
chapter 14

Files and Exceptions II

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

2

What We Already Know

• files are bytes on disk

• two types of files: text and binary (we are

working with text)

• open creates a connection between the

disk contents and the program

• different modes of opening a file: 'r', 'w', 'a'

• files might have different encodings

(default is utf_8)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

3

More of What We Know

• all access, reading or writing, to a text file

is by the use of strings

• iteration via a for loop gathers info from a

file opened for reading one line at a time

• we write to a file opened for reading using
the print function with an argument

file=

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

4

Code Listing 14.1

Review

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

5

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6

Results: Searching for "This"

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

7

More Ways to Read a File

• my_file.read()

– reads the entire contents of the file as a string

and returns it

– optional argument integer to limit read to N bytes

 my_file.read(N)

• my_file.readline()

– returns the next line as a string

• my_file.readlines() # note plural

– returns a single list of all the lines from the file

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

8

Example File

• we'll work with a file called temp.txt

which has the following file contents

 First Line

 Second Line

 Third Line

 Fourth Line

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

9

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

10

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

11

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

12

More Ways to Write a File

• once opened, you can write to a file (if the

mode is appropriate)

 my_file.write(s)

 which writes the string s to the file

 my_file.writelines(lst)

which writes a list of strings (one at a

time) to the file

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

13

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

14

Universal New Line

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

15

Different OS's, Different Format

• each operating system (Windows, OS X,

Linux) developed certain standards for

representing text

• in particular, they chose different ways to

represent the end of a file, the end of a

line, etc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

16

Universal New Line

• to get around this, Python provides by

default a special file option to deal with

variations of OS text encoding called

universal new line

• you can override this with an option to
open called newline=

– look at the docs for what this entails

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

17

Working with a File

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

18

Current File Position

• every file maintains a current file

position

– it is the current position in the file, and

indicates what the file will read next

– set by the mode table above

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

19

File Object Buffer

• when the disk file is opened, the contents

of the file are copied into the buffer of the

file object

• think of the file object as a very big list,

where every index is one of the pieces of

information of the file

• the current position is the present index in

that list

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

20

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

21

The tell() Method

• the tell()method tells the current file

position

• the positions are in bytes (think characters

for UTF-8) from the beginning of the file

• example

 my_file.tell() => 42

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

22

The seek() Method

• the seek()method updates the current file

position to a new file index (in bytes offset

from the beginning of the file)

 fd.seek(0) # to beginning of file

 fd.seek(100) # 100 bytes from beg

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

23

Counting Bytes is a Pain

• counting bytes is a pain

• seek has an optional argument set

 0: count from the beginning (default)

 1: count for the current file position

 2: count from the end (backwards)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

24

Every Read Moves Current

Position Forward

• every read/readline/readlines

moves the current position forward

• when you hit the end, every read will just
yield '' (empty string), since you are at

the end

– no indication of end-of-file this way!

• you need to seek to the beginning to start
again (or close and open; seek is easier)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

25

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

26

with Statement

open and close occur in pairs (or should),

so Python provides a shortcut, the with

statement

• creates a context that includes an exit

which is invoked automatically

• for files, the exit is to close the file

 with expression as variable:

 suite

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

27

with Statement

• file is closed automatically when the suite

ends

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

28

read(size=1)

• you can use the read()method to read

just one byte at a time

• in combination with seek, move around

the file and “look for things”

• once current is set, you can begin reading

again

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

29

More on CSV Files

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

30

Spreadsheets

• the spreadsheet is a very popular, and

powerful, application for manipulating data

• its popularity means there are many

companies that provide their own version

of the spreadsheet

• it would be nice if those different versions

could share their data

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

31

CSV and Basic Sharing

• a basic approach to share data is the

comma separated value (CSV) format

– it is a text format, accessible to all apps

– each line (even if blank) is a row

– in each row, each value is separated from the

others by a comma (even if it is blank)

– cannot capture complex things like a formula

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

32

Spread Sheet and Corresponding CSV File

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

33

Even CSV Isn't Universal

• as simple as that sounds, even CSV

format is not completely universal

– different apps have small variations

• Python provides a module to deal with

these variations called the CSV module

• this module allows you to read

spreadsheet info into your program

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

34

CSV Reader

• import the CSV module

• open the file normally, creating a file object

• create an instance of a CSV reader, used

to iterate through the file just opened

– you provide the file object as an argument to

the constructor

• iterating with the reader object yields a row

as a list of strings

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

35

Code Listing 14.2 (and

output)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

36

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

37

Considerations

• universal new line is working by default

– needed for this worksheet

• a blank line in the CSV shows up as an

empty list

• an empty column shows up as an empty

string in the list

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

38

CSV Writer

much the same, except

• the opened file must be write-enabled

• the method is writerow, and it takes a

list of strings to be written as a row

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

39

Code Listing 14.3

• this code listing is a good example of

reading, modifying and then writing out a

CSV file that could be read by a

spreadsheet

• it involves lots of slicing (and has

comments) so it is a good exercise

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

40

The os Module

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

41

What is the os Module?

• the os module in Python is an interface

between the operating system and the

Python language

• as such, it has many sub-functionalities

dealing with various aspects

• we will look mostly at the file-related stuff

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

42

What is a Directory/Folder?

• whether in Windows, Linux or on OS X, all

OS's maintain a directory structure

• a directory is a container of files or other

directories

• these directories are arranged in a

hierarchy or tree

– remember hierarchy from Chapter 12

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

43

Computer Science Tree

• it has a root node, with branch nodes,

ends in leaf nodes

• the directory structure is a hierarchy (tree)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

44

Directory Tree

• directories can be organized in a

hierarchy, with the root directory and

subsequent branch and leaf directories

• each directory can hold files or other

directories

• allows for sub and super directories

– just like in subclass/superclass in Chapter 12

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

45

 File Path

• a path to a file is a path through the

hierarchy to the node that contains a file

 /bill/python/code/myCode.py

– path from the root node /, to the bill

directory, to the python directory, to the

code directory where the file, myCode.py,

resides

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

46

The / in a Path

• think of / as an

operator, showing

something is a

directory

• follow the path

• the leaf is either a

directory or file

/bill /fred

/

/python

/code

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

47

A Path String

• a valid path string for Python is a string

which indicates a valid path in the

directory structure

 '/Users/bill/python/code.py'

 is a valid path string

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

48

Different ‘Paths’ for Different

Operating Systems

• each OS has its own way of specifying a

path

– Windows: C:\bill\python\myFile.py

– linux: /Users/bill/python/myFile.py

• nicely, Python knows that and translates to

the appropriate OS

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

49

Two Special Directory Names

• the directory name . is shortcut for the

name of the current directory you are in as

you traverse the directory tree

• the directory name .. is a shortcut for the

name of the parent directory of the current

directory you are in

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

50

Some os Commands

• os.getcwd()

– returns the full path of the current working

directory

• os.chdir(path_str)

– changes the current directory to the path

provided

• os.listdir(path_str)

– returns a list of the files and directories in the
path (including .)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

51

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

52

More os Commands
• os.rename(source_path_str,

 dest_path_str)

– renames a file or directory

• os.mkdir(path_str)

– makes a new directory, e.g.,

os.mkdir('/Users/bill/python/new') creates

the directory new under the directory python

• os.remove(path_str)

– removes the file

• os.rmdir(path_str)

– removes the directory (directory must be empty)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

53

The walk Function

• os.walk(path_str)

– starts at the directory in path_str

– yields three values:

•dir_name, name of the current directory

•dir_list, list of subdirectories in the directory

•files, list of files in the directory

– if you iterate through, walk will visit every

directory in the tree

• default is top down

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

54

walk Example

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

55

os.path Module

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

56

os.path Module

• allows you to gather some info on a path's
existence

• os.path.isfile(path_str)

– is this a path to an existing file? (T/F)

• os.path.isdir(path_str)

– is this a path to an existing directory (T/F)

• os.path.exists(path_str)

– does the path (either as a file or directory)
exist? (T/F)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

57

os.path Names

assume p = '/Users/bill/python/myFile.py'

• os.path.basename(p)

– returns 'myFile.py'

• os.path.dirname(p)

– returns '/Users/bill/python'

• os.path.split(p)

– returns ('/Users/bill/python','myFile.py')

• os.path.splitext(p)

– returns ('/Users/bill/python/myFile','.py')

• os.path.join(os.path.split(p)[0],'other.py')

– returns '/Users/bill/python/other.py'

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

58

Code Listing 14.4

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

59

Utility to Find Strings in Files

• the main point of this function is to look

through all the files in a directory structure

and see if a particular string exists in any

of those files

• useful for mining a set of files

• lots of comments so you can follow

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

60

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

61

More Exceptions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

62

What We Already Know

try/except suite to catch errors

 try:

 suite to watch

 except ParticularError:

 error suite

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

63

More of What We Know

• try suite contains code that we want to

watch

– if an error occurs, the try suite stops and

looks for an except suite that can handle the

error

• except suite has a particular error it can

handle and a suite of code for handling

that error

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

64

Error Flow

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

65

Code Listing 14.5

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

66

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

67

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

68

Check for Specific Exceptions

• you don’t have to check for an exception

type

– you can just have an exception without a

particular error and it will catch anything

– not a good idea: how can you fix (or recover

from) an error if you don’t know the kind of

exception?

• label your exceptions, all that you expect!

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

69

Exception Names

• in Python, there is a set of exceptions that

are pre-labeled

• to find the exception for a case you are

interested it, try to produce the error in the

interpreter and see what name comes up

– the interpreter tells you what the exception is

for that case

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

70

from Python docs webpage

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

71

Examples

In [1]: 1/0Out [1]:

Traceback (most recent call last): File

"<pyshell#9>", line 1, in <module> 1/0

ZeroDivisionError: integer division or

modulo by zero

In [2]: open("junk")

Out [2]: Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file

or directory: 'junk'

error

names;

CAPS

matter!

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

72

Philosophy of Exception

Handling

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

73

Dealing with Problems

two ways to deal with exceptions

• LBYL: Look Before you Leap

• EAFP: Easier to Ask Forgiveness than

Permission (famous quote by Grace

Hopper)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

74

Look Before You Leap

• before we execute a statement, we check

all aspects to make sure it executes

correctly

– if it requires a string, check that

– if it requires a dictionary key, check that

• tends to make code messy

– the heart of the code (what you want it to do)

may be hidden by all the checking

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

75

Easier to Ask Forgiveness than

Permission

• run any statement you want, no checking

required

– however, be ready to “clean up any messes”

by catching errors that occur

– the try suite code reflects what you want to

do and the except code what you want to do

on error

– cleaner separation!

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

76

Python Likes EAFP

• some Python programmers support the

EAFP approach

– run the code, let the except suites deal with

the errors

– don’t check first

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

77

Code Listing 14-6

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

78

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

79

Extensions to the Basic

Exception Model

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

80

finally Suite, Version 2

• you can add a finally suite at the end

of the try/except group

• the finally suite is run as you exit the

try/except suite, no matter whether an

error occurred or not

– even if an exception raised in the try suite

was not handled!

• gives you an opportunity to clean up as
you exit the try/except group

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

81

finally and with

• finally is related to a with statement

– creates a context (the try suite)

– has an exit, namely execute the finally

suite

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

82

else,Version 3

• one way to think about things is to think of
the try as a kind of condition (an

exception condition) and the except as

conditional clauses

• if an exception occurs, then you match the

exception

• the else clause covers the non-exception

condition

– it runs when the try suite does not encounter

an error

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

83

The Entire try
try:

 code to try

except PythonError1:

 exception code

except PythonError2:

 exception code

except:

 default except code

else:

 non exception case

finally:

 clean up code

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

84

Code Listing 14-7

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

85

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

86

Creating and Raising Your

Own Exceptions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

87

Invoking an Exception with raise

• you can choose to invoke the exception
system anytime you like with the raise

command

 raise MyException

• you can check for odd conditions, raise

them as an error, then catch them

• they must be part of the existing exception

hierarchy in Python

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

88

Non-Local Catch

• interestingly, the except suite does not

have to be right next to the try suite

• in fact, the except that catches a try

error can be in another function

• Python maintains a chain of function

invocations

– if an error occurs in a function and it cannot

catch it, it looks to the function that called it to

catch it

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

89

Make Your Own Exception

• you can make your own exception

• exceptions are classes, so you can make

a new exception by making a new

subclass

 class MyException (IOError):

 pass

• when you make a new class, you can add

your own exceptions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

90

Code Listing 14.9

password manager

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

91

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

92

