Chapter 14 THE PRACTICE OF COMPUTING USING

THON

3RD EDITION 3."' ."

Files and Exceptions II

WILLIAM  RICHARD
PUNCH - ENBODY

PEARSON ALWAYS LEARNING



What We Already Know

* files are bytes on disk

* two types of files: text and binary (we are
working with text)

e open creates a connection between the
disk contents and the program
* different modes of opening a file: 'r’, 'w', 'a’

» files might have different encodings

default I1s utf 8
L 8)

"The Practice of Computing Using Python, 3 Edition", 2
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



More of What We Know

 all access, reading or writing, to a text file
IS by the use of strings

* |teration via a for loop gathers info from a
file opened for reading one line at a time

* we write to a file opened for reading using
the print function with an argument

file=

"The Practice of Computing Using Python, 3 Edition", 3
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Code Listing 14.1
Review

"The Practice of Computing Using Python, 3 Edition",

4

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




20

21

22

23

24

25

26

27

28

29

30

# Prompt for three values: input file, output file, search string.
# Search for the string in the input file, write results to the
# output file

import sys
def process_file(i_file, o_file, a_str):
" if the a_str is in a line of i_file, add stars
to the a_str in line, write it out with the
line number to o_file "’
line_count_int = 1
for line str in i_file:
if a_str in line_str:
new_line_str = line_str.replace(a_str, '#***'ta_ str)
print ('Line {}: {}'.format (line count int, new_ line str),\
file=o_file)
line_count_int += 1

try:
in file str = input("File to search:")
in_file = open(in_file_str, 'r', encoding='utf_8'")
except IOError:
print ('{} is a bad file name'.format (in file str))
sys.exit ()

out_file_str = input("File to write results to:")
out_file = open(out_file_str, 'w')

search_str = input ("Search for what string:")
process_file(in_file, out_file, search_str)

in file.close()

out_file.close()

"The Practice of Computing Using Python, 3 Edition", 5
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Results: Searching for "This"

inFile.txt

outFile.txt

This is a test
This is only a test

Do not pass go
Do not collect $200

Line 1: ***This is a test

Line 2: ***This is only a test

"The Practice of Computing Using Python, 3 Edition", 6
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




More Ways to Read a File

‘my file.read()

— reads the entire contents of the file as a string
and returns it

— optional argument integer to limit read to N bytes
my file.read(N)

‘my file.readline()
— returns the next line as a string

my file.readlines() # note plural

— returns a single list of all the lines from the file

"The Practice of Computing Using Python, 3 Edition", 7
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Example File

« we'll work with a file called temp . txt
which has the following file contents

First Line
Second Line
Third Line

Fourth Line

"The Practice of Computing Using Python, 3 Edition", 8
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



>>> temp_file = open("temp.txt","r") # open file for reading
>>> first_line_str = temp_file.readline() # read exact[y one line
>>> first line str
'First line\n'
>>> for line_str in temp_file: # read remaining lines

print (line_ str)

Second line

Third line

Fourth line

>>> temp_file.readline () # file read, return empty str

>>> temp_file.close()

"The Practice of Computing Using Python, 3 Edition", 9
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




>>> temp_file = open("temp.txt","z") # open file for reading

>>> temp_file.read (1) # read 1 char

|F|

>>> temp_file.read(2) # read the next 2 chars

|ir|

>>> temp_file.read() # read remaining file

'st line\nSecond line\nThird line\nFourth line\n'

>>> temp_file.read (1) # file read, return empty string

>>> temp_file.close()

"The Practice of Computing Using Python, 3 Edition", 10
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




>>> temp_file = open("temp.txt","r") # open file for reading

>>> file_contents_list = temp_file.readlines() # read all file lines into a list
>>> file_contents_list

["First line\n', 'Second line\n', 'Third line\n', 'Fourth line\n']

>>>

"The Practice of Computing Using Python, 3 Edition", 11
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




More Ways to Write a File

* once opened, you can write to a file (if the
mode Is appropriate)

my file.write(s)
which writes the string s to the file

my file.writelines(lst)

which writes a list of strings (one at a
time) to the file

"The Practice of Computing Using Python, 3 Edition", 12
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



>>2>
>>>

>>2>

>>>

>>>

word_list =

out_file =

for word in word_list:
out file.write(word +

['First',

out file.close()

'Second',
open('outFile.txt"',

'"Third',
IWl)

'Fourth']

' line\n')

"The Practice of Computing Using Python, 3 Edition", 13
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Universal New Line

"The Practice of Computing Using Python, 3 Edition", 14
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Different OS's, Different Format

* each operating system (Windows, OS X,
Linux) developed certain standards for
representing text

* In particular, they chose different ways to

represent the end of a file, the end of a
line, etc.

Operating System = Character Combination
Unix & Mac OS X | "\n'

MS Windows "\r\n'

Mac (pre-OS X) "\r'

End-of-Line Characters

"The Practice of Computing Using Python, 3 Edition", 15
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Universal New Line

 to get around this, Python provides by
default a special file option to deal with
variations of OS text encoding called
universal new line

* you can override this with an option to
open called newline=

— look at the docs for what this entails

"The Practice of Computing Using Python, 3 Edition", 16
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Working with a File

"The Practice of Computing Using Python, 3 Edition", 17
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Current File Position

 every file maintains a current file
position
— It Is the current position in the file, and
Indicates what the file will read next

— set by the mode table above

"The Practice of Computing Using Python, 3 Edition", 18
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



File Object Buffer

* when the disk file is opened, the contents
of the file are copied into the buffer of the
file object

* think of the file object as a very big list,
where every index is one of the pieces of
iInformation of the file

 the current position Is the present index Iin
that list

"The Practice of Computing Using Python, 3 Edition", 19
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



File object buffer

1 2 3 4 5 end

T

Current file
position

FIGURE 14.1 Current file position.

"The Practice of Computing Using Python, 3 Edition", 20
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




The tell () Method

* the tell () method tells the current file
position

 the positions are In bytes (think characters
for UTF-8) from the beginning of the file

* example
my file.tell() =>42

"The Practice of Computing Using Python, 3 Edition", 2 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



The seek () Method

* the seek () method updates the current file
position to a new file index (in bytes offset
from the beginning of the file)

fd.seek (0) # to beginning of file
fd.seek (100) # 100 bytes from beg

"The Practice of Computing Using Python, 3 Edition", 22
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Counting Bytes Is a Pain

e counting bytes is a pain

« seek has an optional argument set
0: count from the beginning (default)
1: count for the current file position
2: count from the end (backwards)

"The Practice of Computing Using Python, 3 Edition", 23
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Every Read Moves Current
Position Forward

* every read/readline/readlines
moves the current position forward

* when you hit the end, every read will just
yield ' ' (empty string), since you are at
the end
— no indication of end-of-file this way!

* you need to seek to the beginning to start
again (or close and open; seek Is easier)

"The Practice of Computing Using Python, 3 Edition", 24
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



>>> test_file = open('temp.txt','r')

>>> test_file.tell() # where is the current file position?

0

>>> test file.readline() # read first line

'First Line\n'

>>> test_file.tell() # where are we now?

11

>>> test file.seek(0) # go to beginning

0

>>> test_file.readline() # read first line again

'First Line\n'

>>> test file.readline() # read second line

'Second Line\n'

>>> test_file.tell() # where are we now?

23

>>> test file.seek(0,2) # go to end

46

>>> test_file.tell () # where are we now?

46

>>> test file.readline() # try readline at end of file: nothing there
[ ]

>>> test_file.seek(11) # go to the end of the first line (see tell above)
11

>>> test file.readline() # when we read now we get the second line

'Second Line\n'
>>> test_file.close()
>>> test_file.readline () # Error: reading after file is closed
Traceback (most recent call last) :

File "<pyshell#65>", line 1, in <module>

test_file.readline ()

ValueError: I/0 operation on closed file.
>>>

"The Practice of Computing Using Python, 3 Edition", 25
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




with Statement

open and close occur in pairs (or should),
so Python provides a shortcut, the with

Statement

e creates a context that includes an exit
which Is invoked automatically

e for files, the exit is to close the file
with expression as variable:

sulte

"The Practice of Computing Using Python, 3 Edition", 26
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



with Statement

* file Is closed automatically when the suite
ends

>>> with open('temp.txt') as temp_file:
temp_file.readlines()

["First line\n', 'Second line\n', 'Third line\n', 'Fourth line\n']
>>>

"The Practice of Computing Using Python, 3 Edition", 27
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




read(size=1)

* you can use the read () method to read
just one byte at a time

* In combination with seek, move around
the file and “look for things”

* once current is set, you can begin reading
again

"The Practice of Computing Using Python, 3 Edition", 28
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



More on CSV Files

"The Practice of Computing Using Python, 3 Edition", 29
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Spreadsheets

 the spreadsheet Is a very popular, and
powerful, application for manipulating data

* |ts popularity means there are many
companies that provide their own version
of the spreadsheet

e It would be nice If those different versions
could share their data

"The Practice of Computing Using Python, 3 Edition", 30
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



CSV and Basic Sharing

 a basic approach to share data is the
comma separated value (CSV) format

— It Is a text format, accessible to all apps
— each line (even if blank) is a row

—In each row, each value is separated from the
others by a comma (even if it is blank)

— cannot capture complex things like a formula

"The Practice of Computing Using Python, 3 Edition", 3 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Spread Sheet and Corresponding CSV File

Name |Exam1 | Exam2 | Final Exam | Overall Grade
Bill 75.00 | 100.00 50.00 75.00
Fred 50.00 | 50.00 50.00 50.00
Irving 0.00 | 0.00 0.00 0.00
Monty 100.00 | 100.00 100.00 100.00
Average 56.25

A simple spreadsheet from Microsoft Excel 2008.

Name, Examl, Exam2, Final Exam,Overall Grade
Bill,75.00,100.00,50.00,75.00
Fred,50.00,50.00,50.00,50.00
Irving,0.00,0.00,0.00,0.00
Monty,100.00,100.00,100.00,100.00

Average,,, ,56.25

"The Practice of Computing Using Python, 3 Edition", 32
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Even CSV Isn't Universal

* as simple as that sounds, even CSV
format iIs not completely universal

— different apps have small variations

* Python provides a module to deal with
these variations called the CSV module

* this module allows you to read
spreadsheet info into your program

"The Practice of Computing Using Python, 3 Edition", 33
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



CSV Reader

Import the CSV module
open the file normally, creating a file object

create an instance of a CSV reader, used
to iterate through the file just opened

— you provide the file object as an argument to
the constructor

iterating with the reader object yields a row
as a list of strings

"The Practice of Computing Using Python, 3 Edition", 34
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Code Listing 14.2 (and
output)

"The Practice of Computing Using Python, 3 Edition", 35
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




import csv
workbook file

workbook reader

open (' Workbookl.csv','r')
csv.reader (workbook file)

for row in workbook reader:
print (row)

workbook file

>>>

['Name', 'Examl',
['Bill', '75.00',
['Fred', '50.00',
['"Irving', '0.00',
['Monty', '100.00',
[]

['Average', '', '',
>>>

.close()
'"Exam2', 'Final Exam', 'Overall Grade']
'700.00', '50.00', '75.00']
'50.00', '50.00', '50.00']
'0.00', '0.00', '0.00']
'1700.00', '100.00', '100.00']
v, '56.25'"]

"The Practice of Computing Using Python, 3 Edition", 36
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Considerations

 universal new line i1s working by default
— needed for this worksheet

* a blank line in the CSV shows up as an
empty list

* an empty column shows up as an empty
string In the list

"The Practice of Computing Using Python, 3 Edition", 37
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



CSV Writer

much the same, except

* the opened file must be write-enabled

* the method Is writerow, and it takes a
list of strings to be written as a row

"The Practice of Computing Using Python, 3 Edition", 38
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Code Listing 14.3

this code listing Is a good example of
reading, modifying and then writing out a
CSV file that could be read by a
spreadsheet

It iInvolves lots of slicing (and has
comments) so it Is a good exercise

"The Practice of Computing Using Python, 3 Edition", 39
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



The os Module

"The Practice of Computing Using Python, 3 Edition", 40
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




What Is the os Module?

* the os module in Python is an interface

between the operating system and the
Python language

 as such, it has many sub-functionalities
dealing with various aspects

« we will look mostly at the file-related stuff

"The Practice of Computing Using Python, 3 Edition", 41
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



What is a Directory/Folder?

* whether in Windows, Linux or on OS X, all
OS's maintain a directory structure

 a directory Is a container of files or other
directories

 these directories are arranged In a
hierarchy or tree

— remember hierarchy from Chapter 12

"The Practice of Computing Using Python, 3 Edition", 42
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Computer Science Tree

* It has a root node, with branch nodes,
ends in leaf nodes

* the directory structure Is a hierarchy (tree)

Directory tree with path /punch/python/ex1.py, marked with arrows.

"The Practice of Computing Using Python, 3 Edition", 43
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Directory Tree

* directories can be organized in a
hierarchy, with the root directory and
subsequent branch and leaf directories

* each directory can hold files or other
directories

» allows for sub and super directories
— just like In subclass/superclass in Chapter 12

"The Practice of Computing Using Python, 3 Edition", 44
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



File Path

« a path to a file is a path through the
hierarchy to the node that contains a file

/bill/python/code/myCode.py

— path from the root node /, to the bill
directory, to the python directory, to the
code directory where the file, myCode . py,
resides

"The Practice of Computing Using Python, 3 Edition", 45
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



The / In a Path

 think of / as an

operator, showing
something is a
directory

* follow the path

* the leaf Is either a
directory or file

"The Practice of Computing Using Python, 3 Edition", 46
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



A Path String

 a valid path string for Python Is a string
which indicates a valid path in the
directory structure

' /Users/bill/python/code.py"
IS a valid path string

"The Practice of Computing Using Python, 3 Edition", 47
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Different ‘Paths’ for Different
Operating Systems

« each OS has its own way of specifying a
path

— Windows: C:\bill\python\myFile.py
— linux: /Users/bill/python/myFile.py

* nicely, Python knows that and translates to
the appropriate OS

"The Practice of Computing Using Python, 3 Edition", 48
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Two Special Directory Names

 the directory name . Is shortcut for the
name of the current directory you are in as
you traverse the directory tree

 the directory name .. Is a shortcut for the

name of the parent directory of the current
directory you are In

"The Practice of Computing Using Python, 3 Edition", 49
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Some os Commands

e os.getcwd()

— returns the full path of the current working
directory

* os.chdir(path str)

— changes the current directory to the path
provided

* os.listdir (path str)

— returns a list of the files and directories in the
path (including .)

"The Practice of Computing Using Python, 3 Edition", 50
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



>>> import os # load the os package

>>> os.chdir (" /punch/python") # change to the example starting point
>>> os.getcwd () # check that we are there

' /punch/python'

>>> os.listdir(".") # list contents of current directory, indicated by
['exl.py', 'ex2.py', 'one.txt']

>>> dir_list = os.listdir(".m) # we can give that list a name
>>> dir list

['exl.py', 'ex2.py', 'one.txt']

>>> os.listdir (" /punch") # list the contents at some path
['Docs', 'python']

rn n

"The Practice of Computing Using Python, 3 Edition", 5 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




More os Commands

os.rename (source path str,
dest path str)

— renames a file or directory
os.mkdir (path str)

— makes a new directory, e.g.,

os.mkdir ('/Users/bill/python/new') creates
the directory new under the directory python

os.remove (path str)
— removes the file

os.rmdir (path str)

— removes the directory (directory must be empty)

"The Practice of Computing Using Python, 3 Edition", 52
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




The walk Function

* os.walk (path str)
— starts at the directory in path_str

— yields three values:
- dir name, name of the current directory
-dir list, list of subdirectories in the directory
« files, list of files in the directory

— If you Iterate through, walk will visit every
directory in the tree
« default is top down

"The Practice of Computing Using Python, 3 Edition", 53
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



walk Example

>>> os.getcwd () # check our starting point

' /punch'

>>> for dir_name, dirs, files im os.walk("."): # "walk” in the current directory
print (dir_name, dirs, files)

['Docs', 'python'l [1 # current directory, list of 2 subdirectories, no files
./Docs [] ['three.txt', 'two.txt'] # Does directory, no subdirectories, 3 files
./python [] ['exl.py', 'ex2.py', 'one.txt'l # directory, no subdirectories, 3 files
>>>

"The Practice of Computing Using Python, 3 Edition", 54
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




os.path Module

"The Practice of Computing Using Python, 3 Edition", 55
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




os.path Module

 allows you to gather some info on a path's
existence

* os.path.isfile(path str)

— IS this a path to an existing file? (T/F)
* os.path.isdir(path str)

— IS this a path to an existing directory (T/F)
* os.path.exists (path str)

— does the path (either as a file or directory)
exist? (T/F)

"The Practice of Computing Using Python, 3 Edition", 56
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



os.path Names

assume p = '/Users/bill/python/myFile.py’
 os.path.basename (p)
— returns 'myFile.py'
os.path.dirname (p)
— returns ' /Users/bill/python'’
os.path.split(p)
— returns ('/Users/bill/python', 'myFile.py"')
os.path.splitext (p)
— returns ('/Users/bill/python/myFile’','.py"')
os.path.join(os.path.split(p) [0], 'other.py')
— returns ' /Users/bill/python/other.py’

"The Practice of Computing Using Python, 3 Edition", 57
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Code Listing 14.4

"The Practice of Computing Using Python, 3 Edition", 58
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Utility to Find Strings in Files

* the main point of this function is to look
through all the files in a directory structure

and see If a particular string exists in any
of those files

 useful for mining a set of files
* |ots of comments so you can follow

"The Practice of Computing Using Python, 3 Edition", 59
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



def check (search str,count,files found list,dirs found list):

for dirname,dir list,file list in os.walk("."): # walk the subtree
for £ in file list:
if os.path.splitext(f) [1] == ".txt": # if it is a text file
count = count + 1 # add to count of files examined
a_file = open(os.path.join(dirname,f),'r') # open text f?le
file_str = a_file.read() # read whole file into string
if search_str in file_ str: # is search _str in file?

filename = os.path.join(dirname, f) # éf'so, create pdth
for file
files_found_list.append(filename) # and add to file list
if dirname not in dirs found list: # if directory is not
dirs_found_list.append (dirname) # and directory list
a_file.close()
return count

"The Practice of Computing Using Python, 3 Edition", 60
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




More Exceptions

"The Practice of Computing Using Python, 3 Edition", 6 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




What We Already Know

try/except suite to catch errors
try:
suite to watch

except ParticularError:

error suilte

"The Practice of Computing Using Python, 3 Edition", 62
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



More of What We Know

« try Suite contains code that we want to
watch

— If an error occurs, the try suite stops and
looks for an except suite that can handle the

error

« except suite has a particular error it can

handle and a suite of code for handling
that error

"The Practice of Computing Using Python, 3 Edition", 63
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Error Flow

1. Error occurs here.

Try:
statement
statement
statement

except PythonException1: 3. Execute the exception block.
statement /
statement

except PythonException2: 4. Skip any more exception blocks.
statement
statement

—

statement

) 2. Check for correct type of exception.

5. Continue after try-except block.

FIGURE 14.5 Exception flow.

"The Practice of Computing Using Python, 3 Edition", 64
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Code Listing 14.5

"The Practice of Computing Using Python, 3 Edition", 65
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




1 Ery:

2 print ("Entering the try suite")

3 dividend = float(input ("Provide a dividend to divide:"))
4 divisor = float(input ("Provide a divisor to divide by:"))
5 result = dividend/divisor

6 print ("{:2.2f} divided by {:2.2f} yields {:2.2f}".\

7 format (dividend, divisor, result))

s except ZeroDivisionError:

9 print ("Divide by 0 error")

10 except ValueError:
1 print ("Value error, could not convert to a float")

13 print ("Continuing on with the rest of the program")

>>>

Entering the try suite

Provide a dividend to divide:10

Provide a divisor to divide by:2

10.00 divided by 2.00 yields 5.00
Continuing on with the rest of the program
Sl L =R S AR e e e e R
>>>

Entering the try suite

Provide a dividend to divide:10

Provide a divisor to divide by:a

Value error, could not convert to a float
Continuing on with the rest of the program

"The Practice of Computing Using Python, 3 Edition", 66
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




>>>

Entering the try suite

Provide a dividend to divide:10

Provide a divisor to divide by:0

Divide by 0 error

Continuing on with the rest of the program

SEs oo e RIBERNAIRIY oomase e e e e e e e e
>>>

Entering the try suite

Provide a dividend to divide:

Traceback (most recent call last):
File "/Users/bill/book/v3.5/chapterExceptions/divide.py", line 3, in <module>
dividend = float(input ("Provide a dividend to divide:"))
KeyboardInterrupt
>>>

"The Practice of Computing Using Python, 3 Edition", 67
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Check for Specific Exceptions

* you don’t have to check for an exception
type

—you can just have an exception without a
particular error and it will catch anything

— not a good idea: how can you fix (or recover
from) an error if you don’t know the kind of
exception?

 |label your exceptions, all that you expect!

"The Practice of Computing Using Python, 3 Edition", 68
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Exception Names

* In Python, there Is a set of exceptions that
are pre-labeled

* to find the exception for a case you are
Interested It, try to produce the error in the
Interpreter and see what name comes up

— the interpreter tells you what the exception is
for that case

"The Practice of Computing Using Python, 3 Edition", 69
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



BaseException

+-- SystemExit

+-- KeyboardInterrupt

+-- GeneratorExit

+-- Exception
+-— StopIteration
+—— StopAsynclteration
+-- ArithmeticError

| +-- FloatingPointError
| +-- OverflowError
| +-- EeroDivisionError

+== AssertionError

+-- AttributeError

+—— BufferError

+—-— EQOFError

+—— ImportError

+--= LookupError

| +-- IndexError

| +-- KeyError

+—- MemoryError

+--— NameError

| +-- UnboundLocalError
+—— OSError

| +-- BlockingIOError

| +-- ChildProcessError

| +-- ConnectionError

| | +-- BrokenPipeError

| | +-- ConnectionfbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError

| +-- FileExistsError

| +-- FileNotFoundError

| +-- InterruptedError

| +-= IsADirectoryError

| +-- NotADirectoryError

| +-- PermissionError

| +-- ProcessLookupError

| +=-= TimeoutError

from Python docs webpage

+-- ReferenceError
+-— RuntimeError
| +-— NotImplementedError
| +-—— RecursionError
+== SyntaxError
| +-- IndentationError
| +-- TabError
+-— SystemError
+-—~ TypeError
+== ValueError
| +-— UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-= Warning
+-— DeprecationWarning
+-- PendingDeprecationWarning
+—— RuntimeWarning
+-- SyntaxWarning
+-— UserWarning

+-- FutureWarning
+-- ImportWarning
+—— UnicodeWarning
+-- BytesWarning
+-— ResourceWarning

"The Practice of Computing Using Python, 3 Edition", 70
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




error
names;
CAPS

matter!

Examples

In [1]: 1/00ut [1]:

Traceback (most recent call last): File
"<pyshell#9>", line 1, in <module> 1/0

ZeroDivisionError: integer division or
modulo by zero

In [2]: open("junk")

Out [2]: Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file
or directory: 'Jjunk'

"The Practice of Computing Using Python, 3 Edition", 7 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Philosophy of Exception
Handling

"The Practice of Computing Using Python, 3 Edition", 72
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Dealing with Problems

two ways to deal with exceptions
 LBYL: Look Before you Leap

 EAFP: Easier to Ask Forgiveness than
Permission (famous quote by Grace
Hopper)

"The Practice of Computing Using Python, 3 Edition", 73
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Look Before You Leap

* pbefore we execute a statement, we check
all aspects to make sure it executes
correctly
— If it requires a string, check that
— If It requires a dictionary key, check that

* tends to make code messy

— the heart of the code (what you want it to do)
may be hidden by all the checking

"The Practice of Computing Using Python, 3 Edition", 74
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Easier to Ask Forgiveness than
Permission

* run any statement you want, no checking
required
— however, be ready to “clean up any messes”
by catching errors that occur

—the try suite code reflects what you want to
do and the except code what you want to do

on error
— cleaner separation!

"The Practice of Computing Using Python, 3 Edition", 75
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Python Likes EAFP

* some Python programmers support the
EAFP approach

— run the code, let the except suites deal with
the errors

— don’t check first

"The Practice of Computing Using Python, 3 Edition", 76
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Code Listing 14-6

"The Practice of Computing Using Python, 3 Edition", 77
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




# check whether int conversion will raise an error, two examples.

# Python Idioms, http://jaynes.colorado.edu/Pythonldioms. html!

#LBYL, test for the problematic conditions
def test_lbyl (a_str):
if not isinstance(a_str, str) or mot a_str.isdigit:
return None
elif len(a_str) > 10: #too many digits for int conversion
return None
else:
return int(a_str)

#EAFP, just try it, clean up any mess with handlers
def test_eafp(a_str):
try:
return int(a_str)
except (TypeError, ValueError, OverflowError): #int conversion failed
return None

"The Practice of Computing Using Python, 3 Edition", 78
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Extensions to the Basic
Exception Model

"The Practice of Computing Using Python, 3 Edition", 79
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




finally Suite, Version 2

* you can add a £finally suite at the end
of the try/except group

* the £inally suite Is run as you exit the
try/except suite, no matter whether an
error occurred or not
— even if an exception raised in the try suite

was not handled!

* glves you an opportunity to clean up as
Py you exit the try/except group

"The Practice of Computing Using Python, 3 Edition", 80
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



finally and with

« finally Is related to a with statement
— creates a context (the try suite)

— has an exit, namely execute the £inally
suite

"The Practice of Computing Using Python, 3 Edition", 8 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



else,Version 3

* one way to think about things Is to think of
the try as a kind of condition (an

exception condition) and the except as
conditional clauses

* If an exception occurs, then you match the
exception
* the else clause covers the non-exception

condition

— It runs when the try suite does not encounter
an error

"The Practice of Computing Using Python, 3 Edition", 82
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



The Entire try

try:

code to try
except PythonErrorl:

exception code
except PythonError2:

exception code
except:

default except code
else:

non exception case
finally:

clean up code

"The Practice of Computing Using Python, 3 Edition", 83
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Code Listing 14-7

"The Practice of Computing Using Python, 3 Edition", 84
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




# all aspects of exceptions

def process_file(data_file):
"""Print each line of a file with its line number.
count = 1
for line in data file:
print('Line ' + str(count) + ': ' + line.strip())
count = count + 1

e

while True: # loop forever: unmtil "break" is encountered
filename = input('Input a file to open: ')
try:
data_file = open(filename)
except IOError: # we get here if file open failed
print ('Bad file name; try again')
else:

# no exception so let's process the file
print (' Processing file',filename)
process_file(data_file)

break # exit "while" loop (but do "finally" block first)
finally: # we get here whether there was an exception or not
try:

data file.close()
except NameError:
print ('Going around again')

print ('Line after the try-except group')

"The Practice of Computing Using Python, 3 Edition", 85
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Creating and Raising Your
Own Exceptions

"The Practice of Computing Using Python, 3 Edition", 86
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




Invoking an Exception with raise

* you can choose to invoke the exception
system anytime you like with the raise

command
raise MyException

* you can check for odd conditions, raise
them as an error, then catch them

» they must be part of the existing exception
hierarchy in Python

"The Practice of Computing Using Python, 3 Edition", 87
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Non-Local Catch

* Interestingly, the except suite does not
have to be right next to the try suite

* In fact, the except that catches a try
error can be in another function

* Python maintains a chain of function
Invocations
— If an error occurs in a function and it cannot

catch it, it looks to the function that called it to
catch it

"The Practice of Computing Using Python, 3 Edition", 88
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Make Your Own Exception

* YOU can make your own exception

* exceptions are classes, so you can make
a new exception by making a new
subclass

class MyException (IOError):

pass

* when you make a new class, you can add
your own exceptions

"The Practice of Computing Using Python, 3 Edition", 89
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Code Listing 14.9
password manager

"The Practice of Computing Using Python, 3 Edition", 90
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




10
11
12
13
14
15
16
17
18
19
20

21

23
24

25

import string

# define our own exceptions
class NameException (Exception) :
""" For malformed names "'
pass
class PasswordException (Exception) :
""" For bad password '’
pass
class UserException (Exception) :
""" Raised for existing or missing user
pass

def check _pass(pass_str, target_str):
"""Return True, if password contains characters from target.
for char in pass_str:
if char in target_str:
return True
return False

i

class PassManager (object) :
"""A class to manage a dictionary of passwords with error checking.
def __init__ (self, init_dict=None) :
if init_dict==None:
self.pass_dict={}

i

"The Practice of Computing Using Python, 3 Edition", 9 1
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




26
27

28

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

def

def

def

else:
self.pass _dict = init dict.copy ()

dump_passwords (self) :
return self.pass_dict.copy ()

add_user(self,user) :
"""Add good wuser name and strong password to password dictionary.
if not isinstance (user, str) or not user.isalnum() :
raise NameException
if user in self.pass_dict:
raise UserException
pass_str = input ('New password:')
# strong password must have digits, uppercase and punctuation
if not (check_pass(pass_str, string.digits) and\
check_pass(pass_str, string.ascii_uppercase) and\
check_pass(pass_str, string.punctuation)) :
raise PasswordException

nrrr

validate (self,user) :

"""Return True, if valid wuser and password.

if not isinstance (user, str) or not user.isalnum() :
raise NameException

if user not in self.pass_dict:
raise UserException

password = input ('Passwd:')

return self.pass_dict [user]==password

i

"The Practice of Computing Using Python, 3 Edition", 92
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.




