
chapter 15

Recursion: Another Control

Mechanism

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

2

Recursive Function

• a recursive function is a function that calls

itself

• leads to some funny definitions

– def: recursion. see recursion

• when you first see it, it looks odd

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

3

It Doesn’t Do Anything!

• this is a common complaint when one first

sees a recursive function

– what exactly is it doing?

– it doesn’t seem to do anything!

• our goal is to understand what it means to

write a recursive function from a

programmer’s and computer’s view

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

4

Defining a Recursive Function

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

5

Divide and Conquer

• recursion is a natural outcome of a divide

and conquer approach to problem solving

• a recursive function defines how to break

a problem down (divide) and how to

reassemble (conquer) the sub-solutions

into an overall solution

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6

Base Case

• recursion is a process not unlike loop

iteration

– you must define how long (how many

iterations) recursion will proceed through until

it stops

• the base case defines this limit

• without the base case, recursion will

continue infinitely (just like an infinite loop)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

7

Simple Example

Lao-Tzu: “A journey of 1000 miles begins

with a single step.”

def journey (steps):

– the first step is easy (base case)

– the nth step is easy having complete the

previous n-1 steps (divide and conquer)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

8

Code Listing 15-1

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

9

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

10

Factorial

• factorial(4) = 4! = 4 * 3 * 2 * 1

• the result of the last step, multiply by 1, is

defined based on all the previous results

that have been calculated

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

11

Code Listing 15-2

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

12

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

13

Trace the Recursive Calls

4! = 4 * 3! start first function invocation

3! = 3 * 2! start second function invocation

2! = 2 * 1! start third function invocation

1! = 1 fourth invocation, base case

2! = 2 * 1 = 2 third invocation finishes

3! = 3 * 2 = 6 second invocation finishes

4! = 4 * 6 = 24 first invocation finishes

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

14

Fibonacci Sequence

• each Fibonacci number depends on the

two previous Fibonacci results in the

sequence

0 1 1 2 3 5 8 13 21 …

• the base values are

fibo(0) == 0

fibo(1) == 1

• in general,

 fibo (x) = fibo(x-1) + fibo(x-2)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

15

Code Listing 15-3

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

16

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

17

Trace

• fibo(4) = fibo(3) + fibo(2)

• fibo(3) = fibo(2) + fibo(1)

• fibo(2) = fibo(1) + fibo(0) = 2 # base case

• fibo(3) = 2 + fibo(1) = 3 # base case

• fibo(4) = 3 + 2 = 5

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

18

Reverse String

• we know Python has a very simple way to

reverse a string, but let’s see if we can

write a recursive function that reverses a

string without using slicing

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

19

Code Listing 15-4

Template for reversal

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

20

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

21

Base Case

• what string do we know how to trivially

reverse?

– a string with one character, when reversed,

gives back exactly the same string

• we use this as our base case

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

22

Code Listing 15-5

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

23

def reverser (aStr):

 if len(aStr) == 1: # base case

 return aStr

 # recursive step

 # divide into parts

 # conquer/reassemble

theStr = raw_input("Reverse what string: ")

result = reverser(theStr)

print ("Reverse of %s is %s\n" % (theStr,result))

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

24

Recursive Step

• we must base the recursive step on what

came before, plus the extra step we are

presently in

– thus, the reverse of a string is the reverse of

all but the first character of the string, which is

placed at the end

– we assume the rev function will reverse the

rest

 rev(s) = rev(s[1:]) + s[0]

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

25

Code Listing 15-6

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

26

def reverse (a_str):

 """Recursive function to reverse a string."""

 print("Got as an argument:",a_str)

 # base case

 if len(a_str) == 1:

 print("Base Case!")

 return a_str

 # recursive step

 else:

 new_str =reverse(a_str[1:]) + a_str[0]

 print("Reassembling {} and {} into {}".\

 format(a_str[1:],a_str[0],new_str))

the_str = input("What string: ")

print()

result_str = reverse(the_str)

print("The reverse of {} is {}".format(the_str,result_str))

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

27

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

28

How Does Python Keep Track?

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

29

The Stack

• a stack is a data structure, like a list or a

dictionary, but with a few different

characteristics

• a stack is a sequence

• a stack only allows access to one end of

its data, the top of the stack

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

30

Figure 15.1

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

31

Operations
• pop

– remove top of stack

– stack is one element smaller

• push(val)

– add val to the stack

– val is now the top

– stack is one element larger

• top

– reveals the top of the stack

– no modification to stack

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

32

Figure 15.2 The operation of a stack data structure

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

33

Stack of Function Calls

• Python maintains a stack of function calls

• if a function calls another function, or itself

recursively, the new function is pushed

onto the calling stack and the previous

function waits

• the top is always the active function

• when a pop occurs, the function below

becomes active

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

34

Code Listing 15-7

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

35

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

36

>>> factorial(4)

 Enter factorial n = 4

 Before recursive call f(3)

 Enter factorial n = 3

 Before recursive call f(2)

 Enter factorial n = 2

 Before recursive call f(1)

 Enter factorial n = 1

 Base case.

 After recursive call f(1) = 1

 After recursive call f(2) = 2

 After recursive call f(3) = 6

24

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

37

Figure 15.3 Call stack for factorial(4). Note the question marks.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

38

A Better Fibonacci

• the recursive function that we have written

previously is very wasteful
– it calls the function with the same argument

many times

– never "remembers" the previous result

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

39

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

40

Code Listin 15.8

Fibonacci with memory

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

41

def fibonacci(n):

 """Recursive fibonacci that remembers previous values"""

 if n not in fibo_dict:

 # recursive case, store in the dict

 fibo_dict[n] = fibonacci(n-1) + fibonacci(n-2)

 return fibo_dict[n]

global fibonacci dictionary.

fibo_dict = {}

enter the base cases

fibo_dict[0] = 1

fibo_dict[1] = 1

fibo_val = input("Calculate what Fibonacci value:")

print("Fibonnaci value of",fibo_val,"is",

 fibonacci(int(fibo_val)))

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

42

Recursive Figures

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

43

Fractal Objects

• you can use recursion to draw many real

world figures

• fractals are a class of drawing that has a

couple of interesting properties

– upon magnification, the “shape” of the figure

remains the same

– the resulting figure has a floating point

dimensionality value (2.35 D for example)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

44

Algorithm to Draw a Tree

1. draw an edge

2. turn left

3. draw edge and left branch # recurse

4. turn right

5. draw edge and right branch # recurse

6. turn left

7. backup

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

45

Code Listing 15-9

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

46

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

47

Recursion Notes

• note that length is reduced as we recurse

down (making for shorter branches)

• the numbers on the right of the following

picture show the order in which the

branches are drawn

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

48

Figure 15.5 Recursive tree; (a) Python-drawn (left); (b) order-of-drawing on right.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

49

Sierpinski Triangles

Little simpler than the tree:

1. draw edge

2. recurse

3. backward

4. turn 120 degrees

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

50

Code Listing 15.10

Sierpinski Triangles

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

51

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

52

Figure 15.6 Sierpinski triangle

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

53

Some Recursive Details

• recursive functions are easy to write and

lend themselves to divide and conquer

• they can be slow (all the pushing and

popping on the stack)

• can be converted from recursive to

iterative, but that can be hard depending

on the problem

