Chapter 4
Working with Strings
PUNCH - ENBODY
PEARSON ALWAYS LEARNING
1

And Then There Is """ """

« triple quotes preserve both the vertical and
horizontal formatting of the string

+ allows you to type tables, paragraphs,
whatever and preserve the formatting

mmoan this is
a test
today" mn

iy
“The Practice of Computing Using Python, 31 Edition",
Punch & Enbody. Copyright © 2017 Pearson Education, Inc

w

3

String Representation

* every character is "mapped" (associated)
with an integer

» UTF-8, subset of Unicode, is such a
mapping

« the function oxd () takes a character and

returns its UTF-8 integer value

chr () takes an integer and returns the

UTF-8 character

“The Practice of Computing Using Python, 31 Edition",

w

5

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

6/6/2022

Sequence of Characters

+ we've talked about strings being a
sequence of characters.

 astring is indicated between ' ' or " "
+ the exact sequence of characters is

maintained
iy
"The Practice of Computing Using Python, 3% Edition”, 2
e N O L A o S LN
2
Non-printing Characters
If inserted directly, are preceded by a
backslash (the \ character)
* new line "\n'
* tab "\t'
EN
"The Practice of Computing Using Python, 3 Edition”, 4
Punch & Eﬂbodx‘ Coj Vi ht © 2017 Pearson Education, Inc.
4
Char Dec | Char Dec | Char Dec
sp |32 |e | 6a | | 96 SUbset Of
! 33 |a 65 | a 97
" |34 |B |66 |b |98 UTF-8
35 |c 67 |c 99
$ |36 |p |68 |a |100
% 37 | E 69 e 101 i
I A e B P e See Appendix F
© s moe s forthe full set
(|40 | |72 |n |104
) a |1 73 | i 105
* |az2 |g |78 |3 | 106
+ 43 | K 75 |k 107
|42 | |76 |1 | 108
- 45 | M 77 |m 109
. |46 |n |78 |n |110
/ 47 |0 79 |o 111
0 |48 | P |80 |p [112
1 49 |0 81 | q 113
o2 |so R |82 |r |114
2| 3 51 | s 83 | s 115
2 |s2 |» |8a |t | 116
“The Practice of Computing Using Python, 3™ Edition", 6
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. |
6

6/6/2022

Strings String Index
 can use single or double quotes
S = "spam" » because the elements of a string are a
s = 'spam' sequence, we can associate each element
« don't mix them with an index, a location in the sequence
my str = 'hi mom" = ERROR — positive values count up from the left,
+ inserting an apostrophe beginning with index 0
A = "knight's" # mix up the quotes — negative values count down from the right,
B = 'knight\'s' # escape single quote starting with -1
:l'a\ 15
The Practice of Computing Using Python, 31 Edition", 7 "The Practice of Computing Using Python, 3 Edition”" 8
Punch & Enhr)dz. Coy)znqm © 2017 Pearson Education, Inc. Punch & Enbﬂdx‘ CGEX”QN © 2017 Pearson Education, Inc.

~
o

Accessing an Element

cvrscos [o [1 [1 o] [W]o]r[1]a

a particular element of the string is accessed
by the index of the element surrounded by
-2 —1 square brackets []

index | 0 1 2 3 4 5 6 7 8 9 10

FIGURE 4.1 The index values for the string 'Hello World'. hello_str = 'Hello World'

print (hello_str[l]) => prints e
print (hello_str[-1]) => prints d
print (hello_str[11]) => ERROR

93,
=
The Practice of Computing Using Python, 3" Edition", 9 T "The Practice of Computing Using Python, 3 Edition” 10
Punch & Enbodx. Co)xngm © 2017 Pearson Education, Inc. Punch & Enhodz Co pyrig ht © 2017 Pearson Education, Inc.
9 10
Slicing: The Rules Half Open Range for Slices
+ slicing is the ability to select a subsequence of + slicing uses what is called a half-open
the overall sequence
- uses the syntax [start : finish], where: range
- start is the index of where we start the + the first index is included in the sequence
subsequence . . o
~ finish is the index of one after where we end the + the last index is one after what is included
subsequence
* if either start or £inish are not provided, it
defaults to the beginning of the sequence for
start and the end of the sequence for £inish
i'i\ =
“The Practice of Computing Using Python, 31 Edition", 11 “The Practice of Computing Using Python, 3" Edition", 12
Punch & Euhuuz. Coy l ht © 2017 Pearson Education, Inc. Punch & Eubudx Coj Vi ht © 2017 Pearson Education, Inc.
11 12

helloString[6:10]

characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d
index | 0O 1 2 383 4 5 6 7 8 9 10

f I

first last

FIGURE 4.2 Indexing subsequences with slicing.

The Practice of Computing Using Python, 31 Edition", 13

6/6/2022

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

13

helloString[6:]

characters H‘e‘|‘|‘°‘ ‘W‘o‘r‘l‘d

index | O 1 2 3 4 5 6 7 8 9 10

f i

first last

helloString[:5]

characters H‘e‘l‘l‘o‘ ‘W‘O‘r‘l‘d

index |O 1 2 3 4 5 6 7 8 9 10

f f

first last

FIGURE 4.3 Two default slice examples.

“The Practice of Computing Using Python, 31 Edition”. 14

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

helloString[-1]

Characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d

Index | 0O 1 2 3 4 5 6 7 8 9 10

-11-10 -9 -8 7 -6 -5 —4 -3 -2 —1

Last

FIGURE 4.4 Negative indices.

The Practice of Computing Using Python, 31 Edition", 15

14

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

15

helloString[3:-2]

Characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d
Index | 0O 1 2 3 4 5 6 7 8 9 10

f T

First Last

FIGURE 4.5 Another slice example.

“The Practice of Computing Using Python, 31 Edition”, 16

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Extended Slicing

« also takes three arguments
[start:finish:countBy]
+ defaults are
- start is beginning, £inish is end, countBy
is1
my str = 'hello world'
my str[0:11:2] = 'hlowrd'
— every other letter

16

iy
“The Practice of Computing Using Python, 31 Edition", 17
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

17

helloString[::2]

Characters | H ‘ e ‘ | ‘ | ‘ o] ‘ ‘W‘ o] ‘ r ‘ | ‘ d
o 1 2 3 4 5 6 7 8 9 10
N A A A A

FIGURE 4.6 Slicing with a step.

Index

“The Practice of Computing Using Python, 3 Edition”, 18

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

18

Some Python Idioms

* idioms are python “phrases” that are used for a
common task that might be less obvious to non-

python folk
* how to make a copy of a string:
my str = 'hi mom'

new_str = my str[:]

* how to reverse a string
my str = "madam I'm adam"
reverseStr = my str[::-1]

The Practice of Computing Using Python, 31 Edition", 19

4

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

19

6/6/2022

String Operations

“The Practice of Computing Using Python, 31 Edition”. 20

Sequences are lIterable

the for loop iterates through each element of
a sequence in order

« for a string, this means character by

character: »>>> for char in 'Hi mom':
print (char, type (char))

H <class 'str's>
i <class 'str's

<class 'str's>
m <class 'str's>
o <class 'str's>
<class 'str's
>>>

The Practice of Computing Using Python, 31 Edition", 21

4
=

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

21

Some Details

 both + and * on strings makes a new
string, does not modify the arguments
+ order of operation is important for
concatenation, irrelevant for repetition
* the types required are specific

— for concatenation you need two strings, for
repetition a string and an integer

“The Practice of Computing Using Python, 31 Edition", 23

' 4

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

23

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

20

Basic String Operations

s = 'spam'

« length operator len()
len(s) = 4

* +is concatenate
new_str = 'spam' + '-' + 'spam-'
print (new_str) — spam-spam-

* *is repeat, the number is how many times
new_str * 3 —='spam-spam-spam-spam-spam-
spam-"'

3
“The Practice of Computing Using Python, 31 Edition”, 22
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

22

What Does a + b Mean?

« what operation does the above represent?
it depends on the types!
— two strings, concatenation
— two integers addition

« the operator + is overloaded

— the operation + performs depends on the
types it is working on

Y
“The Practice of Computing Using Python, 3 Edition”, 24
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

The type Function

» you can check the type of the value
associated with a variable using type

my str = 'hello world'
type (my str) = <type 'str'>
my str = 245

type (my str) = <type 'int'>

The Practice of Computing Using Python, 31 Edition", 25
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

4

25

Comparisons within Sequence

* it makes sense to compare within a
sequence (lower case, upper case, digits).
-'a' < 'b' - True
-'A' < 'B' 2> True
-'1' < '9"’ > True

» can be weird outside of the sequence
-'a' < 'A"' - False
-'a' < '0' - False

iy
The Practice of Computing Using Python, 31 Edition", 27
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

27

Examples

e 'a' < 'b' - True
e 'aaab' < 'aaac'
—first difference is at the last char

- 'b'<'c' SO 'aaab' islessthan 'aaac'
True

e 'aa' < 'aaz'
— the first string is the same but shorter
—thus it is smaller: True

iy
“The Practice of Computing Using Python, 3 Edition”, 29
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

29

6/6/2022

String Comparisons, Single Char

» Python 3 uses the Unicode mapping for
characters.
— allows for representing non-English

characters

+ UTF-8, subset of Unicode, takes the
English letters, numbers and punctuation
marks and maps them to an integer

* single character comparisons are based

ﬁk}& on that number

“The Practice of Computing Using Python, 31 Edition”. 26
Punch & Enbﬂdz‘ Co Al ht © 2017 Pearson Education, Inc.

26

Comparing Whole Strings

« compare the first element of each string
—if they are equal, move on to the next
character in each
— if they are not equal, the relationship between
those two characters are the relationship
between the strings

— if one ends up being shorter (but equal), the
shorter is smaller

7o

3
“The Practice of Computing Using Python, 31 Edition”, 28
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

Membership Operations

» can check to see if a substring exists in
the string, the in operator
—returns True or False
my str = 'aabbccdd'
'a' in my str = True
'abb' in my str = True
'x' in my str = False

Y
“The Practice of Computing Using Python, 3 Edition”, 30
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Strings are Immutable

« strings are immutable, that is, you cannot
change one once you make it
—a_str = 'spam'
—a_str[l] = 'l' 2 ERROR

» however, you can use it to make another
string (copy it, slice it, etc.)
-new_str = a str[:1] + 'l' + a_str[2:]
-a str > 'spam'
- new_str = 'slam'

4

The Practice of Computing Using Python, 31 Edition", 31
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

31

Functions: First Cut

« a function is a program that performs
some operation

* its details are hidden (encapsulated)
—only its interface provided

+ a function takes some number of inputs
(arguments) and returns a value based on
the arguments and the function's operation

The Practice of Computing Using Python, 31 Edition", 33
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

4

33

String Method

» amethod is a variation on a function
— like a function, it represents a program
— like a function, it has input arguments and an
output
* unlike a function, it is applied in the
context of a particular object
— indicated by the dot notation invocation

“The Practice of Computing Using Python, 3 Edition”, 35
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

' 4

35

6/6/2022

String Methods and Functions

“The Practice of Computing Using Python, 31 Edition”. 32
Punch & Enbﬂdz‘ Co Al ht © 2017 Pearson Education, Inc.

32

String Function: 1en

* The 1len function takes as an argument a
string and returns an integer, the length of a
string.

my str = 'Hello World'
len(my_str) = 11 # space counts!

2
3
“The Practice of Computing Using Python, 31 Edition”, 34

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

- upper is the name of a method that
generates a new string with all upper case
characters of the string it was called with

my str = 'Python Rules!'
my str.upper () = 'PYTHON RULES!''

* the upper () method was called in the
context of my str, indicated by the dot
between them

Y
“The Practice of Computing Using Python, 3 Edition”, 36
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/6/2022

More Dot Notation find

my str = 'hello'

* in general, dot notation looks like
my_str.find('l') # find index of 'l' in my str

object.method(...)

= 2

+ it means that the object in front of the dot

is calling a method that is associated with » note how the method 'find' operates on the string object

] ' my str

that ObJeCt S type « the two are associated by using the “dot” notation:

+ the methods that can be called are tied to ;ny_;trl.fmt:(;;-)(; .
i Aeya s « terminology: the thing(s) in parenthesis, i.e. the 'I' in this case,
the type of the object calling it; each type 5 Galllzd 510 eI

has different methods

“The Practice of Computing Using Python, 31 Edition”. 38
Punch & Enbﬂdz‘ Co Al ht © 2017 Pearson Education, Inc.

The Practice of Computing Using Python, 31 Edition", 37

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

q?(
4

qﬁ}
4

Chaining Methods Optional Arguments

some methods have optional arguments

« if the user doesn't provide one of these, a
default is assumed

« find has a default second argument of 0,

methods can be chained together
+ perform first operation, yielding an object
+ use the yielded object for the next method

my str = 'Python Rules!' h h h beai
my str.upper() = 'PYTHON RULES!' BUIUETE (112 Sl E DEae
- a_str = 'He had the bat'

3 Al Al
my_str.upper() - Eind'(Ho)E =84 a_str.find('t') = 7 # 1%t 't',start at 0
a str.find('t',8) = 13 # 27 't',6start at 8

“The Practice of Computing Using Python, 31 Edition”, 40
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

The Practice of Computing Using Python, 31 Edition", 39

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

q?(
4

ﬂ?}
4

39 40
Nesting Methods How to Know?
* you can "nest” methods « use Spyder IDE to find available methods
—that is the result of one method is an for any type.
ST . . —you enter a variable of the type, followed by
+ remember that parenthetical expressions the '.' (dot) and then a tab
are done “inside out” « remember, methods match with a type
—do the inner parenthetical expression first, _ different types have different methods

then the next, using the result as an argument
a str.find('t', a_str.find('t')+1)
— translation: find the second 't'

« if you type a method name, Spyder will
remind you of the needed and optional
arguments

iy Y
“The Practice of Computing Using Python, 31 Edition", 41 “The Practice of Computing Using Python, 3 Edition”, 42
Punch & Enbody. Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

o0 IPythan conscle
i ‘O Console 29443/A

In [3]: my_str.
capitalize
casefold
center
count
encode
endswith
expandtabs
find
format
format_map
index

Figure 4.7

“The Practice of Computing Using Python, 31 Edition", 43

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

43

¥ |Q Console 29443/A |
In [3]: my_str.find(
Arguments

find(sub[, start[, end]])

Figure 4.9

“The Practice of Computing Using Python, 31 Edition", 45

Punch & Enbody. Copyrigh 17 Pearson Education, Inc.

45

String Formatting

“The Practice of Computing Using Python, 31 Edition", 47

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

47

6/6/2022

v |0 Console 29443/A

In [3]: my_str.i
index
isalnum
isalpha
isdecimal
isdigit
isidentifier
islower
isnumeric
isprintable
isspace
istitle

Figure 4.8

“The Practice of Computing Using Python, 31 Edition”. 44
Punch & Enbodz‘ Co Al ht © 2017 Pearson Education, Inc.

44

capitalize() lstrip([chars])
center (width [, fillchar]) partition(sep)

count (subl, start[, end] 1) replace (old, new|, count])
decode ([encoding [, errors]]) rfind (sub [start[,end]])
encode ([encoding[,errors] 1) rindex (subl, start[, end]])
endswith (suffix[, start[, end1 1) | rjust (width |, fillchar])
expandtabs ([tabsize]) rpartition (sg)

find (subl, start[, end] 1) rsplit ([sep [,maxsplit] 1)
index (subl, start[, end] 1) rstrip([chars])

isalnum() split ([sep [,maxsplit] 1)
isalpha() splitlines ([keepends])
isdigit () startswith (prefix[, start[, end] 1)
islower() strip([chars])

isspace() swapcase ()

istitle() title()

isupper() translate (table[, deletechars])
join (seq) upper ()

lower () z£111 (width)

1just (widthl[, fillchar])

TABLE 4.2 Python String Methods

“The Practice of Computing Using Python, 31 Edition”, 46

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

46

String Formatting for Better
Printing
+ so far, we have just used the defaults of
the print function

» we can do many more complicated things
to make that output “prettier” and more
pleasing

+ we will try this in our display function

“The Practice of Computing Using Python, 3 Edition”, 48
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

48

6/6/2022

Basic Form format Method
* to understand string formatting, it is - format is a method that creates a new
probably better to start with an example string where certain elements of the string
are re-organized, i.e., formatted
print("Sorry, is this the {} minute + the elements to be re-organized are the
{}?".format (5, 'ARGUMENT')) curly bracket elements in the string
« formatting is complicated; this is just some
prints of the easy stuff (see the docs)
Sorry, is this the 5 minute ARGUMENT?
iy iy,
‘The Practice of Computing Using Python, 31 Edition”, 49 "The Practice of Computing Using Python, 3 Edition” 50
Punch & Enhr)dz. Coy)anm © 2017 Pearson Education, Inc. Punch & Enbﬂdx‘ CGEX”QN © 2017 Pearson Education, Inc.
49 50

Map Arguments to {}

string indicated by quotes

* the string is modified so that the {}
elements in the string are replaced by the
format method arguments

* the replacement is in order:
—first {} is replaced by the first argument

print('Sorry, is this the {} minute {}?' format(5,ARGUMENT"))

(Sorry, is this the 5 minute ARGUMENT?)

—second { } by the second argument and so FIGURE 4.10 String formatting example.
forth
:1'3\
The Practice of Computing Using Python, 31 Edition", 51 "The Practice of Computing Using Python, 3 Edition” 52
Punch & Enbodx. Co)xngm © 2017 Pearson Education, Inc. Punch & Enhodz CoEzH(ht © 2017 Pearson Education, Inc.
51 52
Format String Format String
« the contents of the curly bracket elements « each bracket formatted as
are the format string: descriptors of how to (oA A e SR]

organize that particular substitution
—types are the kind of thing to substitute
—numbers indicate total spaces.

—align is optional (default left)
- width is how many spaces (default just

enough)
s sting - .precision is for floating point rounding
| d | decimal integer .
£ floating-point decimal < lefe | (default no rOUndIng)
| & | floating-point exponential | > | right | - type is the expected type (error if the arg is
% floating-point as percent ~ center ‘

the wrong type)

“The Practice of Computing Using Python, 3 Edition”, 54

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

“The Practice of Computing Using Python, 3 Edition”, 53
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

53 54

ﬁﬁ»g\ TABLE 4.3 Most commonly used types. TABLE 4.4 Width alignments. ﬁma

print('{:>10s} is {:<10d} years old. format('Bill’, 25))

Decimal 10 spaces wide
including the object,
left justified (<).

String 10 spaces wide
including the object,
right justified (>).

OUTPUT:
Bill is 25 years old.
[I—

10 spaces 10 spaces

FIGURE 4.11 String formatting with width descriptors and alignment.

The Practice of Computing Using Python, 31 Edition", 55

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

55

Floating Point Precision

round floating point to specific number of
decimal places

>>> import math

>>> print (math.pi) unformatted prir

3.141592653589793

>>> print("Pi is {:.4f}".format (math.pi)) # floating—point precision 4

Pi is 3.1416

>>> print ("Pi is {:8.4f}".format (math.pi)) specify both precision and width

Pi is 3.1416
>>> print ("Pi is {:8.2f}".format (math.pi))
Pi is 3.14

additional example
print (" Surface Area = {:8.3f}".format (surface_area fl))

6/6/2022

Formatting a Table

>>> for i in range(5) :
print ("{:10d} --> {:4d}".format (i,i**2))

0 ==p 0
1--> 1
2 --> 4
3 oo 9
4 --> 16

iy
The Practice of Computing Using Python, 31 Edition", 57
Punch & Enbody. Copyright © 2017 Pearson Education, Inc

Iteration through a Sequence

* to date we have seen the while loop as a
way to iterate over a suite (a group of
Python statements)

» we briefly touched on the for statement
for iteration, such as the elements of a list
or a string

“The Practice of Computing Using Python, 31 Edition", 59

' 4

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

59

=N
"The Practice of Computing Using Python, 3 Edition", 56

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

“The Practice of Computing Using Python, 31 Edition”, 58
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

for Statement

we use the for statement to process each
element of a list, one element at a time

for item in sequence:

suite

=N
“The Practice of Computing Using Python, 3% Edition”, 60
Punch & EHbudx Co yri ht © 2017 Pearson Education, Inc.

10

What for Means

my str='abc'
for char in 'abc':
print (char)

» first time through, char='a' (my_str[0])

 second time through, char='b"'
(my_str[1])

» third time through, char="'c' (my_str[2])

* no more sequence left, for ends

N
“The Practice of Computing Using Python, 31 Edition, 61

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

61

Code Listing 4.1
Find a letter

“The Practice of Computing Using Python, 31 Edition", 63

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

63

enumerate Function

 the enumerate function prints out two
values: the index of an element and the
element itself

 can use it to iterate through both the index
and element simultaneously, doing dual
assignment

iy
“The Practice of Computing Using Python, 31 Edition", 65
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

65

6/6/2022

Power of the for Statement

* sequence iteration as provided by the for
statement is very powerful and very useful
in Python

+ allows you to write some very “short”
programs that do powerful things

N
"The Practice of Computing Using Python, 3 Edition", 62

Punch & Enbody, Copyright © 2017 Pearson Education Inc.

62

s river = 'Mississippi'

¢ target = input('Input a character to find: ')

; for index in range(len(river)): # for each index

8 if river[index] == target: # check if the target is found

) print ("Letter found at index: ", index) # if so, print the index
0 break # stop searching

n else:

2 print ('Letter',target, 'not found in',river)

“The Practice of Computing Using Python, 31 Edition", 64

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

64

Code Listings 4.2
find with enumerate

“The Practice of Computing Using Python, 3 Edition”, 66

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

66

11

river = 'Mississippi'
target = input('Input a character to find: ')
for index,letter in enumerate(river):
if letter == target:
print ("Letter found at index: ", index)
break #

else:
print ('Letter', target, 'not found in', river)

“The Practice of Computing Using Python, 31 Edition", 67

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

67

Reorder a Name

>>> name = 'John Marwood Cleese'

>>> first, middle, last = name.split ()
>>> transformed = last + ', ' + first + ' ' + middle
>>> print (transformed)

Cleese, John Marwood

>>> print (name)

John Marwood Cleese

>>> print (first)

John

>>> print (middle)

Marwood

“The Practice of Computing Using Python, 31 Edition", 69

¥

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

69

Lower Case and Punctuation

* every letter is converted using the lower

method

import string brings in a series of

predefined sequences (string.digits,

string.punctuation,

string.whitespace)

» we remove all non-wanted characters with
the replace method; first, arg is what to
replace; second, the replacement

“The Practice of Computing Using Python, 31 Edition", 71

¥

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

71

6/6/2022

split Function

« split function takes a string and breaks it

into multiple new string parts depending on

the argument character

by default, if no argument is provided, split

is on any whitespace character (tab, blank,

etc.)

* you can assign the pieces with multiple
assignment if you know how many pieces
are yielded

=N
"The Practice of Computing Using Python, 3 Edition", 68
Punch & Ehbodz‘ Coy zH ht © 2017 Pearson Education, Inc.

Palindromes and the Rules

+ a palindrome is a string that prints the
same forward and backwards

» same implies that
— case does not matter
— punctuation is ignored

» "Madam I'm Adam" is thus a palindrome

“The Practice of Computing Using Python, 31 Edition", 70

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

70
Code Listing 4.4
Palindromes
“The Practice of Computing Using Python, 3" Edition”, 72
Punch & Ervbudx CuEmeht © 2017 Pearson Education, Inc.
72

» import string
i original_str = input('Input a string:')
s modified_str = original_str.lower ()

bad_chars = string.whitespace + string.punctuation

9 for char in modified_str:
if char in bad_chars: emove bad characters
modified_str = modified_str.replace(char,'')

1 if modified_str == modified_strl[::-11: # / ¢ palindrome

" print (\

15 'The original string is: {}\n\

& the modified string is: {}\n\

7 the reversal is: {}\n\

s String is a palindrome'.format (original_str, modified_str, modified_str[::-1
1)

» else:

" print (\

2 'The original string is: {}\m\

2 the modified string is: {}\n\

2 the reversal is: {}\n\
u String is not a palindrome'.format (original_str,modified_str,modified_str[::-
i)

The Practice of Computing Using Python, 31 Edition", 73

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

73

String Formatting

» we said a format string was of the following form:
{:align width .precision descriptor}
+ well, it can be more complicated than that
{arg : fill align sign # 0 width ,
.precision descriptor}
« that's a lot, so let's look at the details

C.N
The Practice of Computing Using Python, 31 Edition", 75
Punch & Enbody. Copyright © 2017 Pearson Education, Inc

Fill

besides alignment, you can fill empty spaces
with a fill character:

* 0= fill with O's
° += fill with +

“The Practice of Computing Using Python, 31 Edition", 77

4

Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

77

6/6/2022

More String Formatting

“The Practice of Computing Using Python, 31 Edition”. 74
Punch & Eﬂbﬂdz‘ Co Al ht © 2017 Pearson Education, Inc.

74

arg

to over-ride the {}-to-argument matching we

have seen, you can indicate the argument

you want in the bracket

« if other descriptor stuff is needed, it goes
behind the arg, separated by a :

>>> print ('{0} is {2} and {0} is also {1}'.format('Bill',25,'tall'))
Bill is tall and Bill is also 25

=N
“The Practice of Computing Using Python, 3 Edition", 76

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

76

Sign
* + means include a sign for both positive

and negative numbers

» - means include a sign, but for only
negative numbers

» space means space for positive, minus for
negative

=N
“The Practice of Computing Using Python, 3% Edition”, 78

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/6/2022

Example # 0, and ,

args are before the :, format after

>>> print('{0:.>12s} | {1:0=+10d} | {2:->5d}'.format ('abc',35,22)) < #is Compllca’ted’ bUt the Slmple Version Is
--------- abc | 4000000035 | ---22 that it forces a decimal point
for example {1:0=+10d} means: * O fill of zero's (equivalent to 0=)
« 1- second (count from 0) arg of format, 35 * , put commas every three digits
o« Separator >>> gx'::'mt('{:#6.0f}" .format (3)) # decimal point forced
O 0: eﬂll W|th OIS >>> print('{:04d}'.format(4)) # zero preceeds width
. . 0004
* + - plus or minus sign >>> print ('{:,d}'.format (1234567890))
2+ 10d = occupy 10 spaces (left justify) , 10234567890
deC'maI ‘The Practice of Computing Using Python, 3¢ Edition”, 79 “The Practice of Computing Using Python, 31 Edition’” 80
Punch & Enhodx. Coy xH ht © 2017 Pearson Education, Inc. Punch & Enbodz‘ Co ZH ht © 2017 Pearson Education, Inc.
79 80
Nice for Tables Reminder, rules so far
1. Think before you program!
or o 11 2. A program is a human-readable essay on problem
S o P A w10 TG ofEErSTELE i, e A (-3 S/ solving that also executes on a computer.
3. The best way to improve your programming and
Joiges 150 000 13000 problem solving skills is to practice!
S-gichgs 800 20,00 B0 4. A foolish consistency is the hobgoblin of little minds
6-sides: 720 120.00 60.00
TegidEgs S 12857 G148 5. Test your code, often and thoroughly
8-sides: 1080 135.00 45.00
9-sides: 1260 140.00 40.00 6. Ifit was hard to write, it is probably hard to read. Add a
10-sides: 1440 144.00 36.00
comment.
=N 3&
The Practice of Computing Using Python, 31 Edition", 81 “The Practice of Computing Using Python, 3 Edition’" 82
Punch & Enbo(iz. Co)xnghl © 2017 Pearson Education, Inc. Punch & Enhodz‘ CoEzth[© 2017 Pearson Education, Inc.
81 82

14

