Chapter 2

Control

PEARSON

WILLIAM RICHARD

PUNCH « ENBODY

ALWAYS LEARNING

6/6/2022

Control: Quick Overview

“The Practice of Computing Using Python, 3" Edition", 2
Punch & Enbodz‘ COEI\ghl © 2017 Pearson Education, Inc.

Selection

“The Practice of Computing Using Python:, 3" Edition”, 3

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

&u"

Selection

selection is how programs make choices,
and it is the process of making choices
that provides a lot of the power of
computing

“The Practice of Computing Using Python, 3" Edition”, 4
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

S

Python statement

Python s(atement>
Python s(atemenQD
Python s(atementD

FIGURE 2.1 Sequential program flow.

“The Practice of Computing Using Python, 3¢ Edition",

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

Decision

if Boolean_expression:

False

Python statement)
Python statement)

True

Python slalamam>
Python s«atememD

Python statement Python statement

Python statement)

Python statement
Python statement

FIGURE 2.2 Decision making flow of control.

“The Practice of Computing Using Python’, 3" Edition",
Punch & Enbodz‘ CDEX \Ehl@ 2017 Pearson Education, Inc.

6/6/2022

less than

greater than

less than or equal to
greater than or equal to
equal to

not equal to

vV AV A
I

TABLE 2.1 Boolean Operators.
note that == is equality
= is assignment

“The Practice of Computing Using Python:, 3" Edition”, 7
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Python if statement

if boolean expression

suite

* evaluate the boolean (True or False)
* if True, execute all statements in the suite

5
Ry
“The Practice of Computing Using Python, 3" Edition", 8
Punch & Enbadz‘ CoEnghl © 2017 Pearson Education, Inc.

(o]

Warning about Indentation

elements of the suite must all be indented
the same number of spaces/tabs

Python only recognizes suites when they
are indented the same distance (standard
is 4 spaces)

be careful to get the indentation right to
get suites right

“The Practice of Computing Using Python:, 3" Edition", 9
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Python Selection, Round 2

if boolean expression:

suitel
else: the process is
suite2 « evaluate the boolean

* if True, run suitel
* if False, run suite2?

2,
. Y
“The Practice of Computing Using Python;,3" Edition’” 10

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

9 10
Safe Lead in Basketball
P20 FlmEimE = 48 « algorithm due to Bill James
>>> second_int = 20
>>> if firstfi(nt}: ;econdfinm . : under what conditions can you safely
print ("The first int is bigger!" . .
clse. & determine that a lead in a basketball game
print ("The second int is bigger!") is insurmountable?
The second int is bigger!
>>>
\“»a
"The Practice of Computing Using Python!, 3 Edition", 11 "The Practice of Computing Using Python?, 3 Edition 12
Punch & Enbndz, CcEﬂlghl © 2017 Pearson Education, Inc. Punch & Enbadz‘ CoEnghl © 2017 Pearson Education, Inc.
11 12

6/6/2022

Algorithm

« take the number of points one team is
ahead

 subtract three

* add ¥ point if team that is ahead has the
ball, subtract % point otherwise

square the result

if the result is greater than the number of
. seconds left, the lead is safe

“The Practice of Computing Using Python:, 3" Edition”, 13

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

Code Listing 2.3

“The Practice of Computing Using Python;,3 Edition", 14
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

14

First Cut

3. Add a half—point if the team that is ahead has the ball,
and subtract a half—point if the other team has the ball

has_ball_str = input("Does the lead team have the ball (Yes or No): ")

if has_ball_str == "Yes":
lead_calculation_float = lead_calculation_float + 0.5
else:
lead_calculation_float = lead_calculation_float - 0.5

problem: what if the lead is less than 0?

“The Practice of Computing Using Python:, 3" Edition”, 15

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 2.4

“The Practice of Computing Using Python;,3" Edition", 16
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

16

Second Cut

3. Add a half—point if the team that is ahead has the ball,
and subtract a half—point if the other team has the ball

has_ball_str = input("Does the lead team have the ball (Yes or No): ")

if has_ball_str == 'Yes':

lead_calculation_float = lead_calculation_float + 0.5
else:

lead_calculation_float = lead_calculation float - 0.5

(Numbers less than zero become zero)
if lead_calculation_float < 0:
lead_calculation_float = 0

N catch the lead less than 0

“The Practice of Computing Using Python, 3¢ Edition", 17

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

Code Listing 2.7

“The Practice of Computing Using Python’, 3" Edition", 18
Punch & Enbodz‘ CDEX \Ehl@ 2017 Pearson Education, Inc.

18

6/6/2022

points_str = input ("Enter the lead in points: ")
points_remaining_int = int(points_str)

lead_calculation float= float(points remaining_int - 3)

has_ball_str = input("Does the lead team have the ball (Yes or No): ")

if has_ball_str == 'Yes':
lead_calculation_float= lead_calculation_float + 0.5
else
lead_calculation_float= lead_calculation_float - 0.5

if lead_calculation_float< 0:
lead_calculation_float= 0

lead_calculation_float= lead_calculation_float** 2

seconds_remaining_int = int(input ("Enter the number of seconds remaining: "))

if lead calculation_float> seconds_remaining_int:
print ("Lead is safe.")

else:
print ("Lead is not safe.")

“The Practice of Computing Using Python:, 3" Edition”, 19
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

19

Repetition: Quick Overview

“The Practice of Computing Using Python, 3" Edition", 20

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

20

Repeating Statements

* besides selecting which statements to
execute, a fundamental need in a program
is repetition
— repeat a set of statements under some

conditions

» with both selection and repetition, we have
the two most necessary programming
statements

2

=
“The Practice of Computing Using Python:, 3" Edition”, 21
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

while and for Statements

* while statement

— repeats a set of statements while some
condition is True

— more general repetition construct
» for statement

— useful for iteration, moving through all the
elements of data structure, one at a time

“The Practice of Computing Using Python, 3" Edition”, 22
Punch & Ehbﬁdz‘ CoEﬂ\ghl © 2017 Pearson Education, Inc.

&

22

while Loop

« condition test at top (pretest)
— test the boolean before running

— test the boolean before each iteration of
the loop

while boolean expression:
suite

&
Y
“The Practice of Computing Using Python, 3¢ Edition", 23

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

— lDecns\on
while Boolean expression

True False

Python statement

Suite

Python statemem%

FIGURE 2.4 while loop. Python statement

—

Python statement)
Python statement)

“The Practice of Computing Using Python’, 3" Edition", 24
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Python statement

24

6/6/2022

while Loop Code Listing 2.8

 while loop will repeat the statements in the
suite while the boolean is True (or its
Python equivalent)

« if the Boolean expression never changes
during the course of the loop, the loop will
continue forever (infinite loop)

s
Y
“The Practice of Computing Using Python, 3¢ Ediition", 25 “The Practice of Computing Using Python, 3" Edition", 26
Punch & Enhodx, COEnlghl © 2017 Pearson Education, Inc. Punch & Enbﬂdz‘ COE!\ghl © 2017 Pearson Education, Inc.

25 26

General Approach to a while

 # simple while

+ outside the loop, initialize the boolean

5 o + somewhere inside the loop, perform some
o off i cadh e) e operation which changes the state of the

s x_int = 0 # initi

s # test loop—control variable a
s while x_int < 10:
print(x_int, end=' ') #

mimomEEon & diam vl el program, eventually leading to a False
e T . ‘ ‘ , boolean and exiting the loop
u print("Final value of x_int: ", x_int) # bigger than value printed in loop

* must have both!

s

Ry
“The Practice of Computing Using Python, 3¢ Ediition", 27 “The Practice of Computing Using Python, 3" Edition”, 28
Punch & Enbody, Copyright © 2017 Pearson Education, Inc Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

27 28

|
for Loop

Next element Done

+ one of Python's strength's is its rich set of NP -
built-in data structures)

« the for statement iterates through each Python statement
element of a collection (list, etc.) T -
’ 4 peration of a for loop. ython statement
L1

—

Python statement

for element in collection:

suite
Python statement
d
oy
Python statement
"The Practice of Computing Using Python?, 3 Edition", 29 “The Practice of Computing Using Python;’ 3 Edition", 30
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

29 30

6/6/2022

Perfect Number Example

“The Practice of Computing Using Python:, 3" Edition”, 31

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

31

Perfect Numbers

* numbers and their factors were mysterious to
the Greeks and early mathematicians

+ they were curious about the properties of
numbers as they held some significance

+ a perfect number is a number whose sum of
factors (excluding the number) equals the

number
« the first perfect number is 6: 1+2+3
i,
“The Practice of Computing Using Python, 3" Edition”, 32

Abundant and Deficient Numbers

» abundant numbers sum to more than the
number
—12: 1+2+3+4+6 =16

« deficient numbers sum to less than the

Perfect Number Algorithm
Design
» prompt for a number
for the number, determine all the factors
» sum the factors
compare the sum and the number and

number respond accordingly
-13:1
:Q ‘::Q
“The Practice of Computing Using Python?, 3 Edition”, 33 “The Practice of Computing Using Python?, 3" Edition”, 34
Punch & Enbody. Copyright © 2017 Pearson Education, Inc. Punch & Enbody. Copyright © 2017 Pearson Education, Inc.
33 34
Code Listing 2.10,2.11
.
Check Perfection
.. if numl.wex,int == sum_of_divisors_int:
SU m Divisors els:um (number_int, "is perfect")

“The Practice of Computing Using Python, 3¢ Edition", 35
Punch & Enbndz, CﬂEﬂl jht © 2017 Pearson Education, Inc.

35

print (number_int, "is not perfect")

Code Listing 2.11

divisor = 1
sum_of _divisors = 0
while divisor < number:
if number % divisor == 0: # divisor evenly divides theNum
sum_of _divisors = sum_of_divisors + divisor
divisor = divisor + 1

“The Practice of Computing Using Python’, 3" Edition", 36
Punch & Enbodz‘ CDEX \Ehl © 2017 Pearson Education, Inc.

36

6/6/2022

Improving the Perfect
Number Program

» work with a range of numbers
« for each number in the range of numbers:
— determine all the factors
—sum up the factors
— compare the sum and the number and
respond accordingly
* print a summary

“The Practice of Computing Using Python:, 3" Edition”, 37

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

Code Listing 2.13
Examine a range of

numbers

“The Practice of Computing Using Python;,3 Edition", 38
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

38

top_num_str = input("What is the upper number for the range:")
top_num = int(top_num_str)
number=2
while number <= top_num:
sum the divisors of number
classify the number based on its divisor sum
number += 1

“The Practice of Computing Using Python:, 3" Edition”, 39
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

39

Code Listing 2.15
Classify range of

numbers

“The Practice of Computing Using Python;,3" Edition", 40
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

40

Code Listing

ith respect to perfect,

/

undant o

a range of num

otherwise stated ,

iables are assumed to be of type int.

top_num_str = input ("What is the upper number for the range:")
top_num = int(top_num_str)

number=2

while number <= top_num:

m up the divisors
divisor = 1
sum_of _divisors = 0
while divisor < number:
if number % divisor == 0:
sum_of_divisors = sum_of divisors + divisor
divisor = divisor + 1
classify the number based on its divisor sum
if number == sum_of_divisors:
print (number, "is perfect")
if number < sum_of_divisors:
print (number, "is abundant")
if number > sum_of_divisors:
print (number, "is deficient")
number += 1

“The Practice of Computing Using Python, 3° Edition", 41

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

41

Control in Depth

“The Practice of Computing Using Python’, 3" Edition", 42
Punch & Enbodz‘ CDEX \Ehl@ 2017 Pearson Education, Inc.

42

6/6/2022

Booleans

“The Practice of Computing Using Python:, 3" Edition”, 43

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

43

Boolean Expressions

George Boole (mid-1800s)
» mathematics of logical expressions

» Boolean expressions (conditions) have a
value of True or False

conditions are the bases of choices in a
computer, and hence, are the bases of the
appearance of intelligence in them

b
. Y
“The Practice of Computing Using Python, 3" Edition”, 44

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

44

What is True and What is False

- True: any nonzero number or nonempty
object 1, 100, "hello", [a,b]

« False: a zero number or empty object 0,
R

* special values called True and False are
just substitutes for 1 and 0
—they print nicely (True or False)

» a special value, None, is less than

“The Practice of Computing Using Python:, 3" Edition”, 45

ﬁ“ everything and equal to nothing

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

45

Boolean Expression

* every boolean expression has the form:
expression booleanOperator expression

the result of evaluating the above is just

True or False

* remember what constitutes True or
False in Python!

2,
. Y
“The Practice of Computing Using Python;,3" Edition’” 46

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

46

Relational Operators

*3 > 2 = True

« relational operators have low preference
*5+3<3-2
*8 <1 =>False
«'1l' < 2= Error
« can only compare like types
eint('l') < 2 = True
« like types, regular compare

Y
.Y
“The Practice of Computing Using Python, 3¢ Edition", 47

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

47

What Does Equality Mean?

* two senses of equality

— two variables refer to different objects, each
object representing the same value
— two variables refer to the same object
« the id () function is used for this

3
=N
“The Practice of Computing Using Python, 3° Edition 48

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/6/2022

a_float=2.5
b_float=2.5
c_float =b_float

Objects

id() = 9933140
|
\® id() = 9933092
— >

FIGURE 2.6 What is equality?

Namespace

“The Practice of Computing Using Python:, 3" Edition”, 49

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

49

Equal vs. Same

« == compares values of two variable's
objects, do they represent the same value
is operator determines if two variables
are associated with the same value
» from the figure
a _float == b_float > True
a _float is b_float > False
b_float is c_float = True

b
Ry
“The Practice of Computing Using Python, 3" Edition", 50
Punch & Enbadz‘ CoEnghl © 2017 Pearson Education, Inc.

50

Chained Comparisons

* in Python, chained comparisons work just
like you would expect in a mathematical
expression
—given myInt has the value 5

0 <= myInt <= 5 2 True
0 < myInt <= 5 < 1 2 False

s
Y
“The Practice of Computing Using Python:, 3" Edition”, 51

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Pitfall

« floating point arithmetic is approximate!

>>> u = 11111113

>>> V -11111111

>>> w = 7.51111111

>>> (U + V) +w

9.51111111

>>> u + (Vv + w)

9.511111110448837

>>> (U + V) + W ==1UuU+ (V + w)
False
s
&Y
“The Practice of Computing Using Python?, 3" Edition". 52
Punch & E”UUUZ‘ CoEnghl © 2017 Pearson Education, Inc.

52

Compare Using “Close Enough"

« establish a level of "close enough" for

equality

>>> u = 11111113
>>> v = -11111111
>>> w = 7.51111111
>>> X = (U + V) +Ww
>>> y =u + (Vv + w)
>>> X ==Y

False

>>> abs(x - y) < 0.0000001 # abs is absolute value

“The Practice of Computing Using Python, 3¢ Edition", 53

5 True
W"ﬁ

53

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

Compound Expressions

» Python allows bracketing of a value
between two Booleans, as in math

a_int =5
0 <= a_int <= 10 = True
*a_int >= 0 anda_int <= 10
» and, or, not are the three Boolean
operators in Python

s
oy
“The Practice of Computing Using Python, 3° Edition 54
Punch & Enbodz‘ COEXHEhI © 2017 Pearson Education, Inc.

54

6/6/2022

Truth Tables Truth Tables
p q notp jpandq |porq p q notp | pandg| porq
True | True True | True False
True False True False || False
False | True False | True True
False | False False | False || True
ﬁ&\m N
Punch & Erbocy, Canign © 2017 ’SZZF;e.i"Eii‘é‘Zﬂg‘n,S.n? W Punch & Enboy Coppiae 5%8%5&‘22,";;"51‘2‘25;",5.“?
55 56
Truth Tables Truth Tables
p q notp |[pandqg |porg p q notp pandg |porgq
True | True True True | True True
True | False False True | False True
False | True False False | True True
False | False False False | False False

“The Practice of Computing Using Python:, 3" Edition”, 57
Punch & Enbody, Copyright © 2017 Pearson Education Inc.

“The Practice of Computing Using Python;,3" Edition’” 58
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

58

Truth Tables

“The Practice of Computing Using Python, 3¢ Edition", 59
Punch & Enbndz, CﬂEﬂl ht © 2017 Pearson Education, Inc.

p q notp [pandg| porgq
True True False | True True
True False|| False | False True
False | True True | False True
False | False|| True | False False

Compound Evaluation
logically, 0 < a_int < 3 is actually
(0 < a_int) and (a_int < 3)

evaluate using a_int with a value of 5
(0< a_int) and (a_int < 3)

parentheses first: (True) and (False)

final value: False

note: parentheses are not necessary in

ﬁ% this case

“The Practice of Computing Using Python, 3° Edition 60
Punch & Enbodz‘ COExHEhI © 2017 Pearson Education, Inc.

60

10

6/6/2022

Precedence and Associativity

« relational operators have precedence and
associativity just like numerical operators

| Operator Description

| 0 | Parenthesis (grouping)

‘ > Exponentiation

‘ +X, -X ‘ Positive, Negative

| *1.% Multiplication, Division, Remainder
‘ +ym ‘ Addition, Subtraction

‘ <, <=, >, >=!=,== Comparisons

| not x | Boolean NOT

| and Boolean AND

| or | Boolean OR

TABLE 2.2 Precedence of Relational and Arithmetic Operators: Highest to Lowest
s

=
“The Practice of Computing Using Python:, 3" Edition”, 61
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

61

Boolean vs. Relational
Operators
« relational operations always return True
or False

» Boolean operators (and, or) are different
in that

— they can return values (that represent True or
False)

— they have short circuiting

“The Practice of Computing Using Python, 3" Edition", 62

3
=
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Remember!

*«0,'',[1 orother “empty” objects are
equivalent to False

 anything else is equivalent to True

3
=
“The Practice of Computing Using Python:, 3" Edition”, 63
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

63

» Google search uses booleans

* by default, all terms are and'ed together
* you can specify or (using OR)

* you can specify not (using -)

* example:

Ego Search on Google

'Punch' and ('Bill' or 'William')
and not 'gates'

“The Practice of Computing Using Python;,3" Edition’” 64

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

64

Adbranced Suarch Tis | b Gosgla

Resuits por page.
Language:

Fla typs:

‘Search witin 4 st or &

&8 D, usage sights, pusmec rangs, and mors

Adanced searen

Topic.spacitic saarch angines from Google:

FIGURE 2.7 The Google advanced search page.

“The Practice of Computing Using Python, 3¢ Edition", 65
Punch & Enbndz, CﬂEﬂl ht © 2017 Pearson Education, Inc.

65

More on Assignments

“The Practice of Computing Using Python’, 3" Edition", 66
Punch & Enbodz‘ COEXHEhI © 2017 Pearson Education, Inc.

66

11

6/6/2022

Remember Assignments?

e format: lhs = rhs

* behavior:
— expression on the rhs is evaluated producing
a value
— the value produced is placed in the location
indicated on the |hs

b
Y
“The Practice of Computing Using Python:, 3" Edition”, 67

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Multiple Assignments

a_int, b _int = 2, 3
first on right assigned to first on left, second
on right assigned to second on left

print(a_int, b_int) # prints 2 3

a_int, b_int =1, 2, 3 = Error
counts on |lhs and rhs must match

b
. Y
“The Practice of Computing Using Python, 3" Edition”, 68

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

68

Traditional Swap

e initial values: a_int = 2, b_int = 3

* behavior: swap values of X and Y
—note: a int = b_int

b_int = a_int doesn't work (why?)

— introduce extra variable, temp
temp = a int # save a_int value in temp
a_int = b _int # assign a_int value to b_int
b_int = temp # assign temp value to b_int

Swap Using Multiple Assignment

a_int, b _int = 2, 3
print(a_int, b_int) # prints 2 3

a_int, b _int = b_int, a_int

print(a_int, b_int) # prints 3 2

remember: evaluate all the values on the rhs

B ifirst, then assign to variables on the lhs
“The Practice of Computing Using Python?,3" Edition", 69 “The Practice of Computing Using Python?, 3" Edition", 70
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copynghl © 2017 Pearson Education, Inc.
69 70
Chaining for Assignment
unlike other operations which chain left to More Control: Selection
right, assignment chains right to left
a_int = b_int = 5
print(a_int, b_int) # prints 5 5
,"h
"The Practice of Computing Using Python!, 3 Edition", 71 "The Practice of Computing Using Python?, 3 Edition 72
Punch & Enbndx, CuEﬂlghl © 2017 Pearson Education, Inc. Punch & Enbadz‘ CoEnghl © 2017 Pearson Education, Inc.
71 72

12

6/6/2022

Compound Statements

« compound statements involve a set of
statements used as a group
* most compound statements have
— a header, ending with a : (colon)
— a suite of statements to be executed
«if, for, while are examples of
compound statements

3
=
“The Practice of Computing Using Python:, 3" Edition”, 73
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

General Format of Suites
optional expression

P ends all
keyword —»~ key expression : headers

statement

statement - -4— ‘suite’ of
statement

— statements

}

indentation under
the keyword

s

Ry
“The Practice of Computing Using Python, 3" Edition", 74
Punch & Eﬂbﬂdz‘ COE!\ghl © 2017 Pearson Education, Inc.

So Far, Two Forms of Selection

if boolean expression:

suite

if boolean expression:

suite
else:
suite
.
=Y
“The Practice of Computing Using Python?, 3" Edition”, 75
Punch & Enbody, Cogﬂlgm © 2017 Pearson Education, Inc.

75

Python Selection, Round 3

if boolean expressionl:
suitel

elif boolean expression2:
suite2

(as many elif's as you want)

else:
suite last
-
&Y
“The Practice of Computing Using Python, 3" Edition”, 76
Punch & Enbcdz‘ CoEz\gh(© 2017 Pearson Education, Inc.

if, elif, else: the Process

 evaluate Boolean expressions until
— the Boolean expression returns True
—none of the Boolean expressions return True
« if a boolean returns True, run the
corresponding suite; skip the rest of the i £
« if no boolean returns True, run the else
suite, the default suite

d
Y
“The Practice of Computing Using Python, 3¢ Edition", 77

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

Code Listing 2.16
using elif

“The Practice of Computing Using Python’, 3" Edition", 78
Punch & Enbodz‘ COEX \Ehl © 2017 Pearson Education, Inc.

78

6/6/2022

percent_float = float(input ("What is your percentage? "))

if 90 <= percent_float < 100:
print ("you received an A")
elif 80 <= percent_float < 90:
print ("you received a B")
elif 70 <= percent_float < 80:
print ("you received a C")
elif 60 <= percent_float < 70:
print ("you received a D")
else:
print ("oops, not good")

» what happens if elif statements are
replaced by if statements?

“The Practice of Computing Using Python:, 3" Edition”, 79

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

Code Listing 2.19
Updated Perfect

Number classification

“The Practice of Computing Using Python;,3 Edition", 80
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

79 80
classify the number based on its divisor sum .
2 e e L SO More Control: Repetition
print (number, "is perfect")
elif number < sum_of_divisors:
print (number, "is abundant")
else:
print (number, "is deficient")
number += 1
“The Practice of Computing Using Python?, 3 Edition”, 81 “The Practice of Computing Using Python?, 3 Edition”, 82
Punch & Enbody. Copyright © 2017 Pearson Education, Inc. Punch & Enbody. Copyright © 2017 Pearson Education, Inc.
81 82

Developing a while Loop

working with the loop control variable

* initialize the variable, typically outside of
the loop and before the loop begins

« the condition statement of the while loop
involves a boolean using the variable

» modify the value of the control variable
during the course of the loop

o

Y
“The Practice of Computing Using Python, 3¢ Edition", 83
Punch & Enbndz, CﬂEﬂl jht © 2017 Pearson Education, Inc.

Issues

loop never begins

« the control variable is not initialized
properly (or perhaps you don't always
want it to begin)

loop never ends

« the control variable is not modified during

the loop (or not modified in a way to make
the boolean come out False)

s
“The Practice of Computing Using Python’, 3" Edition", 84
Punch & Enbodz‘ COEX \Ehl © 2017 Pearson Education, Inc.

14

6/6/2022

while Loop, Round Two

 while loop, oddly, can have an associated
else suite

- else suite is executed when the loop
finishes under normal conditions
— basically the last thing the loop does as it

exits
3
=
“The Practice of Computing Using Python:, 3" Edition”, 85
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

while with else

while booleanExpression:
suite
suite
else:
suite
suite
rest of the program

N
e
“The Practice of Computing Using Python;,3 Edition", 86

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

86

—; lDecision

‘ while Boolean expression

False

Python statement)

Python statement

Python statement)

Python statement
FIGURE 2.9 while-else.

True

Python statement

Python statement %

Python statement

else suite

Suite

“The Practice of Computing Using Python:, 3" Edition”, 87

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

87

break Statement

* abreak statement in a loop, if executed,
exits the loop

« exits immediately, skipping whatever
remains of the loop as well as the else
statement (if it exists) of the loop

“The Practice of Computing Using Python;,3" Edition", 88
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

=
&

88

Code Listing 2.20
Loop, Hi Lo Game

“The Practice of Computing Using Python, 3¢ Edition", 89

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

89

w # get an initial guess
15 guess_str = input ("Guess a number: ")
6 guess = int(guess_str) # convert string to number

w # while guess is range, keep asking

v while 0 <= guess <= 100:

20 if guess > number:

2 print ("Guessed Too High.")

2 elif guess < number:

23 print ("Guessed Too Low.")

M else: # correct guess, exit with break
25 print ("You guessed it. The number was:",number)
26 break

7 # keep going, get the next guess

% guess_str = input("Guess a number: ")

2 guess = int(guess_str)

o else:

31 print ("You quit early, the number was:", number)

“The Practice of Computing Using Python’, 3" Edition", 90
Punch & Enbodz‘ CDEX \Ehl © 2017 Pearson Education, Inc.

90

6/6/2022

continue Statement

* a continue statement, if executed in a
loop, immediately jumps back to the top of
the loop and re-evaluates the conditional

— any remaining parts of the loop are skipped
for the one iteration when the continue was

executed
’
=Y
“The Practice of Computing Using Python?, 3" Edition", 91
Punch & Enhodx, COEnlghl © 2017 Pearson Education, Inc.

91

Code Listing 2.21
Part of the guessing

numbers program

“The Practice of Computing Using Python;,3 Edition", 92

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

92

initialize the input number and the sum
s number_str = input ("Number: ")
s the_sum = 0
10
u # Stop if a period (.) is entered.
w # remember, number_str is a string until we convert it
5 while number str != "." :
14 number = int(number_str)

15 if number % 2 == # number is not even (it is odd)
16 print ("Error, only even numbers please.")

17 number_str = input ("Number: ")

1 continue # if the number is not even, ignore it
19 the_sum += number

20 number_str = input ("Number: ")

2

» print ("The sum is:",the_sum)

“The Practice of Computing Using Python:, 3" Edition”, 93
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

93

N
e
“The Practice of Computing Using Python;,3" Edition", 94

Change in Control: break and
continue

 while loops are easiest read when the
conditions of exit are clear

+ excessive use of continue and break
within a loop suite make it more difficult to
decide when the loop will exit and what
parts of the suite will be executed each
loop

+ use them judiciously

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

94

while Overview

while testl:
statement list 1
if test2: break # exit loop now; skip else
if test3: continue # go to top of loop now
more statements

else:

statement list 2 # if we didn't hit a 'break’'

'break' or 'continue' lines can appear anywhere

o
Y
“The Practice of Computing Using Python, 3¢ Edition", 95

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

range and for Loop

“The Practice of Computing Using Python’, 3" Edition", 96
Punch & Enbodz‘ COEX \Ehl © 2017 Pearson Education, Inc.

96

16

6/6/2022

range Function Iterating through the Sequence

* the range function represents a sequence
of integers

* the range function takes 3 arguments
— the beginning of the range

for num in range(1,5):
print (num)
* range represents the sequence 1, 2, 3, 4

- assumed to be 0 if not provided » for loop assigns num to each of the
— the end of the range values in the sequence, one at a time, in
« but not inclusive (up to but not including the sequence

number) — required

— the step of the range . .
ﬁ“ - assumed to be 1 if not provided ﬂ% if only one arg provided, assumed to be

* prints each number (one number per line)

the end value

“The Practice of Computing Using Python, 3" Edition”, 98
Punch & Ehbadz‘ CoEnghl © 2017 Pearson Education, Inc.

“The Practice of Computing Using Python:, 3" Edition”, 97
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

97 98

range Generates on Demand

range generates its values on demand Hailstone Example

>>> range(l,10)

range(1l, 10)

>>> my_range=range(1l,10)
>>> type (my_range)
<class 'range'>

>>> len(my_range)

9
>>> for i in my range:
print (i, end=' ')
Y 1234567829
=) >>>
“The Practice of Computing Using Python?, 3" Edition”, 99 “The Practice of Computing Using Python?, 3¢ Edmunloo
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copynghl © 2017 Pearson Education, Inc.
99 100
Collatz Sequence Algorithm
« the Collatz sequence is a simple algorithm while the number does not equal one
applied to any positive integer « if the number is odd, multiply by 3 and add 1
* in general, by applying this algorithm to a « if the number is even, divide by 2

starting number, you generate a sequence
of other positive numbers, ending at 1

» unproven whether every number ends in 1
(though strong evidence exists)

Y b
=N oy
The Pracice of Computing Using Pyhon 3 Eion O L “The pracice o Computing Using Pytor, 34 Eciord- 02

Punch & Enbody, Copyright © 2017 Pearson Education Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

+ use the new number and reapply the
algorithm

17

6/6/2022

Even and Odd

use the remainder operator
*if num $ 2 == 0: # even
*if num % 2 == 1: # odd
*if num % 2:

“The Practice of Computing Using Python:, 3 Edmo»lo3
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

odd (why??)

Code Listing 2.25
Hailstone Sequence,

loop

“The Practice of Computing Using Python;, 3" Edmun:l_-04

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

104

\ # Generate a hailstone sequence

2 number_str = input ("Enter a positive integer:")
number = int(number_str)
count = 0

3
s
¢ print ("Starting with number:",number)
5
9

print ("Sequence is: ", end=' ')
> while number > 1: # stop when the sequence reaches 1
10
n if number%2: # number is odd
12 number = number*3 + 1
13 else: # number is even
14 number = number/2
15 print (number,",", end=' ') # add number to sequence
16
17 count +=1 # add to the count
18
1 else:
2 print () # blank line for nicer output

2 print ("Sequence is ",count," numbers long")

“The Practice of Computing Using Python?, 3 Edmorlos
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

105

&u"

Think before you program!

The Rules

A program is a human-readable essay on
problem solving that executes on a computer.
The best way to improve your programming
and problem solving skills is to practice!

A foolish consistency is the hobgoblin of little
minds

Test your code, often and thoroughly

“The Practice of Computing Using Python;,3"* Edmunlos
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

106

18

