

hee		0	hee	Terr	0	here	No.	0	Pre-	Bee	0
0	00	1.4	32	20	fance	64	40	0	94	40	
1	01	Start of heading	33	21		65	41	۶.	97	61	•
2	02	Shut of bod	24	22	2	66	42	2	90	62	2
4	03	End of Instant	35	24		67	44	ž	100	64	e d
- 3	05	Drawy	37	25	÷.	63	45	r	301	65	-
6	05	Admowledge	38	26	4	70	4.5	7	302	66	e
- 7	07	Audito bell	37	27		71	47	0	203	67	9
1	08	Base specie	41	20		72	10		204	20	2
10	OA.	Lite feed	42	28		74	4.1	3	106	63.	3
11	01	Vertical Seb	43	20	+	75	43	π	\$07	610	×
12	DC.	Farm feed	44	20		76	40	1	108	6C	1
12	03	Carriage return	45	20	-	77		ž.	109	60	2
15	07	the second	47	11		72	47	0	111	47	
16	10	Data link eccape	11	30	0	80	50	7	312	70	p
17	11	Device control 1	12	31	1	81	81	0	113	71	4
18	12	Device contrait 2	80	32	2	#2	88	<u>.</u>	314	24	£.
20	14	Device control 4	52	24	4	11	54	7	116	24	2
21	1.5	Neg. admovietige	53	35	s	0.5	5.5	Ū.	117	75	-
2.2	16	Synchroneus idle	54	36	6	8.6	54	v	118	76	w.
23	17	End trans. block	55	37	7	87	57		119	77	*
24	10	Table netwo	56	38		80	20	÷	120	78	×
2.6	1.4	Substitution	58	AC		90	5.4	2	322	7.8	6
27	18	Escape	59	38		91	58	£	\$23	78	
29	10	File separator	60	30	<	92	SC		124	20	
20	11	facord separator	62	30	5	24	53		12.6	78	
31	17	Unit repairably	63	38	2	95	57		127	78	0

	Figure 1.13 The message "Hello." in									
	ASCII									
	01001000	01100101	01101100	01101100	01101111	00101110				
	н	e	I	I	0					
0	10									
ŭ	Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1-9									

The Binary SystemThe traditional decimal system is basedon powers of ten.The Binary system is based on powersof two.

1-11

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Figur binar	e 1.17 An algorithm for finding the ry representation of a positive integer
Step 1.	Divide the value by two and record the remainder.
Step 2.	As long as the quotient obtained is not zero, continue to divide the newest quotient by two and record the remainder.
Step 3.	Now that a quotient of zero has been obtained, the binary representation of the original value consists of the remainders listed from right to left in the order they were recorded.
Copyright © 2008	Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1-14

Finite Precision Binary Arithmetic

- We can store *two* different values in 1 bit: 0 or 1.
- in general, in *n* bits, you can store 2ⁿ different values.
- So with 4 bits, we can store 16 values 0 to 15, but there are *no negative values.*
- common sense says to split the number of values in half, making half positive, half negative, not forgetting zero.
- Two's complement notation
- Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley 1-20

Figure 1.23 Addition problems converted to two's complement notation Problem in Problem in two's complement Answer in base ten base ten 0011 3 + 0010 + 2 0101 5 1101 -3 + 1110 + -2 1011 -5 0111 + 1011 + -5 0010 2

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-26

Figure 1.25 An excess notation system using bit patterns of length three									
	Bit pattern	Value represented							
	111 110	3 2							
	101 100	1 0							
	010 001	-1 -2 -3							
	000	-4							
Copyright © 2008 Pearson Education, Inc: Publishing as Pearson Addison-Wesley 1-32									

Converting 2 1/4 to floating point

- figure out 2 ¼ in binary = 10.01
- normalize the number (move the binary point to the left of the most significant 1 – leftmost one) and adjust the exponent = $10.01 * 2^0 = .1001 * 2^2$
- Calculate the exponent by adding the excess value to the exponent value: 2 + 4 = 6 = 110 in binary
- figure out the sign positive is 0
- put is all together = 0 110 1001

Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

1-35

Another

- Remember if the number has a whole portion, the exponent will be positive. If the number is 0 or a fraction, the exponent will be 0 or negative
- -3/8 = .011 in binary
- normalize $.11 * 2^{-1}$ (pad fraction = .1100)
- calculate exponent: -1 + 4 = 3 = 011
- · calculate sign: 1 for negative
- put it together: 1 011 1100

1-36

