
Efficient Service Handoff Across Edge Servers via Docker
Container Migration

Lele Ma
College of William and Mary

Williamsburg, VA
lma03@email.wm.edu

Shanhe Yi
College of William and Mary

Williamsburg, VA
syi@cs.wm.edu

Qun Li
College of William and Mary

Williamsburg, VA
liqun@cs.wm.edu

ABSTRACT
Supporting smooth movement of mobile clients is important when
offloading services on an edge computing platform. Interruption-
free client mobility demands seamless migration of the offload-
ing service to nearby edge servers. However, fast migration of
offloading services across edge servers in a WAN environment
poses significant challenges to the handoff service design. In this
paper, we present a novel service handoff system which seamlessly
migrates offloading services to the nearest edge server, while the
mobile client is moving. Service handoff is achieved via container
migration. We identify an important performance problem dur-
ing Docker container migration. Based on our systematic study
of container layer management and image stacking, we propose a
migration method which leverages the layered storage system to
reduce file system synchronization overhead, without dependence
on the distributed file system. We implement a prototype system
and conduct experiments using real world product applications.
Evaluation results reveal that compared to state-of-the-art service
handoff systems designed for edge computing platforms, our sys-
tem reduces the total duration of service handoff time by 80%(56%)
with network bandwidth 5Mbps(20Mbps).

CCS CONCEPTS
• Networks → Cloud computing; Wide area networks; Cyber-
physical networks; Mobile networks; • Software and its engineer-
ing→ Software infrastructure;Virtualmachines;Cloud com-
puting; File systems management; • Computing methodologies
→ Virtual reality;

KEYWORDS
Docker Migration, Edge Computing, Offloading Services, Union
File System

ACM Reference format:
Lele Ma, Shanhe Yi, and Qun Li. 2017. Efficient Service Handoff Across Edge
Servers via Docker Container Migration. In Proceedings of SEC ’17, San Jose,
CA, USA, October 2017, 13 pages.
https://doi.org/10.1145/3132211.3134460

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SEC ’17, October 2017, San Jose, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5087-7/17/10. . . $15.00
https://doi.org/10.1145/3132211.3134460

1 INTRODUCTION
Edge computing has attracted lots of attention both from industry
and academia in recent years [5, 14–16, 26, 32–34, 36–38]. By plac-
ing resource-rich nodes in close proximity to mobile or Internet of
Things (IoT) devices, edge computing offers more responsive ser-
vices, along with higher scalability and availability than traditional
cloud platforms [26, 32]. To take advantage of nearby resources,
computation offloading techniques have been playing an important
role [1, 9, 20, 22].

In edge computing environments, offloading computation to the
nearest edge server is key to cutting network latency, and improving
the user experience. However, when a mobile device moves away
from its current offloading server, network latency will increase,
significantly deteriorating offloading service performance. Ideally,
when the user moves, the edge server offloading service should
adapt, and move to the nearest edge server in order to maintain
highly responsive service. Therefore, migration of the offloading
service from the current edge server to an edge server nearer to the
user is an important activity in the edge computing infrastructure.

There are several approaches to migrating offloading services.
VM handoff [12] has been proposed to accelerate service hand-
off across offloading edge servers. It divided VM images into two
stacked overlays based on Virtual Machine (VM) synthesis [33]
techniques. The result is that the mobile device only needs to trans-
fer the VM top application overlay to the target server instead
of the whole VM image volume. However, considering that the
total transferred size is usually on order of tens or hundreds of
megabytes, total handoff time is still relatively long for latency
sensitive mobile applications. For example, migrating OpenFace [1],
a face recognition application for wearable devices, will cost up to
247 seconds on a 5Mbps wide area network (WAN), barely meeting
the requirements of a responsive user experience. Furthermore, VM
image overlays are hard to maintain, and not widely available due
to limited support and deployment in the real world.

In contrast, the wide deployment of Docker platforms raises the
possibility of high speed offloading service handoff. As a container
engine, Docker [19] has gained increasing popularity in industrial
cloud platforms. It serves as a composing engine for Linux contain-
ers, where an application runs in an isolated environment based
on OS-level virtualization. Docker’s storage driver employs layered
images inside containers, enabling fast packaging and shipping of
any application as a container. Many container platforms, such as
OpenVZ[24], LXC[28], and Docker [2, 10], either completely, or
partially support container migration, but none of them are suit-
able for the edge computing environment. Migration within the
official release of OpenVZ [10] eliminates file system transfer using
distributed storage. However, due to the geographically distributed

https://doi.org/10.1145/3132211.3134460
https://doi.org/10.1145/3132211.3134460

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

nature of edge nodes, and heterogeneity of edge network devices,
it is hard to implement distributed storage over WAN that can meet
the latency requirements of edge applications. LXC migration [28]
and Docker migration [2, 10] are based on CRIU[8], but need to
transfer the whole container file system during the migration, re-
sulting in inefficiency and high network overhead.

In exploring an efficient container migration tailored to edge
computing, we focus on reducing the file system transfer size, a
technique complementary to previous efforts. Docker’s layered stor-
age supports copy-on-write (COW), where all writable application
data is encapsulated into one thin layer on top of base image layers.
Thus, we only need to transfer the thin top writable layer from each
container during migration. Additionally, the Docker infrastructure
relies upon widely available public cloud storage to distribute con-
tainer images (such as Docker Hub[17] and many other self-hosted
image hubs). Therefore, application container base image layers
can be downloaded from public cloud storage sources before each
migration. We argue that taking advantage of the Docker container
layered storage has the potential to reduce file system transfer size.
To the best of our knowledge, there is no container migration tool
that takes efficiently leverages the layered file system.

In this paper, we propose to build an efficient service handoff
system based on Docker container migration. The system lever-
ages the Docker container’s layered file system to support high
speed migration of offloading services within the edge computing
environment. There are several challenges to overcome:

First, we need to understand the details of Docker container
image layermanagement. There is little previous work investigating
image management inside Docker. In order to provide a systematic
birds-eye-view of Docker storage management, we investigate and
summarize the layered images based on AUFS storage driver in 3.1.

Second, we need to take advantage of Docker’s layered images to
speed up migration of containers. Within AUFS storage, we found
that Docker creates a new SHA256 number as local identification
for each image layer downloaded from the cloud. As a result, if two
Docker hosts download the same image layer from the same storage
repository, these layers will have different reference identification
numbers. This technique was originally a safety mechanism to
avoid image overlapping across Docker hosts[18]. However, when
we migrate a container from one Docker host to another, we must
recognize that those image layers with different local identification
numbers are actually the same content downloaded from the same
storage location. This is necessary to avoid transferring redundant
image layers during the container migration.

Third, we need to reduce data transferred during migration by
recognizing that this data includes both the file system as well as
checkpointed binary memory images. Although the total data size
is reduced dramatically by leveraging Docker’s layered storage,
we still need to reduce the memory image size in order to further
reduce total transfer time.

Lastly, we need to find a way to stringently maintain or reduce
user-experienced latency during container migration across differ-
ent edge servers. User-experienced latency could be sustained, and
shorter, than the actual migration time through a well designed
migration process strategy. Ideally, our goal is a seamless service
handoff wherein users cannot notice that their offloading edge
server has been changed.

To mitigate these challenges, we propose a framework that en-
ables high speed offloading service handoff based on Docker con-
tainer migration. By only encapsulating and transferring the thin
writable container layer and its incremental runtime status, we re-
duce the total handoff time significantly. We make the following
contributions in this paper:

• We have investigated the current status of techniques for
Docker container migration. We evaluated the performance
of state-of-the-art work, and find that no current work has
leveraged the layered storage to improve migration perfor-
mance.

• We have analyzed storage management of Docker based on
the AUFS storage driver. Based on our analysis, we propose
a novel method which leverages layered storage to speed up
container migration.

• We have designed a framework that enables efficient handoff
of offloading services across edge servers via high speed
migration of containers by leveraging the layered storage
on Docker platforms. This framework ensures low end-to-
end latency of resource-intensive offloading services while
maintaining the high mobility of clients.

• We have implemented a prototype of our system and con-
ducted extensive evaluations. We have measured container
handoff times on real world product applications. Our evalu-
ation shows that the speed up ratio using our framework is
80%(56%) under 5Mbps(20Mbps) with 50ms network latency.

2 MOTIVATIONS
In this section, we seek to answer the following questions: Why do
edge applications need offloading of computation? Why is service
handoff needed in edge computing? Why is migration needed for
service handoff? Why do we seek to perform service handoff via
container migration?

2.1 Emerging Applications in Edge Computing
Call For Computation Offloading

With the rapid development of edge computing, many researchers
have constructed applications to take advantage of the edge com-
puting platform.

One such example is Augmented Reality (AR). AR applications
on mobile devices overlay augmented reality content onto objects
viewed with device cameras. Edge servers can provide local object
tracking, and local AR content caching [15, 16, 26, 33]. The Gabriel
platform [13] was proposed within the context of wearable cog-
nitive assistance applications using a Glass-like wearable device,
such as Lego Assistant, Drawing Assistant, or Ping-pong Assis-
tant. Those applications need to react to user actions in real time,
following predefined guidance, or guidance from crowd-sourced
videos.

OpenFace[1] is a real-time mobile facial recognition application
that offers high accuracy along with low training and prediction
times. The mobile client sends captured pictures from the camera to
a nearby server. The server is running a facial recognition service
that sends symbolic feedback to the mobile client in real time.

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

More edge applications can be found in [32, 36, 37]. All of these
edge applications need to offload intensive computations (e.g., ma-
chine learning, computer vision, signal processing, etc.) to the edge
server in order to achieve real time response. However, there we
face several challenges before proceeding to deploy computation
offloading services in the edge computing architecture.

2.2 Effective Edge Offloading Needs Service
Handoff

As has been mentioned, most edge applications can gain benefits
by offloading heavy computations from mobile clients to nearby
edge servers. However, responsive real time services largely rely
upon relatively short network distances between the mobile client
and the edge server. When the mobile client moves farther away ,
benefits from offloading performance will be diminished dramati-
cally. Therefore, effective edge offloading needs to support mobile
services and users.

In the centralized cloud infrastructure, mobility of clients can
be well supported since the client is supposed to connect to the
centralized cloud server through the long latency WAN internet.
However, in the edge computing infrastructure, mobile devices
connect to nearby edge servers to benefit from high bandwidth
and low latency connections. Therefore, when the mobile device
moves farther away from its edge server, it might suffer from higher
latency, or even become out of service.

In order to be continuously served by a nearby edge server, the
offloading computation should be moved to a new nearby edge
server from the previous server. We regard this process as a service
handoff from the current edge server to a nearer edge server. This
is analagous to the seamless handoff or handover mechanism in
cellular networks, wherein the moving client connects to the near-
est available base station, maintaining connectivity to the cellular
network with minimal interruption. Therefore, one of the primary
requirements for edge computing is to enable service handoff across
edge servers, so that a mobile client is always served by nearby
edge servers with high bandwidth and low latency.

2.3 Seamless Service Handoff via VMMigration
There exists one key difference between the cellular network hand-
off and and edge server handoff. In cellular networks, changing a
base station for a client is as simple as rebuilding a wireless con-
nection. Most run-time service states are not stored on the base
station but are saved on the client, or on the remote server instead.
Therefore, after re-connection, the run-time state can be seamlessly
resumed through the new connection.

In the edge infrastructure, mobile devices use edge servers to
offload resource-hungry or computation-intensive computations.
This means that the edge server needs to hold the states of all
resource intensive workloads. When offloading services handoff
from one edge server to another, just rebuilding the connection is
certainly not enough. Instead, we need to transfer all the runtime
states of offloaded workloads from the current edge server to the
nearer edge server.

One possible solution is to use virtual machine (VM) live mi-
gration [6] to migrate a VM from one edge server to another in
order to seamlessly transfer the offloading workloads. However,

this approach has already been shown to be not suitable for edge
computing environments in [12]. First, live migration and service
handoff are optimized according to different performance metrics.
While live migration aims to reduce downtime of the VM, service
handoff aims to reduce the total time from the time when handoff
request is issued to the completion time of the migration. This is
well discussed in [12]. Second, live migration is originally designed
for high performance data centers with high bandwidth networks.
However, this is not possible for edge servers which are deployed
over theWAN. Furthermore, live migration relies on network-based
storage sharing so only run-time memory state is transferred and
not storage data. Apparently, network-based storage sharing across
the edge computing infrastructure is not feasible due to its widely
distributed nature and low WAN bandwidth between edge servers.

In order to enable handoff across edge computing servers, much
research has focused on VM migration [12, 33]. However, the total
handoff time was still several minutes on a WAN network. For ex-
ample, it was shown it requires 245.5 seconds to migrate a running
OpenFace instance under 5Mbps bandwidth (50ms latency) network
in [12].

One of the reasons for the long latency of handoff is the large
transfer size during the VM migration. Although VM synthesis
could reduce the image size by splitting images into multiple lay-
ers, and only transferring the application-specific layer, the total
transferred size is still in the magnitude of tens, or even hundreds
of megabytes. The application layer is encapsulated with the whole
application, including both the static binary programs and runtime
memory data. We think this is an unnecessary cost.

On the other hand, the deployment of the VM synthesis system is
challenging for the legacy system. In order to enable VM synthesis,
the VM hypervisor needs to be patched to track dirty memory at
runtime. Also, storage of VM images must be adapted to Linux FUSE
interfaces in order to track file system changes inside running VMs.
Those two changes are hard to deploy in practice since they change
the behavior of legacy platform hypervisors and file systems, along
with adding lots of performance overhead.

2.4 Why We Need Migration of Docker
Container

Docker is a composing engine for Linux containers, an OS-level
virtualization technique, isolating applications in the same Linux
kernel based on namespace and cgroup management. Docker en-
ables layered storage inside containers. Each Docker image refer-
ences a list of read-only storage layers that represent filesystem
differences. Layers are stacked hierarchically and union mounted
as a container’s root filesystem [18]. The layered storage allows
fast packaging and shipping of any application as a lightweight
container based upon sharing of common layers.

These layered images have the potential for fast migration of con-
tainers by avoiding transferrance of common image layers between
two migration nodes. With container images (like in DockerHub)
located in cloud storage, all the container images are available
through the centralized image server. Therefore, before migration
starts, an edge server has the opportunity to download the system
and application images as the container base image stack. During

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

febfb1642ebeb25857bf2a9c558bf695R/W

fac86d61dfe33f821e8d0e7660473381RO

984034c1bb9c62ac63fff949a70d1c06RO

2de00a5b0fb59d8eb7301b7523d96d3eRO

0cff6d24b7f45835d42401ec28408b34RO
....RO

87b1dd26596e8e78e294a47b6b3fc3e9RO

80db20d8e37dc3795b17e0e59930a408RO

Figure 1: OpenFace Container’s Image Layer Stack. Con-
tainer’s ID is 9ec79a095ef4db1fc5edc5e4059f5a10. The stack
list is stored in file ./aufs/layers/febfb1642ebeb25857bf2a9c-
558bf695. On the top is the writable (R/W) layer – container
layer, and all the readonly (RO) layers are called base image
layers.

the migration, we only need to transfer the run-time memory states
and the thin container layer on top of the Docker image stack.

Apparently, the migration of Docker containers allows smaller
transfer sizes than the virtual machine based approaches we have
introduced above. The layered storage in Docker infrastructure
enables an opportunity for service handoff based on container
migration. By reducing the transfer size as much as possible, we
can provide a nearly seamless offloading service handoff across the
adjacent edge servers on a WAN network.

However, as of this writing, there is no current tool to leverage
Docker’s layered images to migrate containers efficiently. In this
paper, we propose our work to reduce transfer size during container
migration by leveraging layered storage.

3 PRELIMINARIES
In this section, we discuss the background of our work and dive into
the inner details of Docker’s layered storage system for containers.
We will also identify the parts of the file system required to be
transferred during migration.

Docker is becoming more and more popular and widely adopted
in the industrial world, however, the technical details of layered
storage management is still not well-documented. To the best of
the author’s knowledge, we are the first to examine the technical
details of the Docker layered storage system, and leverage it to
speed up the migration of Docker containers. Our work does not
require any change to the Docker software stack.

3.1 Docker Layered Storage Management
As we mentioned above, Docker uses layered storage for its con-
tainers. Each Docker image references a list of read-only layers that
represent file system differences. Layers are stacked on top of each
other to form a base for a container’s root filesystem [18].

3.1.1 Container Layer and Base Image Layers.

When a new container is created, a new, thin, writable storage
layer is created on top of the underlying read-only stack of image
layers. The new layer on the top is called container layer. All changes
made to the container – such as creation, modification, or deletion
of any file – are written to this container layer[18].

For example, Figure 1 shows the stacked image layers for Open-
Face application. The dashed box on the top is the container layer
of OpenFace. All the underlying layers are base image layers. To
resolve the access request for a file name, the storage driver will
search the file name from top layer towards the bottom layer, the
first copy of the file will be returned for accessing, regardless the
any other copies with same file name in the underlying layers.

3.1.2 Image Layer ID Mapping.

Since Docker 1.10, all the image and the layers in it are addressed
by secure content SHA256 hash IDs. This addressable image design
is supposed to improve security by avoiding name collisions, and at
the same time, to maintain data integrity after pull, push, load, and
save operations. It also enables better sharing of layers by allowing
many images to freely share their layers locally even if they didn’t
come from the same build [18].

Given that there is no existing effort dived into how those ad-
dressable images worked by those SHA256 hash, we have investi-
gated into the source code of Docker and its storage drivers. We
find that there is an image layer ID mapping relationship which is
not well documented yet: if the same image is downloaded from the
same build on the cloud, Docker will mapping the layers’ original
layer IDs to a new secure content hash, called cache ID. Every image
layer’s original ID will be replaced with its cache ID. From then on,
Docker daemon will address the image layer by this cache ID when
it creates, starts, stops, or checkpoints/restores a container.

3.1.3 ID Matching Between Docker Host.

The mapping of layer IDs exposes a challenge to address those
layers when we migrate a container between different hosts. As we
have found, the image layer on the cloud will have different cache
IDs when downloaded to different Docker host. Therefore, if we
want to share the common image layers between different Docker
hosts, we need to resolve the image layers ID mapping problem
according different Docker host.

To address this problem, on each Docker host, we rebuild the
mapping between its cache IDs to their original layer IDs by query-
ing the Docker image database. Thus, we could match the image
layers by its original IDs instead of the cache IDs exposed to the
local Docker daemons. More details can be found in section 4.3.

3.1.4 Docker’s Storage Driver Backend.

Docker delegates the task of managing the container’s layered
file system to its pluggable storage driver. The Docker storage driver
is designed to provide a single unified view from a stack of image
layers. Users can choose from different kinds of storage drivers that
is the best for their particular case of usage.

In order to get more details of how those addressable images
work, we investigate the source code of Docker system along with
one of its most popular storage driver, AUFS. For other storage
drivers like Btrfs, Device Mapper, overlay, and ZFS, they implement
themanagement of image layers and the container layer in their own
ways, but our framework could also be extended to those drivers.

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

/var/lib/docker/0.0/

containers

<conID>

config.v2.json

aufs/

mnt/

<rootfs ID>/

/etc/

hostname hosts

/home/

layers/

<rootfs ID>(-init)

diff/

<layer ID1>/

/etc/

hostname

<layerID2>/

/etc/

hostname hosts

image/aufs/layerdb/sha256

<O-layerID>

cache-id parent ...

Figure 2: Docker Layered File System Structure Based on AUFS Storage Driver

/var/run/docker/execdriver/native/

<conID1>

state.json

<conID2>

state.json

Figure 3: Runtime Data for Containers1

Due to limited time and space, we only conduct experiments on
AUFS. The following section will discuss the inner details about
our findings inside the Docker’s AUFS storage driver.

3.2 AUFS Storage: A Case Study
The default storage driver on Docker is Advanced multi-layered
Unification FileSystem (AUFS). Therefore, we take this as an exam-
ple to introduce the layered images management.

AUFS storage driver implements Docker image layers by a union
mount system. Union mount is a way of combining numerous
directories into one directory that looks like it contains the contents
from all the them [23]. Docker uses union filesystem to merge all
image layers together and presents them as one single read-only
view at a union mount point. If there are duplicate identities (i.e.
file names) in different layers, only the one on the highest layer is
accessible.

Figure 2 shows the Docker storage structure based on the AUFS
driver. White box stands for a file and blue box stands for a directory.
Since all directories share the same parent path /var/lib/docker/0.0/,
we will use ‘.’ to represent this common directory in the following
discussion.

AUFS driver use three main directories to manage image layers:
layers/, diff/, and mnt/ : directory layers/ contains the metadata of
how image layers are stacked together; directory diff/ stores the
content data for each layers; directory mnt/ contains the mount
point of the root file system for each the container.

3.2.1 Container’s Image Layer Stack List.

We know that each Docker image contains several image layers.
Those image layers are addressed by their SHA256 content hash IDs.
Each Docker image has a list of layer IDs in the order of how they

stacked from top to bottom. There are two files, ./aufs/layers/<rootfs
ID>-init and ./aufs/layers/<rootfs ID>, both of which store a list of
layer IDs. The former stores IDs of all initial image layers when
the container is created. The latter stores IDs of the newly cre-
ated layers in addition to the initial layers. In Figure 2, we use
./aufs/layers/<rootfs ID>(-init) as the notion of the two files.

For example, for the containerOpenFacewith rootfs ID of febfb16-
42ebeb25857bf2a9c558bf695 2 , it’s initial layer stack is stored in
the file ./aufs/ layers/febfb1642ebeb25857bf2a9c558bf695-init. It con-
tains all layers in the downloaded container image bamos/openface3.
These layers will be read-only throughtout the whole life cycle of
the container. Once a new layer is created, i.e. the container layer,
the layer ID will be listed on the top line of the file ./aufs/ lay-
ers/febfb1642ebeb25857bf2a9c558bf695.

When the Docker daemon starts or restores a container, it will
refer to those two files to get a list of all underlying Docker image
layer IDs and the container layer ID. Then it will resolve those
addressable IDs and union mount all those layer stacks together in
the specific order. After this, the container will get the full view of
its root file system under the root mount point. We find that this
file behaves like an important handler for all the union file systems
for the container. If this file is missing, one container will not be
able to union mount the root file system correctly.

3.2.2 Image Layer Content Directory.

AUFS manages the content of image layers in the directory of
./aufs/diff/. The directory ./aufs/diff/<layer ID>/ stores all the files
inside the specific layer identified by its <layer ID>. This can be
either a readonly image layers or layers newly created for a con-
tainer. If <layer ID> is the same as <rootfs ID> of one container, then
this directory is where the content of container layer stores, i.e. all
the file system changes of the container will be stored under this
directory.

3.2.3 Unified Mount Point.

The directory ./aufs/mnt/<rootfs ID>/ is the mount point of the
container’s root file system. All image layers are union mounted to

1This is for Docker 1.10-dev, the latest Docker (version 17.04.0-ce, build 4845c56) has
the runtime data directory changed to /var/run/docker/libcontainerd/containerd/.
2SHA256 ID has 64 hexadecimal characters, here we truncate it to 32 hexadecimal
characters in order to save space.
3https://hub.docker.com/r/bamos/openface/.

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

this folder and provide a single file system view for the container.
For example, as shown in Figure 2, when a container is created based
on a Linux image, its mount point will contain the root directory
contents like /usr/, /home/, /boot/, etc. . All those directories are
mounted from its underlying layered storage, including both the
read only image layers downloaded from the registry and the newly
created layers for the container. Since this directory is a mount point
for a running container’s file system, it will be only available when
the container is running. If the container stops running, all the
image layers will be unmounted from this mount point. So it will
become an empty directory.

Here, the name of the root file system directory, <rootfs ID>, is
the same as the name of the container layer for this container.

3.2.4 Layer ID Mapping.

Until now, the layer IDs we have discussed above are just local
SHA256 IDs, or the so called cache IDs, which are generated dy-
namically when each image layer is downloaded by ‘docker pull’
command. From then on, Docker daemon will address the image
layer use the cache ID instead of its original layer ID (noted as
O-layerID in this paper).

We find the Docker storage systemmaintains a mapping relation-
ship between the original layer IDs and its cache IDs. All the cached
IDs of image layers are stored in the /image/aufs/layerdb/sha256
directory. For example, the file ./image/aufs/layerdb/sha256/<O-
layerID>/cache-id shown in Figure 2 stores the cache ID of the
image with original ID <O-layerID>. For example, if a hash ID
fac86d61dfe33f821e8d0e7660473381 is stored in the file of ./image/
aufs/ layerdb/ sha256/ 6384c447ddd6cd859f9be3b53f8b015c/cache-id,
this means there is an image layer with an original ID of 6384c-
447ddd6cd859f9be3b53f8b015c and it’s cache ID is fac86d61dfe33f-
821e8d0e7660473381.

3.2.5 Container Configuration and Runtime State.

There are several directories that store the configuration files
and runtime data. Figure 3 shows the runtime data directories for
each containers. For one container with ID of <conID>, there will
be a JavaScript object notation (JSON) file state.json that stores
the runtime state of the container. For example, the init pid of the
containers’ processes is identified by key “init_process_pid”, and
the root file system mount point path can be found via key “rootfs”.
There are also some runtime cgroup and namespace meta data, etc..

Along with the runtime data directory, there is another direc-
tory named /var/lib/docker/0.0/containers/<conID> that contains the
configuration files for each container. The directory is shown in Fig-
ure 2. We use <conID> as a notation of the container’s hash ID. For
example, from the file of config.v2.json, we can find the container’s
creation time, the command that was run once the container was
created, etc..

3.3 Docker Container Migration in Practice
Although there is no official migration tool for Docker contain-
ers yet, many enthusiastic developers have constructed some cus-
tomized tools for certain versions of Docker platforms. These tools
have demonstrated the feasibility of Docker container migration.
For example, the CRIU project [8] supports migration of Docker-
1.9.0-dev, and project [2] extends it to support Docker 1.10-dev.

App Total
time

Down
time FS Size Total

Size
Busybox 7.54 s 3.49 s 140 KB 290KB
OpenFace 26.19 s 5.02 s 2.0 GB 2.17GB

Table 1: Docker Container Migration Time (between two
VMson the samehostmachine, bandwidth 600Mbps, latency
0.4ms)

App Total
time

Down
time FS Size Total

Size
busybox 133.11s 9s 140 KB 290KB
openface ∼ 3200s 153.82s 2.0G 2.17G

Table 2: Docker ContainerMigration Time (between two dif-
ferent hosts through Wireless LAN, bandwidth 15Mbps, la-
tency 5.4ms)

However, both methods simply transfer all the files located under
the container’s root file system from source server to the target
server, where the files are actually composed from all the image
layers of the migrated container. The methods just ignore the un-
derlying union mounting of the storage layers. This behavior would
cause severe problems from several aspects:

(1) It will corrupt the layered file system inside the container
after restoration on the target server. The tools just transfer
the whole file system into one directory on the destination
server and mount it as root directory for the container. Af-
ter restoration on the target host, the container no longer
maintains its layered image stacks as on the source node.

(2) It substantially reduces the efficiency and robustness of mi-
gration. It will synchronize the whole file system of the
Docker container using Linux rsync command while the
container is still running. First, running rsync command on
a whole file system would be pretty slow due to the large
amount of files. Second, this can result in file contention
when the container process and rsync process on the source
node attempt to access a same file. Contention will cause
synchronization error which can result in migration error
or failure.

To verify our claim, we have tested this tool with experiments
to migrate containers through different network connections. Our
experiments use one simple container, Busybox, and an application,
OpenFace, for edge server offloading. Busybox is a stripped-down
Unix tool in a single executable file. This results in a tiny file system
inside the container. OpenFace[1] is an application that dispatches
images from mobile devices to the edge server, then executes the
facial recognition algorithm on server, and finally sends back a text
string with the name of the person. The container has a huge file
system, approximately 2 gigabytes.

Table 1 indicates migration could be done within 10 seconds
for Busybox, and within 30 seconds for OpenFace. The two nodes
are two virtual machines on the same physical host. The network
between two virtual hosts has a 1Gbps bandwidth with latency of
0.5 milliseconds which transfers 2.17 GB data within a short time.

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

Edge Server
VM A

Offloading
Container

Docker

Edge Server
VM B

Docker

WAN

moving

(a) Before Migration

Edge Server
VM A

Docker

Edge Server
VM B

Offloading
Container

Docker

WAN

moving

(b) After Migration

Figure 4: Offloading Serivce Handoff: Before and After Mi-
gration of Offloading Container.

Due to the dominance of wireless connections in edge comput-
ing networks, we further test their containers migrating between
two physical hosts. We used the same wireless LAN network with
bandwidth of 15Mbps and latency of 4ms. Table 2 shows that the
migration of the Busybox container takes 133.11 seconds with trans-
ferred size as small as 152 kilobytes. As for migration of OpenFace,
it needs to transfer more than 2 Gigabytes data and costs about
3200 seconds.

As we have stated, this poor performance is caused by transfer-
ring the whole file system including all the stacked image layers
of the container. This is even worse than a mature VM migration.
Migration of VMs could avoid transferring a portion of the file
system by sharing the base VM images [12], which will finish the
migration within several minutes.

Therefore, we need a new tool to properly migrate the Docker
containers, avoiding unnecessary transmission of common image
layer stacks. This new tool should leverage the layered file systems
to transfer the container layer only.

4 EFFICIENT MIGRATION OF DOCKER
CONTAINERS

In this section, we introduce the design of our service hand-off
framework based on Docker container migration. First, we provide
a simple usage scenario, give an overview of system architecture
and the algorithm of service handoff. Second, in sections 4.2 and 4.3,
we discuss our methodology of storage synchronization based on
Docker image layer shared between two different Docker hosts. Fi-
nally, in sections 4.4, 4.5, and 4.6, we show how to further accelerate
the migration speed through memory difference transfer, file com-
pression, pipelined and parallel processing during the migration of
Docker containers.

4.1 System Overview
Figure 4 shows an exemplar usage scenario of offloading service
hand-off based on Docker container migration. In this example
(OpenFace[1]), the mobile client achieves real-time face recognition
by offloading workloads to an edge server. The mobile client contin-
uously reads images from the camera and sends them to the edge

server. The edge server runs the facial recognition application in a
container, processes the image via deep neural networks algorithm,
and finally sends the recognition result back to the client.

All containers are running inside Virtual Machines (for example,
VM A, VM B in Figure 4). This allows users to scale up the deploy-
ment more easily and control the isolation among the applications
in different levels.

Before migration, each mobile client offloads computations to its
nearest edge server A, where all the computations are processed
inside a Docker container. In this paper, we simply call the container
which computes the offloading workloads on the server side, the
offloading container. When the mobile client moves beyond the
reach of server A and reaches the service area of edge server B, its
offloading computation shall be migrated from serverA to server B.
This is done via migration of its offloading container, where all the
runtime memory states as well as associated storage data should
be synchronized to the target server B.

Figure 5 shows the design details of this architecture as well as
the migration algorithm in multiple processing stages described
below:

S1 Synchronize Base Image Layers Once a container is cre-
ated, it starts to offer offloading service to the client. We
dynamically predict the possible target edge servers that are
nearest to the client. Then we request those target servers to
start synchronizing the base image layers for that container.

S2 Pre-dump Container. Before we received the migration
request, we will try to dump a snapshot of the container
runtime memory and send to the possible target edge servers
predicted in the previous stage S1. The container is still
running during this stage.

S3 MigrationRequest Received on Source Server. Once the
migration request is initiated, the request will be sent to the
source server, which we regard as the start point of the
service handoff.

S4 Checkpoint and Stop Container. Upon receiving the mi-
gration request, the source edge server will checkpoint and
stop the container in order to send all of the latest run-time
states to the target edge server. From this point the container
will stop running on the source server and wait to be restored
on the target server.

S5 Container Layer Synchronization After checkpointing
the container, the file system will not be changed. In this
step, we will send the container layer contents to the target
server. At the same time, all the checkpointed runtime states
and configuration files, such as state.json, config.v2.json, etc.
are also transferred to the target server.

S6 Docker Daemon Reload After we send all the runtime
states and configuration files to the target node, Docker dae-
mon on the target node still cannot recognize the container
immediately. This is because those runtime states and config-
uration files are created by another Docker daemon on the
source node. The daemon on target node doesn’t have those
configurations loaded into the runtime database. We must
reload the Docker daemon in order to reload those runtime
state and configuration files just received from the source
node.

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

VM (Linux)

Docker Daemon

Offloading
Container

AUFS

VM (Linux)

Docker Daemon

AUFS

Offloading
Container Other Near

Edge Servers

Source Target

Docker Hub

S1. Pre-Download Images

S2. Send Pre-Dump Memory

S7. Send Memory Difference

S2.Pre-dump
S4. Final Dump

S7. Get Memory Difference
S9. Clean Up

S3. Migration Request

S1. Base Image Layers Sync

S5. Container Layer Sync

S1. ID Remapping
S1. Create Base Img Layers

S1. ID Remapping
S6. Reload Daemon

S7. Apply Memory Difference
S8. Restore Container

WAN

Figure 5: System Architecture for Offloading Service Hand-off

S7 Get, Send, and Apply Memory Difference. After we get
checkpointed images from the final dump of the container,
we then compare this final dumpmemory to the pre-dumped
memory in stage S2. We then could get the memory differ-
ences and send only these differences to the target server.

S8 Restore Container. After all transfer finish, we restore the
container on the target host with all runtime status retrieved.
At the same time, the target host will go to stage S1 to prepare
the next iteration of service handoff in the future. Now the
migration has finished and the user starts to be served from
the target edge server.

S9 Clean Up Source Node. Finally, on the source node, we
need to clean up the footprints of the offloading service. To
do this, we just simply remove the container, then all its
related runtime footprints will be gone. We might need to
carefully choose the right time to clean up, in case the user
moves back sometime in the future. If this is the case, it will
be better if we keep the old footprints extant to avoid some
transmission overhead.

4.2 Strategy to Synchronize Storage Layers
As has been mentioned, Docker’s storage driver supports layered
images whereby each layer represents the summary of file system
differences. A running container’s layered storage is composed
of one writable container layer and several read only base image
layers.

The thin writable container layer stores all the files created or
modified by the newly created container from the base image. As
long as the container is running, this layer is subject to change. So
we postpone the synchronization of the container layer until the
container is stopped.

All the base image layers are read only inside containers. Once
an image layer is created, it will not be changed during the whole
life cycle of all the containers running on top of it. We synchronize
those base image layers as early as possible.

There are two kinds of base image layers. First, in most cases,
the base image layers for the container are downloaded by docker
pull command from the centralized image registry, like Docker
Hub. All those images can be shared by downloading from the same
registry. Second, the container itself can also create its own image
layers by saving the current container layer as one read-only image
layer.

For these two kinds of base images, we employ different synchro-
nization strategies. More specifically, we download the common
image layers between two Docker hosts from the centralized image
registry and transfer only the different image layers between two
Docker hosts.

By downloading the common image layer from the registry, we
reduce the traffic between two edge servers. Furthermore, given
that the download could start as soon as the container is created
on the source server, the download time could be considered ahead
of migration start and therefore amortized.

Finally, for the base image layers created locally by the container,
we transfer each such image layer as the image layer is created,
regardless if the migration has started or not.

4.3 Layer ID Remapping
As discussed in section 3.1.3 and 3.2.4. The downloaded images
from the common registry have different cache IDs exposed to
each Docker host. In order to share these common images across
different Docker hosts, we need to match these image layers based
upon the original IDs instead of the cache IDs.

In order to do this, we first remap the cache IDs to the original
IDs and compare the original IDs on two different Docker hosts. If
the two image layers on two hosts share the same original IDs, we
infer that they are exactly the same image layers.

Then, for the matched original layer IDs on both Docker hosts,
we remap the original IDs to the local cache IDs on the target host.
Now we have the new cache IDs on the target Docker host. Then

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

we update the migrated container with the new cache IDs on the
target Docker host.

By doing so, the common image layers on the migrated container
will be reset with the new cache IDs that are addressable to the
Docker host on the target server. When we restore the container
in the future, the file system will be mounted correctly from the
shared image layers on the target server.

For the original IDs that don’t match on the two hosts, we regard
them as new image layers and add them to a waiting list to transfer
in step S5.

4.4 Pre-Dump & Dirty Memory
Synchronization

In order to reduce the total memory image size during hand-off,
we checkpoint the container and dump a snapshot of container
memory in stage S2. This could happen as soon as the container is
created, or as required, we could dump the memory when the most
frequently used binary programs in the application are loaded into
the memory. This snapshot of memory will be served as the base
memory image for the migration.

After the base memory image is dumped, it is transferred imme-
diately to the server. We assume that the transfer will be finished
before the hand-off starts, which is reasonable since we can send
the base memory image as soon as the container starts. After the
container starts, and before the hand-off starts, the download of
application Docker images are also started on the near edge servers.
Hence, we process those two steps in parallel to reduce the total
time span. This is further discussed in section 4.6. Thus, upon hand-
off start, we have the base memory image of the container already
on the target server.

Once the migration request is received, we checkpoint and stop
the container. After getting the checkpointed memory, we do a diff
operation on it from the base memory image we dumped in stage
S2. In this way, we only need to transfer the difference of the dump
memory to the target node.

4.5 Data Transfer
During container migration, wemainly have 4 types of data needing
to be transferred: the layer stacks information, the file system of
thin writable container layer, the meta data files of the container,
and the snapshot of container memory and memory difference.
Some of the data is in the form of string messages, such as layer
stack information. Some data are in plain text files, such as most
contents and configuration files. Memory snapshots and memory
differences are all binary image files. According to the feature of
the files, we design different strategies to transfer the data.

The layer stacks information is sent via UNIX RPC API imple-
mentation in [10]. This is based on a socket connection created by
python scripts. This information consists of a list of SHA256 ID
strings, so its quite efficiently sent as a socket message. It does not
merit applying compression because the overhead of compression
outweighs the benefits for those short strings.

As for other data, including the container writable layer, meta
data files, the dump memory images, and image differences, we use
bzip2 to compress and send via authorized ssh connection.

4.6 Parallel & Pipelined Processing
With the help of parallel and pipelined processing, we could further
improve the efficiency of the whole process, and reduce the total
migration time.

First, starting a containerwill trigger two events to run in parallel:
a) on the potential target servers near the source node, download-
ing images from centralized registry, and b) on the source node,
pre-dumping/sending base memory images to the potential target
servers. Those two processes could be run at the same time in order
to reduce the total time of stage S1 and S2.

Second, daemon reload in stage S6 is required on the target host,
it could be triggered immediately after S5. It could be paralleledwith
stage S7, when the source server is sending the memory difference
to the target host. Stage S5 cannot be paralleled with S6, because
daemon reload on the target host requires the configuration data
files sent in stage S5.

Third, in stage S5, we use compression to send all files in the con-
tainer layer over an authorized ssh connection between the source
and target host. The compression and transfer of the container layer
can be pipelined using Linux pipes.

Lastly, in stage S7, after we get the final memory snapshot, we
will need to identify memory differences by comparing the base
memory images with the images in the new snapshot, then we send
the differences to the target and patch the differences to the base
memory image on the target host. This whole process could also
be piplined using Linux pipes.

4.7 Security Isolation
Finally, it is critical to minimize security risks to the offloading
services running on the edge servers. Isolation between different
services could provide a certain level of security. Our framework
provides an isolated running environment for the offloading ser-
vice via two layers of the system virtualization hierarchy. Different
services can be isolated by running inside different Linux contain-
ers, and different containers are allowed to be further isolated by
running in different virtual machines.

More thorough security solutions need to be designed before
this framework can be deployed to the real world. These solutions
include, but are not limited to efficient run-time monitoring, secure
system updating, etc.. But here we focus on the mobility of services
from the performance side, and leave most security work to the
future.

5 EVALUATION
In this section, we evaluate the performance of our system under
different workloads and different network conditions. Specifically,
we evaluate offloading with our service handoff system by measur-
ing the reduction of the overall hand-off time and transferred data
size.

5.1 Set-Up and Benchmark Workloads
Our testbed is built on a desktop server, which is equipped with
Intel Core i3-6100 Processor (3.70GHz, 2 cores, 4 threads), and 16GB
DDR4 memory. Two virtual machines are running with 2 vcpus
and 4GB memory each. A laptop acts as a client with an Intel Core
i5-2450M CPU (2.5GHz, 2 cores, 4 threads) and 4GB DDR3 memory.

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

The hosts and virtual machines are running Ubuntu 16.04 LTS as
the operating system. Docker version is 1.10-dev, which is built
with experimental feature enabled.

In our experiment, we set up migration scenarios using emulated
bandwidth on two virtual machines each running a Docker instance.
Docker containers are migrated from the Docker host on source
VM to the Docker host on another VM. Two virtual machines run
on the same physical server.

We use Linux Traffic Control (tc[3]) tool to control network
traffic. In order to test our system under WANs , we emulated
low bandwidth ranging from 5Mbps to 45Mbps. According to the
average bandwidth observed on the Internet[29], we set latency at
a fixed 50ms to emulate the WAN environment for edge computing.

Since edge computing environments can also be adapted to the
LAN network such as in a university, smart homes, or other com-
munity, they can usually have a high bandwidth as well as low
network latency. Therefore, we also tested several higher band-
widths, ranging from 50Mpbs to 500Mpbs. The latency is set to 6ms
which is an average latency from the author’s university LAN.

For the offloading workloads, we use Busybox as a simple work-
load to show the functionality of the system as well as the non-
avoidable system overhead when processing container migration.
In order to show the performance of offloading service handoff
regarding real world applications, we chose OpenFace to provides
a sample workload.

5.2 Dirty Memory & Experimental Findings
6 and Figure 7 give an overview of the dump memory image sizes
while running the container of Busybox and OpenFace. The data
is collected from 11 dumps of the running container of Busybox
and OpenFace, labeled from dump 0 to 10. Memory is dumped

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0 1 2 3 4 5 6 7 8 9

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(a) Memory Snapshot Size

 0

 0.0,005

 0.001

 0.0,015

 0.002

 0.0,025

 0.003

 0.0,035

 0.004

0
−

1

0
−

2

0
−

3

0
−

4

0
−

5

0
−

6

0
−

7

0
−

8

0
−

9

0
−

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(b) Dirty Memory, original

 0

 0.0,005

 0.001

 0.0,015

 0.002

 0.0,025

 0.003

 0.0,035

 0.004

0
−

1

1
−

2

2
−

3

3
−

4

4
−

5

5
−

6

6
−

7

7
−

8

8
−

9

9
−

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(c) Dirty Memory, adjacent

Figure 6: Dirty Memory Size Analysis for Busybox. Figure
6a shows checkpointed memory size for total 11 dumps. Fig-
ure 6b shows dirty memory size beween each of dump 1 10
and the original dump 0. Figure 6c shows dirty memory size
between two adjacent dumps.

every 10 seconds. Container continues to run during the first 10
dumps, and stops after 11th dump. From the figure we can see the
memory difference (or dirty memory) is much smaller than the
original memory dump. The migration could be sped up by only
transferring the memory difference.

Furthermore, Figure 6b ∼ 6c and 7b ∼ 7c show us the sizes of
memory differences between adjacent dumps as well as the original
dump. We find a feature of memory access patterns for Busybox
and OpenFace application. Although their memory is continuously
changing, the changes reside in a specified area: a 4KB area for
Busybox and 25MB area for OpenFace. In this case, iterative trans-
ferring of memory difference to the target server will be waste
of effort. Although this will not happen on every application, it
is valuable to be considered as a special case for further research
regarding the migration of containers by iterative transfer. One way
to utilize those kinds of memory access patterns is by not iteratively
transferring every memory difference. Instead, transfer only the
last iterative difference to achieve the same end result.

5.3 Evaluation of Pipeline Performance
In order to verify the effectiveness of pipelined processing, we im-
plemented the pipeline processing of two time consuming steps:
imgDiff and imgSend, where imgDiff is to get memory difference
and imgSend is to send memory difference to the target during mi-
gration. Figure 8 and Figure 9 reports the timing benefits we could
achieve by using pipelined processing. From the figure, we can
see that, without pipelined processing, most time costs are by get-
ting and sending the memory difference. After applying pipelined
processing, we could save 5 ∼ 8 seconds for OpenFace migration.
Busybox also saves a certain amount of time with pipelined pro-
cessing.

 0

 50

 100

 150

 200

 250

 300

 350

0 1 2 3 4 5 6 7 8 9

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(a) Memory Snapshot Size

 0

 5

 10

 15

 20

 25

 30

 35

0
−

1

0
−

2

0
−

3

0
−

4

0
−

5

0
−

6

0
−

7

0
−

8

0
−

9

0
−

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(b) Dirty Memory, original

 0

 5

 10

 15

 20

 25

 30

0
−

1

1
−

2

2
−

3

3
−

4

4
−

5

5
−

6

6
−

7

7
−

8

8
−

9

9
−

1
0

av
er

ag
e

S
iz

e
(M

B
y

te
s)

(c) Dirty Memory, adjacent

Figure 7: Dirty Memory Size Analysis for OpenFace. Figure
7a shows checkpointed memory size for total 11 dumps. Fig-
ure 7b shows dirty memory size beween each of dump 1 10
and the original dump 0. Figure 7c shows dirty memory size
between two adjacent dumps.

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

 4.00

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

n
o

−
p

ip
e

p
ip

e

T
im

e
(s

ec
o

n
d

s)

5Mbps 10Mbps 15Mbps 20Mbps 25Mbps 30Mbps 35Mbps 40Mbps 45Mbps

 other

 restoreSrc

 memApply

 imgSend

 imgDiff

 daemonReload

 finalFS

 finalDump

Figure 8: Busybox: Time of Container Migration Stages with
and without Pipelined Processing.

 0.00

 5.00

 10.00

 15.00

 20.00

 25.00

 30.00

 35.00

 40.00

 45.00

 50.00

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

n
o
−

p
ip

e
p
ip

e

T
im

e
(s

ec
o
n
d
s)

5Mbps 10Mbps 15Mbps 20Mbps 25Mbps 30Mbps 35Mbps 40Mbps 45Mbps

 other

 restoreSrc

 memApply

 imgSend

 imgDiff

 daemonReload

 finalFS

 finalDump

Figure 9: OpenFace: Time of Container Migration Stages
with and without Pipelined Processing

5.4 Overall Performance and Comparison with
State-of-the-Art

We evaluate the total handoff time and transferred size during
offloading service handoff under different bandwidths and network
latencies.

Table 3 shows an overview of the performance of our system
under different network bandwidth conditions.

Handoff time is from the time the source host receives amigration
request until the offloading container is successfully restored on
the target host. The Down time is from the time when the container
is stopped on the source server to the time when the container is
restored on the target server. Handoff time and Down time are very
similar since we immediately checkpoint and stop the container
once we get the migration request.

Pre-Transfer Size is the transferred size before handoff starts, i.e.
from stage S1 until stage S3 . Final-Transfer Size is the transferred
size during the handoff, i.e. from stage S3 until the end of final stage
S8.

Figure 10 and Figure 11 shows the performance under difference
network latencies of 50ms and 6ms for Busybox and OpenFace. It
shows a tiny difference when facing different latencies. This means
our system is suitable for a wide range of network latencies.

Bandwidth
(Mbps)

Handoff
Time(s)

Down
Time(s)

Pre-
Transfer
Size (MB)

Final-
Transfer
Size (MB)

Busybox

5 3.2 (7.3%) 2.8 (7.9%) 0.01 (0.2%) 0.03 (0.3%)
10 3.1 (1.8%) 2.7 (1.6%) 0.01 (0.2%) 0.03 (0.6%)
15 3.2 (1.4%) 2.8 (1.6%) 0.01 (0.5%) 0.03 (0.9%)
20 3.2 (1.6%) 2.8 (1.8%) 0.01 (0.3%) 0.03 (0.4%)
25 3.1 (1.6%) 2.7 (1.8%) 0.01 (0.2%) 0.03 (0.9%)
30 3.2 (1.4%) 2.8 (1.2%) 0.01 (0.3%) 0.03 (0.5%)
35 3.1 (3.5%) 2.7 (3.3%) 0.01 (0.3%) 0.03 (0.6%)
40 3.1 (3.4%) 2.7 (3.5%) 0.01 (0.2%) 0.03 (0.5%)
45 3.2 (1.9%) 2.7 (1.8%) 0.01 (0.2%) 0.03 (0.8%)
50 3.2 (1.7%) 2.7 (1.6%) 0.01 (0.2%) 0.03 (2.7%)
100 3.2 (1.6%) 2.7 (1.4%) 0.01 (0.3%) 0.03 (0.4%)
200 3.1 (1.8%) 2.7 (1.8%) 0.01 (0.1%) 0.03 (0.5%)
500 3.2 (2.0%) 2.8 (2.2%) 0.01 (0.2%) 0.03 (0.4%)

OpenFace

5 48.9 (12.6%) 48.1 (12.7%) 115.2 (6.1%) 22.6 (13.0%)
10 28.5 (6.9%) 27.9 (7.0%) 119.4 (3.5%) 22.2 (10.9%)
15 21.5 (9.1%) 20.9 (9.4%) 116.0 (7.3%) 22.1 (11.1%)
20 17.8 (8.6%) 17.3 (8.9%) 116.0 (6.9%) 21.2 (12.0%)
25 17.4 (11.5%) 16.8 (12.0%) 114.3 (7.6%) 23.7 (14.8%)
30 15.8 (7.5%) 15.1 (7.4%) 119.3 (2.5%) 22.7 (9.3%)
35 14.7 (13.6%) 14.0 (14.3%) 116.8 (5.9%) 22.2 (15.6%)
40 14.0 (7.3%) 13.4 (7.6%) 112.5 (8.1%) 23.0 (8.8%)
45 13.3 (8.6%) 12.6 (9.1%) 111.9 (9.1%) 22.6 (11.7%)
50 13.4 (10.7%) 12.8 (11.1%) 115.2 (5.3%) 23.2 (5.3%)
100 10.7 (9.6%) 10.1 (10.1%) 117.2 (2.4%) 21.6 (10.8%)
200 10.2 (12.9%) 9.6 (13.5%) 116.8 (2.4%) 20.6 (17.6%)
500 10.9 (5.6%) 10.3 (5.9%) 117.4 (1.5%) 23.0 (3.9%)

Table 3: Overall SystemPerformance. Average of 10 runs and
relative standard deviations (RSDs, in parentheses) are re-
ported.

 0.00

 0.50

 1.00

 1.50

 2.00

 2.50

 3.00

 3.50

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

5
0

m
s

6
m

s

T
im

e
(s

ec
o

n
d

s)

5 10 20 30 40 50 100 200 500

 other

 restoreSrc

 memApply

 imgSend

 imgDiff

 daemonReload

 finalFS

 finalDump

Figure 10: Busybox: Comparison of Migration Time Under
Latency of 50ms and 6ms.

From Table 3 and Figure 10 , we can see the simple Busybox
container can be migrated very quickly regardless the network
bandwidth and latency.

From Table 3 and Figure 11 , we can see the OpenFace offloading
container can be migrated within 49 seconds under the lowest
bandwidth 5Mbps with 50ms latency. Compared to the work in [12],
which has a handoff time of 247 seconds under the same network
conditions. For 25Mbps and 50 ms latency, our system achieves
17.4 seconds while [12] needs 39 seconds. The relative standard
deviations in Table 3 shows the robustness of our experimental
result.

SEC ’17, October 2017, San Jose, CA, USA L. Ma et al.

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

5
0
m

s
6
m

s

T
im

e
(s

ec
o
n
d
s)

5 10 20 30 40 50 100 200 500

 other

 restoreSrc

 memApply

 imgSend

 imgDiff

 daemonReload

 finalFS

 finalDump

Figure 11: OpenFace: Comparison of Migration Time Under
Latency of 50ms and 6ms.

Therefore, our system could reduce the total handoff time by
56% ∼ 80% compared to the state-of-the-art work of VM handoff
[12] on edge computing platforms.

6 RELATEDWORK
In this section, we discuss related work in the areas of dynamic VM
synthesis, VM handoff, and container migration.

6.1 Dynamic VM Synthesis and VM Hand-off
Techniques based on virtual machine migration have been proposed
in [12] [33] to accelerate the service handoff across edge servers.

In order to enable high speed service handoff based on virtual ma-
chine migration techniques, Satyanarayanan et al. in [33] proposed
VM synthesis to divide huge VM images into a base VM image and
a relatively small overlay image for one specific application. Before
migration starts, the server is assumed to have a base image, so
that the transition of this base image is avoided. During migration,
only the application overlay image is transferred from the source
to the target server.

Based on the work of VM synthesis, VM handoff across Cloudlet
servers (alias of edge servers) was proposed in [12]. VM handoff
allows the mobile client to seamlessly transfer the runtime status of
its VM from one edge sever to a nearer edge server. Besides VM syn-
thesis, it uses dirty tracking for both file system and main memory
to reduce the transferred size during handoff. Additionally, it also
uses compression and pipelined processing to reduce transfer time,
and algorithms to adapt to different network conditions. Finally, it
highly reduced the transfer size and migration time under WAN
environments.

While significant efforts have been invested into VM synthesis
and handoff, the performance cannot meet the requirements of
offloading services in edge computing environments, given the
mobility of clients, dominance of wireless access, geographical
distribution of edge nodes, and real-time interaction requirement.
Instead, our work is along the lines of container, a lightweight
OS-level virtualization technique, with focus on the migration of
containers to reduce the total handoff time.

6.2 Containers Migration
Containers provide operating system level virtualization by running
a group of processes in isolated environments. It is supported by
the kernel features of namespace and cgroups (control groups)[31].
Namespaces are used to provide a private view of system resources
for processes [27], while cgroups are used to restrict the quantity
of resources a group of processes can access[30].

Container runtime is a tool that provides an easy-to-use API
for managing containers by abstracting the low-level technical de-
tails of namespaces and cgroups. Although creating a container by
crafting cgroup and namepaces step by step is possible [4], man-
aging containers by container runtime is much easier. Such tools
include LXC/LXD[21] , runC[11], rkt[7], OpenVZ[24], Docker[19],
etc.. Different container runtime has different scenerios of usage.
For example, LXC/LXD only cares about full system containers
and doesn’t care about what kind of application runs inside the
container, while Docker aims to encapsulate a specific application
in the container.

Migration of containers becomes possible when CRIU (Check-
point/Restore In Userspace)[8] supports the checkpoint/restore
functionality for Linux. Now CRIU supports the checkpoint and
restore of containers for OpenVZ, LXC, and Docker.

Based on CRIU, OpenVZ now supports migration of contain-
ers. The implementation can be found from the CRIU community’s
open source project, P.Haul (process Hauler) [10]. It is claimed that
migration could be done within 5 seconds[35]. However, OpenVZ
uses a distributed storage system [25], where all files are shared
across a high bandwidth network. This means that during container
migration, it only needs to migrate the checkpointed memory im-
ages and no file transfer needs to be done. However, due to the
limitedWAN bandwidth for edge servers, it is not possible to deploy
distributed storage. Therefore, migration of OpenVZ containers is
not suitable for service handoff on edge computing platforms.

For LXC containers, the migration is implemented in Qiu’s thesis
work [28], which is also based on the CRIU project. However, LXC
regards containers as a whole system container, and there is no lay-
ered storage for containers. Therefore, during container migration,
all of the file system for that container must be migrated together
with all memory status. The total transfer size will be comparable
with migrating a whole virtual machine(VM). So, this is still not
feasible for an edge computing environment.

For Docker containers, there is a sample migration helper in
P.Haul’s source code, which supports only an older version of
docker-1.9.0-dev. It is also extended by Ross Boucher to support
docker-1.10-dev. However, as we have discussed in section 3.3, we
find this implementation transmits the entire file system of that
container, regardless of the layered storage of the Docker platform.
This makes the migration unsatisfactorily slow across the edges of
the WAN. Therefore, in this paper, we dive into the inner technical
details of Docker storage and investigate leveraging the layered
storage of Docker platform during migration. Finally we avoid the
transfer of unnecessary file system data by sharing container image
layers between different Docker hosts.

Efficient Service Handoff Across Edge Servers via Docker Container Migration SEC ’17, October 2017, San Jose, CA, USA

7 CONCLUSION
We propose a framework that enhances service handoff across
edge offloading servers by leveraging the layered storage system
of Docker containers to improve migration performance. Our sys-
tem enables the edge computing platform to continuously provide
offloading services with low end-to-end latency while supporting
high client mobility. By leveraging the layered file system of Docker
containers, we eliminate unnecessary transfers of a redundant and
significant portion of the application file system. By transferring
the base memory image ahead of the handoff, and transferring
only the incremental memory difference when migration starts,
we further reduce total transfer size. Finally, our system shows
that the hand-off time is reduced by 56% ∼ 80% compared to the
state-of-the-art VM handoff for the edge computing platform.

REFERENCES
[1] Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. 2016. Open-

Face: A general-purpose face recognition library with mobile applications. Technical
Report. CMU-CS-16-118, CMU School of Computer Science.

[2] Ross Boucher. 2017. Live migration using CRIU. (2017). Retrieved Apr 22, 2017
from https://github.com/boucher/p.haul

[3] Martin A. Brown. 2017. Traffic Control HOWTO. (2017). Retrieved Apr 22, 2017
from http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/

[4] Eric Chiang. 2017. Containers from Scratch. Online,
https://ericchiang.github.io/post/containers-from-scratch/ (2017).

[5] Mung Chiang and Tao Zhang. 2016. Fog and IoT: An overview of research
opportunities. IEEE Internet of Things Journal 3, 6 (2016), 854–864.

[6] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation-Volume 2. USENIX Association, 273–286.

[7] CoreOS. 2017. A security-minded, standards-based container engine. (2017).
Retrieved Apr 22, 2017 from https://coreos.com/rkt

[8] CRIU. 2017. CRIU. (2017). Retrieved Apr 22, 2017 from https://criu.org/Main_Page
[9] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan

Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Offload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys ’10). ACM, New York, NY,
USA, 49–62.

[10] Pavel Emelyanov. 2017. Live migration using CRIU. (2017). Retrieved Apr 22,
2017 from https://github.com/xemul/p.haul

[11] Linux Foundation. 2017. runC. (2017). Retrieved Apr 22, 2017 from https://runc.io/
[12] KiryongHa, Yoshihisa Abe, Zhuo Chen,Wenlu Hu, BrandonAmos, Padmanabhan

Pillai, and Mahadev Satyanarayanan. 2015. Adaptive vm handoff across cloudlets.
Technical Report. Technical Report CMU-CS-15-113, CMU School of Computer
Science.

[13] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance.
In Proceedings of the 12th annual international conference on Mobile systems,
applications, and services. ACM, 68–81.

[14] Zijiang Hao and Qun Li. 2016. Edgestore: Integrating edge computing into cloud-
based storage systems. In Edge Computing (SEC), IEEE/ACM Symposium on. IEEE,
115–116.

[15] Zijiang Hao, Ed Novak, Shanhe Yi, and Qun Li. 2017. Challenges and Software
Architecture for Fog Computing. IEEE Internet Computing 21, 2 (2017), 44–53.

[16] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015.
Mobile edge computingâĂŤA key technology towards 5G. ETSI White Paper 11
(2015).

[17] Docker Inc. 2017. Docker Hub. (2017). Retrieved Apr 22, 2017 from https:
//hub.docker.com/

[18] Docker Inc. 2017. Docker Images and Containers. (2017). Retrieved
Apr 22, 2017 from https://docs.docker.com/engine/userguide/storagedriver/
imagesandcontainers/#images-and-layers

[19] Docker Inc. 2017. What is Docker? (2017). Retrieved Apr 22, 2017 from https:
//www.docker.com/what-docker

[20] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Information Processing
in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Conference on. IEEE,
1–12.

[21] Daniel Lezcano. 2017. LXC - Linux Containers. (2017). Retrieved Apr 22, 2017
from https://github.com/lxc/lxc

[22] Peng Liu, DaleWillis, and Suman Banerjee. 2016. ParaDrop: Enabling Lightweight
Multi-tenancy at the NetworkâĂŹs Extreme Edge. In Edge Computing (SEC),
IEEE/ACM Symposium on. IEEE, 1–13.

[23] JR Okajima. 2017. Aufs. (2017). Retrieved Apr 22, 2017 from http://aufs.
sourceforge.net/aufs3/man.html

[24] OpenVZ. 2017. OpenVZ Virtuozzo Containers Wiki. (2017). Retrieved Apr 22,
2017 from https://openvz.org/Main_Page

[25] OpenVZ. 2017. Virtuozzo Storage. (2017). Retrieved Apr 22, 2017 from https:
//openvz.org/Virtuozzo_Storage

[26] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, and others.
2014. Mobile-edge computing introductory technical white paper. White Paper,
Mobile-edge Computing (MEC) industry initiative (2014).

[27] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and PhilWinterbottom.
1992. The use of name spaces in Plan 9. In Proceedings of the 5th workshop on
ACM SIGOPS European workshop: Models and paradigms for distributed systems
structuring. ACM, 1–5.

[28] Yuqing Qiu. 2016. Evaluating and Improving LXC Container Migration between
Cloudlets Using Multipath TCP. Ph.D. Dissertation. Carleton University Ottawa.

[29] Akamai Releases Second Quarter. 2014. State of the Internet Report. Akamai:
http://www. akamai. com/html/about/press/releases/2014/press-093014. html. Ac-
cessed 2 (2014).

[30] Rami Rosen. 2013. Resource management: Linux kernel namespaces and cgroups.
Haifux, May 186 (2013).

[31] Rami Rosen. 2014. Linux containers and the future cloud. Linux J 2014, 240
(2014).

[32] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. Computer
50, 1 (2017), 30–39.

[33] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. IEEE pervasive
Computing 8, 4 (2009).

[34] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646.

[35] Andrew Vagin. 2017. FOSDEM 2015 - Live migration for containers is around
the corner. Online, https://archive.fosdem.org/2015/schedule/event/livemigration/
(2017).

[36] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. 2015. Fog computing: Platform
and applications. In Hot Topics in Web Systems and Technologies (HotWeb), 2015
Third IEEE Workshop on. IEEE, 73–78.

[37] Shanhe Yi, Cheng Li, and Qun Li. 2015. A survey of fog computing: concepts,
applications and issues. In Proceedings of the 2015 Workshop on Mobile Big Data.
ACM, 37–42.

[38] Shanhe Yi, Zhengrui Qin, and Qun Li. 2015. Security and privacy issues of fog
computing: A survey. In International Conference on Wireless Algorithms, Systems,
and Applications. Springer, 685–695.

https://github.com/boucher/p.haul
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/
https://coreos.com/rkt
https://criu.org/Main_Page
https://github.com/xemul/p.haul
https://runc.io/
https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://github.com/lxc/lxc
http://aufs.sourceforge.net/aufs3/man.html
http://aufs.sourceforge.net/aufs3/man.html
https://openvz.org/Main_Page
https://openvz.org/Virtuozzo_Storage
https://openvz.org/Virtuozzo_Storage

	Abstract
	1 Introduction
	2 Motivations
	2.1 Emerging Applications in Edge Computing Call For Computation Offloading
	2.2 Effective Edge Offloading Needs Service Handoff
	2.3 Seamless Service Handoff via VM Migration
	2.4 Why We Need Migration of Docker Container

	3 Preliminaries
	3.1 Docker Layered Storage Management
	3.2 AUFS Storage: A Case Study
	3.3 Docker Container Migration in Practice

	4 Efficient Migration of Docker Containers
	4.1 System Overview
	4.2 Strategy to Synchronize Storage Layers
	4.3 Layer ID Remapping
	4.4 Pre-Dump & Dirty Memory Synchronization
	4.5 Data Transfer
	4.6 Parallel & Pipelined Processing
	4.7 Security Isolation

	5 Evaluation
	5.1 Set-Up and Benchmark Workloads
	5.2 Dirty Memory & Experimental Findings
	5.3 Evaluation of Pipeline Performance
	5.4 Overall Performance and Comparison with State-of-the-Art

	6 Related Work
	6.1 Dynamic VM Synthesis and VM Hand-off
	6.2 Containers Migration

	7 Conclusion
	References

