ranging from 1.3x to 4x (1.2x to 1.7x) against running
in local (client-cloud con�guration). �e proposed shortest sched-
uling latency �rst scheme outputs the best overall task placement
performance for inter-edge collaboration.

CCS CONCEPTS
•Networks →Cloud computing; •Computingmethodologies
→Object recognition; •So�ware and its engineering →Publish-
subscribe / event-based architectures;

KEYWORDS
computation o�oading, edge computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SEC ’17, San Jose / Silicon Valley, CA, USA
© 2017 ACM. 978-1-4503-5087-7/17/10. . . $15.00
DOI: 10.1145/3132211.3134459

ACM Reference format:
Shanhe Yi, Zijiang Hao, Qingyang Zhang, �an Zhang, Weisong Shi,
and�n Li. 2017. LAVEA: Latency-aware Video Analytics on Edge Com-
puting Platform. In Proceedings of SEC ’17, San Jose / Silicon Valley, CA, USA,
October 12–14, 2017, 13 pages.
DOI: 10.1145/3132211.3134459

1 INTRODUCTION
Edge computing (also termed fog computing [4], cloudlets [28],
MEC [24], etc.) has brought us be�er opportunities to achieve the
ultimate goal of a world with pervasive computation [28]. �is
new computing paradigm is proposed to overcome the inherent
problems of cloud computing and provide supports to the emerging
Internet of �ings (IoT) [14, 33, 37]. Typically, when using the
cloud, all the data generated shall be uploaded to the cloud data
center before processing. However, considering nowadays a huge
amount of data is being intensively generated at the edge of the
network, transferring the data at such scale to the distant cloud for
processingwill add burdens to the network and lead to unacceptable
response time, especially for latency-sensitive applications. More
speci�cally, as for edge computing, we aim to provide edge analytics,
which focuses on data analytics at or near the places (the network
edge) where data is generated [30]. Data analytics done at the edge
of the network has many bene�ts such as gathering more client
side information, cu�ing short the response time, saving network
bandwidth, lowering the peak workload to the cloud, and so on.

Among many edge analytic applications, in this paper, we focus
on delivering video analytics at the edge. �e ability to provide low
latency video analytics is critical for applications in the �elds of
public safety, counter-terrorism, self-driving cars, VR/AR, etc [32].
In video edge analytic applications, we consider typical client de-
vices such as mobile phones, body-worn cameras or dash cameras
mounted on vehicles, web cameras at toll stations or highway check-
points, security cameras in public places, or even video captured
by UAVs [35]. For example, in “Amber Alert”, our system can au-
tomate and speedup the searching of objects of interest by vehicle
recognition, vehicle license plate recognition and face recognition
utilizing various web cameras deployed at highway entrances, or
dash cameras or cameras of smartphones mounted on cars.

Simply uploading all the captured video or redirecting video
feeds to the cloud cannot meet the requirement of latency-sensitive
applications, because the computer vision algorithms involved in
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object tracking, object detection, object recognition, face and opti-
cal character recognition (OCR) are either computation intensive or
bandwidth hungry. In addressing these problems, mobile cloud com-
puting (MCC) is proposed to run heavy tasks on resource rich cloud
node to improve the response time or energy cost. �is technique
utilizes both the mobile and cloud for computation. An appropriate
partition of tasks that makes trade-o� between local and remote
execution can speed up the computation and preserve mobile en-
ergy at the same time [7, 13, 15, 21, 31]. However, there are still
concerns of cloud about the limited bandwidth, the unpredictable
latency, and the abrupt service outage. Existing work has explored
adding intermediate servers (cloudlets) between mobile client and
the cloud. Cloudlet is an early implementation of the cloud-like
edge computing platform with virtual machine (VM) techniques.
�e edge computing platform in our work has a di�erent design
on top of lightweight OS-level virtualization which is modular –
easy to deploy, manage, and scale. Compared to VM, the OS-level
virtualization provides resource isolation in a much lower cost. �e
adoption of container technique leads to a server-less platform
where the end user can deploy and enable edge computing platform
on heterogeneous devices with minimal e�orts. �e user programs
(scripts or executable binaries) will be encapsulated in containers,
which provide resource isolation, self-contained packaging, any-
where deploy, and easy-to-con�gure clustering. �e end user only
needs to register events of interest and provide corresponding han-
dler functions to our system, which automatically handle the events
behind the scene.

In this paper, we are considering a 3-tier mobile-edge-cloud de-
ployment and we put most of our e�orts into the mobile-edge side
and inter-edge side design. To demonstrate the e�ectiveness of our
edge computing platform, we have built the Latency-Aware Video
Edge Analytics (LAVEA) system. We divide the response time min-
imization problem into three sub-problems. First, we select client
tasks that bene�t from being o�oaded to edge node in reducing
time cost. We formulated this problem as a mathematical optimiza-
tion problem to choose o�oading tasks and allocate bandwidth
among clients. Unlike existing work in mobile cloud computing,
we cannot make the assumption that edge node is as powerful as
cloud node which can process all the tasks instantly. �erefore,
we consider the increasing resource contention and response time
when more and more tasks are running on edge node by adding
latency constraints to the optimization problem. Second, upon re-
ceiving o�oading task requests at each epoch, the edge node runs
these tasks in an order to minimize the makespan. However, the
o�oaded tasks cannot be started when the corresponding inputs
are not ready. To address this problem, we employed a classic two-
stage job shop model and adapted Johnson’s rule with topological
ordering constraint in a heuristic to prioritize the tasks. Last, we
enable inter-edge collaboration leveraging nearby edge nodes to re-
duce the overall task completion time. We have investigated several
task placement schemes that are tailored for inter-edge collabo-
ration. �e �ndings provided us insights that lead to an e�cient
prediction-based task placement scheme.

In summary, we make the following contributions:

• We have designed an edge computing platform based on
a server-less architecture, which is able to provide �exi-
ble computation o�oading to nearby clients to speed up
computation-intensive and delay-sensitive applications.
Our implementation is lightweight-virtualized, event-based,
modular, and easy to deploy and manage on either edge or
cloud nodes.

• We have formulated an optimization problem for o�oad-
ing task selection and prioritized o�oading requests to
minimize the response time. �e task selection problem
co-optimizes the o�oading decision and bandwidth alloca-
tion , and is constrained by the latency requirement, which
can be tuned to adapt to the workload on edge node for
o�oading. �e task prioritizing is modeled as a two-stage
job shop problem and a heuristic is proposed with the
topological ordering constraint.

• We have evaluated several task placement schemes for
inter-edge collaboration and proposed a predication-based
method which e�ciently estimates the response time.

2 BACKGROUND AND MOTIVATION
In this section, we brie�y introduce the background of edge com-
puting and relevant techniques, present our observations from
preliminary measurements, and discuss the scenarios that motivate
us.
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Figure 1: An overview of edge computing environment

2.1 Edge Computing Network
In the paper, we consider an edge computing network as shown
in Figure 1, in which we focus on two types of nodes, the client
node (in this paper, we call it client for short) and the edge server
node (in this paper, we call it edge, edge node, or edge server for
short). We assume that clients are one-hop away from edge server
via wire or wireless links. When a client connects to the edge
node, we implicitly indicate that the client will �rst connect to the
correspond access points (APs) using cable or wireless and then
utilize the services provided by the co-located edge node. In a
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sparse edge node deployment, a client will only connect to one
of the available edge nodes nearby at certain location. While in a
dense deployment, a client may have multiple choices on selecting
the multiple edge servers for services. Implicitly, we assume that
there is a remote cloud node which can be reached via the wide
area network (WAN).

To understand the factors that impact the feasibility of realiz-
ing practical edge computing systems, we have performed several
preliminary measurements on existing network and shown the
results in Fig. 2 and Fig. 3. In these experiments, we measured the
latency and bandwidth of combinations between clients nodes with
di�erent network interfaces connecting to edge (or cloud) nodes.
Based on the measurements of bandwidth, all clients have bene�ts
in utilizing a wire-connected or advanced-wireless (802.11ac 5Ghz)
edge computing node. In terms of latency, wire-connected edge
nodes is the best while the 5Ghz wireless edge computing nodes
have larger means and variances in latency compared to the cloud
node in the closest region due to the intrinsic nature of wireless
channels. �erefore, in this paper, we pragmatically assume that
edge nodes are connected to APs via cables to deliver services with
be�er latency and bandwidth than the cloud. �erefore, in such
a setup, the cloud node can be considered as a backup computing
node, which will be utilized only when the edge node is saturated
and experiences a long response time.
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Figure 2: Round trip time between client and edge/cloud.

2.2 Serverless Architecture
Serverless architecture or Function as a Service (FaaS), such as AWS
Lambda, Google Cloud Functions, Azure Functions, is an agile so-
lution for developer to build cloud computing services without the
heavy li�ing of managing cloud instances. To use AWS Lambda as
an example, AWS Lambda is an event-based, micro-service frame-
work, in which a user-supplied Lambda function as the application
logic will be executed in response to the corresponding event. �e
AWS cloud will take care of the provisioning and resource manage-
ment for running Lambda functions. At the �rst time a Lambda
function is created, a container will be built and launched based on
the con�gurations provided. Each container will also be provided
a small disk space as transient cache during multiple invocations.
AWS has its own way to run Lambda functions with either reusing
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Figure 3: Bandwidth between client and edge/cloud.

an existing container or creating a new one. Recently, there is AWS
Lambda@Edge [1], that allows using serverless functions at the
AWS edge location in response to CDN event to apply moderate
computations. We strongly advocate the adoption of serverless ar-
chitecture at the edge computing layers, as serverless architecture
naturally solves two important problems for edge computing: 1)
serverless programming model greatly reduces the burden on users
or developers in developing, deploying and managing edge appli-
cations, as there is no need to understand the complex underlying
procedures to run the applications or heavy li�ing of distributed sys-
tem management; 2) the functions are �exible to run on either edge
or cloud, which lowers the barrier of edge-cloud inter-operatability
and federation. Recent works have shown the potentials of such
architecture in low latency video processing tasks [11] and dis-
tributed computing tasks [20], and there have been research e�orts
of incorporating serverless architecture in edge computing [8].

2.3 Video Edge Analytics for Public Safety
Video surveillance is of great importance for public safety. Besides
the “Amber Alert” example, there are many other applications in
this �eld. For example, secure cameras deployed at public places
(e.g. the airport) can quickly spot una�ended bags [42], police
with body-worn cameras can identify suspects and suspicious vehi-
cles during approaching, and so on. Because those scenarios are
urgent and critical, the applications need to provide the quickest
responses with best e�orts. However, most tasks in video analytics
are undoubtedly computationally intensive [26]. While running
on resource constrained mobile clients or IoT devices directly, the
latency in computation, ba�ery drain (if ba�ery-powered), or even
heat dissipation will eventually ruin the user experience, failing to
achieve the performance goals of the applications. If running on
cloud nodes, transferring large volume of multimedia data will incur
unacceptable transmission latency and additional bandwidth cost.
Being proposed as a dedicated solution, the deployment of edge
computing platform enables the quickest responses to these video
analytics tasks which require both low latency and high bandwidth.

In this paper, we mainly focus on building video edge analytics
platform and we demonstrate our platform using the application
of Automated License Plate Recognition (ALPR). Even though we
integrate speci�c application, our edge platform is a general design
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and can be extended for other application with li�le modi�cations.
An ALPR system usually has four stages: 1) image acquisition, 2)
license plate extraction, 3) license plate analysis, and 4) character
recognition [2, 10]. Each of the stages involves various computer
vision, pa�ern recognition, and machine learning algorithms. Mi-
grating the execution of some algorithms to powerful edge/cloud
node can signi�cantly reduce the response time [34]. However, of-
�oaded tasks require intermediate data, application state variables,
and corresponding con�gurations to be uploaded. Some of the algo-
rithms produce large amount of intermediate data will add delay to
the whole processing time if o�oaded to remote cloud. We believe
that a carefully designed edge computing platform will assist ALPR
system to expand on more resource-constrained devices at more
locations and provide be�er response time at the same time.

3 LAVEA SYSTEM DESIGN
In this section, we present our system design. First, we will discuss
our design goals. �en, we will overview our system design and
introduce several important edge computing services.

3.1 Design Goals
• Latency. �e ability to provide low latency services is

recognized as one of the essential requirements of edge
computing system design.

• Flexibility. Edge computing system should be able to
�exibly utilize the hierarchical resources from client nodes,
nearby edge nodes and remote cloud nodes.

• Edge-�rst. By edge-�rst, we mean that the edge comput-
ing platform is the �rst choice of our computation o�oad-
ing target.

3.2 System Overview
LAVEA is intrinsically an edge computing platform, which supports
low-latency video processing. �e main components are edge com-
puting node and edge client. Whenever a client is running tasks and
the nearby edge computing node is available, a task can be decided
to run either locally or remotely. We present the architecture of
our edge computing platform in Figure 4.

3.2.1 Edge Computing Node. In LAVEA, the edge computing
node provides edge computing services to themobile devices nearby.
�e edge computing node a�ached to the same access point or base
station as clients is called the edge-front. By deploying edge com-
puting node with access point or base station, we ensure that edge
computing service can be as ubiquitous as Internet access. Multiple
edge computing nodes can collaborate and the edge-front will al-
ways serve as the master and be in charge of the coordination with
other edge nodes and cloud nodes. As shown in Figure 4, we use
the light-weight virtualization technique to provide resource allo-
cation and isolation to di�erent clients. Any client can submit tasks
to the platform via client APIs. �e platform will be responsible
for shaping workload, managing queue priorities, and scheduling
tasks. �ose functions are implemented via internal APIs provided
by multiple micro-services such as queueing service, scheduling
service, data store service, etc. We will introduce several important
services later in this section.

3.2.2 Edge Client. Since most edge clients are either resource
constrained devices or need to accommodate requests from a large
number of clients, an edge client usually runs lightweight data pro-
cessing tasks locally and o�oads heavy tasks to the edge computing
node nearby. In LAVEA, the edge client has a thin client design, to
make sure all the clients can run it without introducing too much
overhead. For low-end devices, there is only one worker to make
progress on the assigned job. �e most important part of client
node design is the pro�ler and the o�oading controller, acting as
participants in the corresponding pro�ler service and o�oading
service. With pro�ler and o�oading controller, a client can provide
o�oading information to the edge-front node and ful�ll o�oading
decision received.

3.3 Edge Computing Services
3.3.1 Profiler Service. Similar to [7, 21, 31], our system uses a

pro�ler to collect task performance information on various devices,
since it is di�cult to derive an analytic model to accurately capture
the behavior of the whole system. However, we have found that
the execution of video process tasks is relatively stable (when input
and algorithmic con�gurations are given) and a pro�ler can be used
to collect relevant metrics. �erefore, we add a pro�ling phase
to the deployment of every new type of client devices and edge
devices. �e pro�ler will execute instrumented tasks multiple times
with di�erent inputs and con�gurations on the device and measure
metrics including but not limited to execution time, input/output
data size, etc. �e time-stamped logs will be gathered to build
the task execution graph for speci�c tasks, inputs, con�gurations,
and devices. �e pro�ler service will collect those information, on
which LAVEA relies for o�oading decisions.

3.3.2 Monitoring Service. Unlike pro�ler service which gath-
ers pre-run-time execution information on pre-de�ned inputs and
con�gurations, the monitoring service is used to continuously mon-
itor and collect run-time information such as the network, system
load, etc., from not only the clients but also nearby edge nodes.
Monitoring the network between client and edge-front is neces-
sary since most edge clients are connected to edge-front server
via wireless link. �e condition of wireless link is changing from
time to time. �erefore, we need to constantly monitor the wireless
link, to estimate the bandwidth and the latency. Monitoring system
load on the edge client provides �exible workload shaping and
task o�oading from client to the edge. �is information is also
broadcasted among nearby edge nodes. When an edge-front node
is saturated or unstable, some tasks will be assigned to nearby edge
nodes according to the system load, the network bandwidth, and
network delay between edge nodes as long as there is still bene�t
compared to assigning tasks to cloud node.

3.3.3 O�loading Service. �e o�oading controller will track
tasks running locally at the client, and exchange information with
the o�oading service running on the edge-front server. �e vari-
ables gathered in pro�ler and monitoring services will be used as
inputs to the o�oading decision problem which is formulated as an
optimization problem to minimize the response time. Every time
when a new client registers itself to the o�oading services, a�er
the edge-front node collects enough prerequisite information and
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Figure 4: �e architecture of edge computing platform

statistics, the optimization problem is solved again and the updated
o�oading decisions will be sent to all the clients. Periodically, the
o�oading service also solves the optimization problem, and updates
o�oading decisions with its clients.

4 EDGE-FRONT OFFLOADING
In this section, we consider selecting tasks to run on the edge as a
computation o�oading problem. Traditional o�oading problems
are about o�oading schemes between clients and remote powerful
cloud servers. In literature [7, 21, 31], these system models usually
assume the task will be instantly �nished remotely once the task is
o�oaded to the server. However, we argue that this assumption will
not hold in edge computing environment as we need to consider
the various delays at the server side especially when lots of clients
are sending o�oading requests. We call it edge-front computation
o�oading from the perspective of client:

• Tasks will be only by o�oaded from client to the nearest
edge node, which we call the edge front.

• �e underlying scheduling and processing is agnostic to
clients.

• When a mobile node is disconnected from any edge node
or even cloud node, it will resort to local execution of all
the tasks.

We assume that edge node is wire-connected to the access point,
which indicates that the out-going tra�c can go through edge node
with no additional cost. �e only di�erence between o�oading task
to edge node and cloud node, is that the task running on edge node

may experience resource contention and scheduling delay while
we assume task o�oaded to cloud node will get enough resource
and be scheduled to run immediately. In light work load case, if
there is any response time reduction when this task is o�oaded
to cloud, then we know that there is de�nitely bene�t when this
task is o�oaded to the edge. �e reasons are 1) an edge server is
as responsive as the server in the cloud data center, 2) running a
task on edge server experiences shorter data transmission delay as
client-edge link has much larger bandwidth than edge-cloud link
which is usually limited and imbalanced by the Internet service
providers (ISPs). �erefore, in this section, we focus on the task
o�oading only between client and edge server, and we will discuss
integrating nearby edge nodes for the heavy work load scenario in
the next section.

4.1 Task O�loading System Model and
Problem Formulation

�roughout the paper, we call a running instance of the application
a job, which consists a set of tasks. �e job is the unit of work that
user submits to our system while the task is the unit of work for our
system to make scheduling and optimization decisions. �ese tasks
from each application will be queued and processed either locally
or remotely. By remotely, we mean run the task on an edge node.
In our edge application scenario, all clients are running instances
of applications processing same kind of jobs. However, our system
can be easily extended to support heterogeneous applications.

In our ALPR application, each task is usually a computer vision
algorithm. For example, We have analyzed an open source ALPR
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project called OpenALPR [22] and illustrate its task graph in Fig. 5.
We choose to work on the granularity of task since these tasks are
modularized and can be �exibly pipelined with tuned parameters
to make trade-o� between quick processing and accurate result.
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Figure 5: �e task graph of OpenALPR.

�en we consider there are N clients and only one edge server
connected as shown in Fig. 1. �is edge server could be a single
server or a cluster of servers. Each client i, i ∈ [1,N ], will process
the upcoming job upon request, e.g. recognizing the license plates
in video streams. We expect that the job consists heavy computation
tasks could bene�t from o�oading some tasks to the edge server.
Without loss of generality, we use a graph of task to represent the
complex task dependencies inside a job, which is essentially similar
to the method call graph in [7], but in a more coarse granularity.
For a certain kind of job, we start with its directed acyclic graph
(DAG), G = (V ,E), which gives the task execution sequence. Each
vertex v ∈ V weight is the computation or memory cost of a task
(cv ), while each edge e = (u,v),u,v ∈ V , e ∈ E weight represents
the data size of intermediate results (duv ). �us, our o�oading
problem can be taken as a graph partition problem, in which we
need to assign a directed graph of tasks to di�erent computing
nodes (local, edge, or cloud), with the purpose to minimize certain
cost. In this paper, we primarily try to minimize the job �nish time.

�e remote response time includes the communication delay, the
network transmission delay of sending data to the edge server, and
the execution time on that server. We use an indicator Iv,i ∈ {0, 1}
for all v in V and for all i ∈ [1,N ]. If Iv,i = 1, then the task v at
client i will run locally, otherwise, it will run on the remote edge
server. For those tasks running locally, the total execution time for

client i is a summation:

T locali =
∑
v ∈V

Iv,icv/pi (1)

where pi is the processor speed of client i .
Similarly, we use

T
local
i =

∑
v ∈V
(1 − Iv,i )cv/pi (2)

to represent the execution time of running the o�oaded tasks
locally instead. In the network, when there is an o�oading decision,
the client need to send the intermediate data (outputs of previous
task, application status, con�gurations, etc) to the edge server in
order to continue the computing. �e network delay is modeled as

Tneti =
∑
(u,v)∈E

|Iu,i − Iv,i |duv/ri + βi (3)

where ri is the connection rate assigned for this client connecting
to the edge server and βi is the communication latency which can
be estimated using round trip time between the client i and the
edge server.

For each client, the remote execution time is

T r emote
i =

∑
v ∈V
(1 − Iv,i )(cv/p0) (4)

where p0 is the processor speed of the edge server.
�en our o�oading task selection problem can be formulated as

min
Ii ,ri

N∑
i=1
(T locali +Tneti +T r emote

i ) (5)

�e o�oading task selection is represented by the indicator matrix
I. �is optimization problem is subject to the following constraints:

• �e total bandwidth

s.t.
N∑
i=1

ri ≤ R (6)

• Like existing work, we restrict the data �ow to avoid ping-
pong e�ect in which intermediate data is transmi�ed back
and forth between client and edge server.

s.t. Iv,i ≤ Iu,i , ∀e(u,v) ∈ E,∀i ∈ [1,N ] (7)

• Unlike existing o�oading frameworks for mobile cloud
computing, we take the resource contention or scheduling
delay at the edge side into consideration by adding an
end-to-end delay constraint.

s.t. T
local
i − (Tneti +T r emote

i ) > τ , ∀i ∈ [1,N ] (8)

where τ can be tuned to avoid selecting borderline tasks
that if o�oaded will get no gain due to the resource con-
tention or scheduling delay at the edge.

4.2 Optimization Solver
�e proposed optimization is a mixed integer non-linear program-
ming problem (MINLP), where the integer variable stands for the
o�oading decision and the continuous variable stands for the con-
nection rate. To solve this optimization problem, we start from
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relaxing the integer constraints and solve the non-linear program-
ming version of the problem using Sequential �adratic Program-
ming method, a constrained nonlinear optimization method. �is
solution is optimal without considering the integer constraints.
Starting from this optimal solution, we optionally employ branch
and bound (B&B) method to search for the optimal integer solution
or simply do an exhaustive search when the number of clients and
the number of tasks of each job are small.

4.3 Prioritizing Edge Task�eue
�e o�oading strategy produced by the task selection optimizes
the “�ow” time of each type of job. At each time epoch during the
run time, the edge-front node receives a large number of o�oaded
tasks from the clients. Originally, we follow the �rst come �rst
serve rule to accommodate all the client requests. For each request
at the head of the task queue, the edge-front server �rst checks if
the input or intermediate data (e.g. images or videos) is available
at the edge, otherwise the server waits. �is scheme is easy to
implement but substantial computation is wasted if the network
IO is busy with a large size �le and there is no task that is ready
for processing. �erefore, we improve the task scheduling with
a task queue prioritizer to maintain a task sequence which mini-
mizes the makespan for the task scheduling of all o�oading task
requests received at a certain time epoch. Since the edge node can
execute the task only when the input data has been fully received
or the depended tasks have �nished execution, we consider that
an o�oaded task has to go through two stages: the �rst stage is
the retrieval of input or intermediate data and state variables; the
second stage is the execution of the task.

We study our scheduling problem using the �ow job shop model
and apply the Johnson’s rule [19]. �is scheme is optimal and the
makespan is minimized, when the number of stages is two. Nev-
ertheless, this model only �ts in the case that all submi�ed job
requests are independent and have no priorities. When considering
task dependencies, a successor can only start a�er its predecessor
�nishes. By enforcing the topological ordering constraints, the
problem can be solved optimally using the B&B method [5]. How-
ever, this solution hardly scales against the number of tasks. In
this case, we adapt the method in [3], i.e., grouping tasks with
dependencies and executing all tasks in a group sequentially. �e
basic idea is applying Johnson’s rule in two levels. �e �rst level
is to decide the sequence of tasks within each group. �e di�er-
ence in our problem is that we need to decide the best sequence
among all valid topological orderings. �e bo�om level is a job
shop scheduling problem in terms of grouped jobs (i.e., a group of
tasks with dependencies in topological ordering), in which we can
utilize Johnson’s rule directly.

4.4 Workload Optimizer
If the workload is overwhelming and the edge-front server is satu-
rated, the task queue will be unstable and the response time will be
accumulated inde�nitely. �ere are several measures LAVEA can
take to address this problem. First, our system can adjust the im-
age/video resolution via client-side con�gurations, which makes a
well trade-o� between speed and accuracy. Second, by constraining

the task o�oading problem, our system can restrain more compu-
tation tasks at the client side. �ird, if there are nearby edge nodes
which are favored in terms of latency, bandwidth, and computation,
our system can further o�oad tasks to nearby edge nodes. We have
investigated this case with performance improvement considera-
tions in Section 5. Last, our system can always redirect tasks to the
remote cloud, just like task o�oading in MCC.

5 INTER-EDGE COLLABORATION
In this section, we improve our edge-�rst design by taking the case
when the incoming workload saturates our edge-front node into
consideration. We will �rst discuss our motivation of providing
such option and list the corresponding challenges. �en we will
introduce several collaboration schemes we have proposed and
investigated.

5.1 Motivation and Challenges
�e resources of edge computing node are much richer than client
nodes but are relatively limited compared to cloud nodes. While
serving an increasing number of client nodes nearby, the edge-front
node will be eventually overloaded and become non-responsive to
new requests. As a baseline, we can optionally choose to o�oad fur-
ther requests to the remote cloud. We assume that the remote cloud
has unlimited resources and is capable to handle all the requests.
However, running tasks remotely in the cloud, the application need
to bear with unpredictable latency and limited bandwidth, which
is not the best choice especially when there are other nearby edge
nodes that can accommodate those tasks. We assume that under
the condition when all available edge nodes nearby are exhausted,
the mobile-edge-cloud computing paradigm will simply fall back to
the mobile cloud computing paradigm. �e fallback design is not
in the scope of this paper. In this paper, we mainly investigate the
inter-edge collaboration with the primary purpose to alleviate the
burden on edge-front node.

When the edge-front node is saturated with requests, it can
collaborate with nearby edge nodes by placing some tasks to these
not-so-busy edge nodes, such that all the tasks can get scheduled
in a reasonable time. �is is slightly di�erent from balancing the
workload among the edge nodes and the edge-front node, in that the
goal of inter-edge collaboration is to be�er serve the client nodes
with submi�ed requests, rather than simply making the workload
balanced. For example, an edge-front node that is not overloaded
does not need to place any tasks to the nearby edge nodes, even
when they are idle.

�e challenges of inter-edge collaboration are two-fold: 1) we
need to design a proper inter-edge task placement scheme that
ful�lls our goal of reducing the workload on the edge-front node
while o�oading proper amount of workload to the quali�ed edge
nodes; 2) the task placement scheme should be lightweight, scalable,
and easy-to-implement.

5.2 Inter-Edge Task Placement Schemes
We have investigated three task placement schemes for inter-edge
collaboration.

• Shortest Transmission Time First (STTF)
• Shortest �eue Length First (SQLF)
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• Shortest Scheduling Latency First (SSLF)

�e STTF task placement scheme tends to place tasks on the
edge node that has the shortest estimated latency for the edge-
front node to transfer the tasks. �e edge-front node maintains a
table to record the latency of transmi�ing data to each available
edge node. �e periodical re-calibration is necessary because the
network condition between the edge-front node and other edge
nodes may vary from time to time.

�e SQLF task placement scheme, on the other hand, tends to
transfer tasks from the edge-front node to the edge node which has
the least number of tasks queued upon the time of query. When
the edge-front node is saturated with requests, it will �rst query
all the available edge nodes about their current task queue length,
and then transfer tasks to the edge node that has the shortest value
reported.

�e SSLF task placement scheme tends to transmit tasks from the
edge-front node to the edge node that is predicted to have the short-
est response time. �e response time is the time interval between
the time when the edge-front node submits a task to an available
edge node and the time when it receives the result of the task from
that edge node. Unlike the SQLF task placement scheme, the edge-
front node keeps querying the edge nodes about the queue length,
which may has performance issue when the number of nodes scales
up and results in a large volume of queries. We have designed a
novel method for the edge-front node to measure the scheduling
latency e�ciently. During the measurement phase before edge-
front node chooses task placement target, edge-front node sends
a request message to each available edge node, which appends a
special task to the tail of the task queue. When the special task
is executed, the edge node simply sends a response message to
the edge-front node. �e edge-front node receives the response
message and records the response time. Periodically, the edge-front
node maintains a series of response times for each available edge
node. When the edge-front node is saturated, it will start to reassign
tasks to the edge node having the shortest response time. Unlike
the STTF and SQLF task assignment schemes, which choose the
target edge node based on the current or most recent measurements,
the SSLF scheme predicts the current response time for each edge
node by applying regression analysis to the response time series
recorded so far. �e reason is that the edge nodes are also receiving
task requests from client nodes, and their local workload may vary
from time to time, so the most recent response time cannot serve
as a good predictor of the current response time for the edge nodes.
As the local workload in the real world on each edge node usually
follows certain pa�ern or trend, applying regression analysis to
the recorded response times is a good way to estimate the current
response time. To this end, we recorded measurements of response
times from each edge node, and o�oads tasks to the edge node
that is predicted to have the least current response time. Once the
edge-front node starts to place task to a certain edge node, the
estimation will be updated using piggybacking of the redirected
tasks, which lowers the overhead of measuring.

Each of the task placement schemes described above has some
advantages and disadvantages. For instance, the STTF scheme can
quickly reduce the workload on the edge-front node. But there is
a chance that tasks may be placed to an edge node which already

has intensive workload, as STTF scheme gathers no information of
the workload on the target. �e SQLF scheme works well when the
network latency and bandwidth are stable among all the available
edge nodes. When the network overheads are highly variant, this
scheme fails to factor the network condition and always chooses
edge node with the lowest workload. When an intensive workload
is placed under a high network overhead, this scheme potentially
deteriorates the performance as it needs to measure the workload
frequently. �e SSLF task placement scheme estimates the response
time of each edge node by following the task-o�oading process,
and the response time is a good indicator of which edge node should
be chosen as the target of task placement in terms of the workload
and network overhead. �e SSLF scheme is a well trade-o� between
previous two schemes. However, the regression analysis may intro-
duce a large error to the predicted response time if inappropriate
models are selected. We believe that the decision of which task
placement scheme should be employed for achieving good system
performance should always give proper considerations on the work-
load and network conditions. We evaluated those three schemes
through a case study in the next section.

6 SYSTEM IMPLEMENTATION AND
PERFORMANCE EVALUATION

In this section, we �rst brief the implementation details of building
our system. Next, we introduce our evaluation setup and present
evaluation results.

6.1 Implementation Details
Our implementation aims at a serverless edge computing architec-
ture. As shown in system architecture of Fig. 4, our implementation
is based on docker container for the bene�ts of quick deployment
and easy management. Every component has been dockerized and
its deployment is greatly simpli�ed via distributing pre-built images.
�e creation and destruction of docker instances is much faster
than that of VM instances. Inspired by the IBM OpenWhisk [18],
each worker container contains an action proxy, which uses Python
to run any scripts or compile and execute any binary executable.
�e worker container communicates with others using a message
queue, as all the inputs/outputs will be jsoni�ed. However, we don’t
jsoni�ed image/video and use its path reference in shared storage.
�e task queue is implemented using Redis as it is in memory and
has very good performance. �e end user only needs to 1) deploy
our edge computing platform on heterogeneous devices with just a
click, 2) de�ne the event of interests using a provided API, and 3)
provide a function (scripts or binary executable) to process such
event. �e function we have implemented utilizes the open source
project OpenALPR [22] as the task payload for workers.

6.2 Evaluation Setup
6.2.1 Testbed. We have built a testbed consisting of four edge

computing nodes. One of the edge nodes is the edge-front node,
which is directly connected to a wireless router using a cable. Other
three nodes are set as nearby edge computing nodes for the evalua-
tion of inter-edge collaboration. �ese four machines have the same
hardware speci�cations. �ey all have a quad-core CPU and 4 GB
main memory. �e three nearby edge nodes are directly connected
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to the edge-front node through a network cable. We make use of
two types of Raspberry Pi (RPi) nodes as clients: one type is RPi 2
which is wired to the router while the other type is RPi 3 which is
connected to router using built-in 2.4 GHz WiFi.

6.2.2 Datasets. We have employed three datasets for evaluation.
One dataset is the Caltech Vision Group 2001 testing database, in
which the car rear image resolution (126 images with resolution
896x592) is adequate for license plate recognition [25]. Another
dataset is a self-collected 4K video containing rear license plates
taken on an Android smartphone and is converted into videos of dif-
ferent resolutions (640x480, 960x720, 1280x960, and 1600x1200). �e
other dataset used in inter-edge collaboration evaluation contains
22 car images, with the various resolution ranging from 405x540
pixels to 2514x1210 pixels (�le size 316 KB to 2.85 MB). �e task
requests use the car images as input in a round-robin way, one car
image for each task request.

6.3 Task Pro�ler
Beside the round trip time and bandwidth benchmark we have
presented in Fig. 2 and Fig. 3 to characterize the edge computing
network, we have done pro�ling of the OpenALPR application on
various client, edge and cloud nodes.
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Figure 6: OpenALPR pro�le result of client type 1 (RPi2
quad-core 0.9 GHz)

In this experiment, we use both dataset 1 (workload 1) and dataset
2 (workload 2) at various resolutions. �e execution time for each
tasks are shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9. �e results indicate
that by utilizing an edge node, we can get a comparable amount
of computation power close to clients for computation-intensive
tasks. Another observations is that, due to the uneven optimization
on heterogeneous CPU architectures, some tasks are be�er to keep
local while some others should be o�oaded to edge computing
nodes. �is observation justi�es the need of computation o�oading
between clients and edge nodes.

6.4 O�loading Task Selection
To understand how much the execution time can be reduced by
spli�ing tasks between the client and the edge, or between the
client and the cloud, we design an experiment with workloads
generated from dataset 2 on two setups of scenarios: 1) one edge
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Figure 7: OpenALPR pro�le result of client type 2 (RPi3
quad-core 1.2 GHz)
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Figure 8: OpenALPR pro�le result of a type of edge node (i7
quad-core 2.30 GHz)
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Figure 9: OpenALPR pro�le of a type of cloud node (AWS
EC2 t2.large Xeon dual-core 2.40 GHz)

node provides service to three wired client nodes that have the
best network latency and bandwidth; 2) one edge node provides
service to three wireless 2.4 GHz client nodes that have latency
with high variance and relatively low bandwidth. �e result of
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Figure 10: �e comparison of task selection impacts on edge
o�loading and cloud o�loading for wired clients (RPi2).
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Figure 11: �e comparison of task selection impacts on edge
o�loading and cloud o�loading for 2.4 GHz wireless clients
(RPi3).

the �rst case is very straightforward: the clients simply upload
all the input data and run all the tasks on the edge node in edge
o�oading or cloud node in cloud o�oading, as shown in Fig. 10.
�is is mainly because using Ethernet cable can stably provide
lowest latency and highest bandwidth, which makes o�oading to
edge very rewarding. We didn’t evaluate 5 GHz wireless client
since this interface is not supported on our client hardware while
we anticipate similar results as the wire case. We plot the result of
a 2.4 GHz wireless client node with o�oading to an edge node or a
remote cloud node in the second case in Fig. 11. Overall, the results
showed that by o�oading tasks to an edge computing platform,
the application we had chosen experienced a speedup up to 4.0x on
wired client-edge con�guration compared to local execution, and
up to 1.7x compared to a similar client-cloud con�guration. For
clients with 2.4 GHz wireless interface, the speedup is up to 1.3x
on client-edge con�guration compared to local execution, and is
up to 1.2x compared to similar client-cloud con�guration.
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Figure 12: �e comparison result of three task prioritizing
schemes.

6.5 Edge-front Task�eue Prioritizing
To evaluate the performance of the task queue prioritizing, we
collect the statistical results from our pro�ler service and moni-
toring service on various workload for simulation. We choose the
simulation method because we can freely setup the numbers and
types of client and edge nodes to overcome the limitation of our
current testbed to evaluate more complex deployments. We add
two simple schemes as baselines: 1) shortest IO �rst (SIOF): sorting
all the tasks against the time cost of the network transmission; 2)
longest CPU last (LCPUL): sorting all the tasks against the time cost
of the processing on the edge node. In the simulation, based on the
combination of client device types, workloads and o�oading deci-
sions, we have in total seven types of jobs to run on the edge node.
We increase the total number of jobs and evenly distributed them
among the seven types and report the makespan time in Fig. 12. �e
result shows that LCPUL is the worst among those three schemes
and our scheme outperforms the shortest job �rst scheme.

6.6 Inter-Edge Collaboration
We also evaluate the three task placement schemes (i.e., STTF, SQLF
and SSLF) discussed in Section 5, through a controlled experiment
on our testbed. For evaluation purpose, we con�gure the network in
the edge computing system as follows. �e �rst edge node, denoted
as “edge node #1”, has 10 ms RTT and 40 Mbps bandwidth to the
edge-front node. �e second edge node, “edge node #2”, has 20 ms
RTT and 20 Mbps bandwidth to the edge-front node. �e third edge
node, “edge node #3”, has 100 ms RTT and 2 Mbps bandwidth to
the edge-front node. �us, we emulate the situation where three
edge nodes are in di�erent distances to the edge-front node, from
near to far.

We use the third dataset to synthesize a workload as follows. In
the �rst 4 minutes, the edge-front node receives 5 task requests per
second, edge node #1 receives 4 task requests per second, edge node
#2 receives 3 task requests per second, and edge node #3 receives 2
task requests per second, respectively. No task comes to any of the
edge nodes a�er the �rst 4 minutes. For the SSLF task placement
scheme, we implement a simple linear regression to predict the
scheduling latency of the task being transmi�ed, since the workload
we have injected is uniform distributed.
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Figure 13: Performance with no task placement scheme.
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Figure 14: Performance of STTF.
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Figure 15: Performance of SQLF.
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Figure 16: Performance of SSLF.

Fig. 13 illustrates the throughput on each edge node, when no
task placement scheme is enabled on the edge-front node. �e
edge-front node has the heaviest workload and it takes about 12.36
minutes to �nish all the tasks. We consider this result as our base-
line.

Fig. 14 is the throughput result of STTF scheme. In this case, the
edge-front node only transmits tasks to edge node #1, because edge
node #1 has the highest bandwidth and the shortest RTT to the
edge-front node. Fig. 17 reveals that the edge-front node transmits
120 tasks to edge node #1 and no task to other edge nodes. As
edge node #1 has heavier workload than edge node #2 and edge
node #3, the STTF scheme has limited improvement on the system
performance: the edge-front node takes about 11.29 minutes to
�nish all the tasks. Fig. 15 illustrates the throughput result of SQLF
scheme. �is scheme works be�er than the STTF scheme, because
the edge-front node transmits more tasks to less-saturated edge
nodes, e�ciently reducing the workload on the edge-front node.
However, the edge-front node intends to transmit many tasks to
edge node #3 at the beginning, which has the lowest bandwidth and
the longest RTT to the edge-front node. As such, the task placement
may incur more delay then expected. From Fig. 17, the edge-front
node transmits 0 task to edge node #1, 132 tasks to edge node #2,

and 152 tasks to edge node #3. �e edge-front node takes about 9.6
minutes to �nish all the tasks.

Fig. 16 demonstrates the throughput result of SSLF scheme. �is
scheme considers both the transmission time of the task being
placed and the waiting time in the queue on the target edge node,
and therefore achieves the best performance of the three. As men-
tioned, edge node #1 has the lowest transmission overhead but the
heaviest workload among the three edge nodes, while edge node
#3 has the lightest workload but the highest transmission overhead.
In contrast, edge node #2 has modest transmission overhead and
modest workload. �e SSLF scheme takes all these situations into
consideration, and places the most number of tasks on edge node
#2. As shown in Fig. 17, the edge-front node transmits 4 tasks to
edge node #1, 152 tasks to edge node #2, and 148 tasks to edge
node #3 when working with the SSLF scheme. �e edge-front node
takes about 9.36 minutes to �nish all the tasks, which is the best
result among the three schemes. We infer that the third scheme will
further improve the task completion time if more tough network
conditions and workloads are considered.

7 RELATEDWORK
�e emergence of edge computing has drawn a�entions due to its
capabilities to reshape the land surface of IoTs, mobile computing,
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Figure 17: Numbers of tasks placed by the edge-front node.

and cloud computing [6, 14, 32, 33, 36–38]. Satyanarayanan [29]
has briefed the origin of edge computing, also known as fog comput-
ing [4], cloudlet [28], mobile edge computing [24] and so on. Here
we will review several relevant research �elds towards video edge
analytics, including distributed data processing and computation
o�oading in various computing paradigms.

7.1 Distributed Data Processing
Distributed data processing has close relationship to the edge an-
alytics in the sense that those data processing platforms [9, 39]
and underlying techniques [16, 23, 27] can be easily deployed on a
cluster of edge nodes. In this paper, we pay specially a�entions to
distributed image/video data processing systems. VideoStorm[40]
made insightful observation on vision-related algorithms and pro-
posed resource-quality trade-o� with multi-dimensional con�gu-
rations (e.g. video resolution, frame rate, sampling rate, sliding
window size, etc.). �e resource-quality pro�les are generated of-
�ine and a online scheduler is built to allocate resources to queries
to optimize the utility of quality and latency. �eir work is comple-
mentary to ours, in that we do not consider the trade-o� between
quality and latency goals via adaptive con�gurations. Vigil [42] is
a wireless video surveillance system that leveraged edge comput-
ing nodes with emphasis on the content-aware frame selections in
a scenario where multiple web cameras are at the same location
to optimize the bandwidth utilization, which is orthogonal to the
problems we have addressed here. Firework [41] is a computing
paradigm for big data processing in collaborative edge environment,
which is complementary to our work in terms of shared data view
and programming interface.

While there should be more on-going e�orts for investigating the
adaptation, improvement, and optimization of existing distributed
data processing techniques on edge computing platform, we focus
more on the task/application-level queue management and sched-
uling, and leave all the underlying resource negotiating, process
scheduling to the container cluster engine.

7.2 Computation O�loading
Computation o�oading (a.k.a. Cyber foraging [28]) has been pro-
posed to improve resource utilization, response time, and energy
consumption in various computing environments [7, 13, 21, 31].

Work [17] has quanti�ed the impact of edge computing on mobile
applications and found that edge computing can improve response
time and energy consumption signi�cantly for mobile devices
through o�oading via both WiFi and LTE networks. Mocha [34]
has investigated how a two-stage face recognition task from mobile
device can be accelerated by cloudlet and cloud, In their design,
clients simply capture image and sends to cloudlet. �e optimal
task partition can be easily achieved as it has only two stages. In
LAVEA, our application is more complicated in multiple stages and
we leverage client-edge o�oading and other techniques to improve
the resource utilization and optimize the response time.

8 DISCUSSIONS AND LIMITATIONS
In this section, we will discuss alternative design options, point out
current limitations, and identify future work that can improve the
system.

Measurement-based O�loading. In this paper, we utilize a
measurement-based o�oading (static o�oading), i.e, the o�oading
decisions are based on the outcome of periodic measurements. We
consider this as one of the limitations of our implementations, as
stated in [15] and there are several dynamic computation o�oading
schemes have been proposed [12]. We are planning to improve the
measurement-based o�oading in the future work.

Video Streaming. Our current data processing is image-based,
which is one of the limitations of our implementation. �e input
is either in the format of image or in video stream which is read
into frames and sent out. We believe that utilizing existing video
streaming techniques in between our system components for data
sharing will further improves the system performance and opens
more potential opportunities for optimization.

Discovering Edge Nodes. �ere are di�erent ways for the
edge-front node to discover the available edge nodes nearby. For
example, every edge node intending to serve as a collaborator may
open a designated port, so that the edge-front node can periodically
scan the network and discover the available edge nodes. �is is
called the “pull-based” method. In contrast, there is also a “push-
based” method, in which the edge-front node opens a designated
port, and every edge node intending to serve as a collaborator will
register to the edge-front node. When the network is in a large
scale, the pull-based method usually performs poorly because the
edge-front node may not be able to discover an available edge node
in a short time. For this reason, the edge node discovery should
be implemented in a push-based method, which guarantees good
performance regardless of the network scale.

9 CONCLUSION
In this paper, we have investigated how to provide video analytic
services to latency-sensitive applications in edge computing envi-
ronment. As a result, we have built LAVEA, a low-latency video
edge analytic system, which collaborates nearby client, edge and
remote cloud nodes, and transfers video feeds into semantic infor-
mation at places closer to the users in early stages. We have utilized
an edge-front design and formulated an optimization problem for
o�oading task selection and prioritized task queue to minimize the
response time. Our result indicates that by o�oading tasks to the
closest edge node, the client-edge con�guration has a 1.3x to 4x
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(1.2x to 1.7x) speedup against running locally (client-cloud) under
various network conditions and workloads. In case of a saturating
workload on the front edge node, we have proposed and compared
various task placement schemes that are tailed for inter-edge collab-
oration. �e proposed prediction-based shortest scheduling latency
�rst task placement scheme considers both the transmission time
of the tasks and the waiting time in the queue, and outputs be�er
overall performance than the other schemes.
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