Chapter 4
Working with Strings
PUNCH - ENBODY
PEARSON ALWAYS LEARNING
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And Then There Is """ """

« triple quotes preserve both the vertical and
horizontal formatting of the string

+ allows you to type tables, paragraphs,
whatever and preserve the formatting

mmoan this is
a test
today" mn
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String Representation

* every character is "mapped" (associated)
with an integer

» UTF-8, subset of Unicode, is such a
mapping

« the function oxd () takes a character and

returns its UTF-8 integer value

chr () takes an integer and returns the

UTF-8 character
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Sequence of Characters

+ we've talked about strings being a
sequence of characters.

 astring is indicated between ' ' or " "
+ the exact sequence of characters is

maintained
iy
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Non-printing Characters
If inserted directly, are preceded by a
backslash (the \ character)
* new line "\n'
* tab "\t'
EN
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Char Dec | Char Dec | Char Dec
sp |32 |e | 6a | | 96 SUbset Of
! 33 |a 65 | a 97
" |34 |B |66 |b |98 UTF-8
# 35 |c 67 |c 99
$ |36 |p |68 |a |100
% 37 | E 69 e 101 i
I A e B P e See Appendix F
© s moe s forthe full set
( |40 | |72 |n |104
) a |1 73 | i 105
* |az2 |g |78 |3 | 106
+ 43 | K 75 |k 107
|42 | |76 |1 | 108
- 45 | M 77 |m 109
. |46 |n |78 |n |110
/ 47 |0 79 |o 111
0 |48 | P |80 |p [ 112
1 49 |0 81 | q 113
o2 |so R |82 |r |114
2| 3 51 | s 83 | s 115
2 |s2 |» |8a |t | 116
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Strings String Index
 can use single or double quotes
S = "spam" » because the elements of a string are a
s = 'spam' sequence, we can associate each element
« don't mix them with an index, a location in the sequence
my str = 'hi mom" = ERROR — positive values count up from the left,
+ inserting an apostrophe beginning with index 0
A = "knight's" # mix up the quotes — negative values count down from the right,
B = 'knight\'s' # escape single quote starting with -1
:l'a\ 15
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Accessing an Element

cvrscos [ o [ 1 [ 1 o] [W]o]r[1]a

a particular element of the string is accessed
by the index of the element surrounded by
-2 —1 square brackets [ ]

index | 0 1 2 3 4 5 6 7 8 9 10

FIGURE 4.1 The index values for the string 'Hello World'. hello_str = 'Hello World'

print (hello_str[l]) => prints e
print (hello_str[-1]) => prints d
print (hello_str[11]) => ERROR

93,
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Slicing: The Rules Half Open Range for Slices
+ slicing is the ability to select a subsequence of + slicing uses what is called a half-open
the overall sequence
- uses the syntax [start : finish], where: range
- start is the index of where we start the + the first index is included in the sequence
subsequence . . o
~ finish is the index of one after where we end the + the last index is one after what is included
subsequence
* if either start or £inish are not provided, it
defaults to the beginning of the sequence for
start and the end of the sequence for £inish
i'i\ =
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helloString[6:10]

characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d
index | 0O 1 2 383 4 5 6 7 8 9 10

f I

first last

FIGURE 4.2 Indexing subsequences with slicing.
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helloString[6:]

characters H‘e‘|‘|‘°‘ ‘W‘o‘r‘l‘d

index | O 1 2 3 4 5 6 7 8 9 10

f i

first last

helloString[:5]

characters H‘e‘l‘l‘o‘ ‘W‘O‘r‘l‘d

index |O 1 2 3 4 5 6 7 8 9 10

f f

first last

FIGURE 4.3 Two default slice examples.
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helloString[-1]

Characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d

Index | 0O 1 2 3 4 5 6 7 8 9 10

-11-10 -9 -8 7 -6 -5 —4 -3 -2 —1

Last

FIGURE 4.4 Negative indices.
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helloString[3:-2]

Characters H‘e‘l‘l‘o‘ ‘W‘o‘r‘l‘d
Index | 0O 1 2 3 4 5 6 7 8 9 10

f T

First Last

FIGURE 4.5 Another slice example.
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Extended Slicing

« also takes three arguments
[start:finish:countBy]
+ defaults are
- start is beginning, £inish is end, countBy
is1
my str = 'hello world'
my str[0:11:2] = 'hlowrd'
— every other letter

16
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helloString[::2]

Characters | H ‘ e ‘ | ‘ | ‘ o] ‘ ‘W‘ o] ‘ r ‘ | ‘ d
o 1 2 3 4 5 6 7 8 9 10
N A A A A

FIGURE 4.6 Slicing with a step.

Index
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Some Python Idioms

* idioms are python “phrases” that are used for a
common task that might be less obvious to non-

python folk
* how to make a copy of a string:
my str = 'hi mom'

new_str = my str[:]

* how to reverse a string
my str = "madam I'm adam"
reverseStr = my str[::-1]
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String Operations

“The Practice of Computing Using Python, 31 Edition”. 20

Sequences are lIterable

the for loop iterates through each element of
a sequence in order

« for a string, this means character by

character: »>>> for char in 'Hi mom':
print (char, type (char))

H <class 'str's>
i <class 'str's

<class 'str's>
m <class 'str's>
o <class 'str's>
<class 'str's
>>>
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Some Details

 both + and * on strings makes a new
string, does not modify the arguments
+ order of operation is important for
concatenation, irrelevant for repetition
* the types required are specific

— for concatenation you need two strings, for
repetition a string and an integer
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Basic String Operations

s = 'spam'

« length operator len()
len(s) = 4

* +is concatenate
new_str = 'spam' + '-' + 'spam-'
print (new_str) — spam-spam-

* *is repeat, the number is how many times
new_str * 3 —='spam-spam-spam-spam-spam-
spam-"'

3
“The Practice of Computing Using Python, 31 Edition”, 22
Punch & Enbody. Copyright © 2017 Pearson Education, Inc.

22

What Does a + b Mean?

« what operation does the above represent?
it depends on the types!
— two strings, concatenation
— two integers addition

« the operator + is overloaded

— the operation + performs depends on the
types it is working on

Y
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The type Function

» you can check the type of the value
associated with a variable using type

my str = 'hello world'
type (my str) = <type 'str'>
my str = 245

type (my str) = <type 'int'>
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Comparisons within Sequence

* it makes sense to compare within a
sequence (lower case, upper case, digits).
-'a' < 'b' - True
-'A' < 'B' 2> True
-'1' < '9"’ > True

» can be weird outside of the sequence
-'a' < 'A"' - False
-'a' < '0' - False

iy
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Examples

e 'a' < 'b' - True
e 'aaab' < 'aaac'
—first difference is at the last char

- 'b'<'c' SO 'aaab' islessthan 'aaac'
True

e 'aa' < 'aaz'
— the first string is the same but shorter
—thus it is smaller: True

iy
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String Comparisons, Single Char

» Python 3 uses the Unicode mapping for
characters.
— allows for representing non-English

characters

+ UTF-8, subset of Unicode, takes the
English letters, numbers and punctuation
marks and maps them to an integer

* single character comparisons are based

ﬁk}& on that number
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Comparing Whole Strings

« compare the first element of each string
—if they are equal, move on to the next
character in each
— if they are not equal, the relationship between
those two characters are the relationship
between the strings

— if one ends up being shorter (but equal), the
shorter is smaller

7o
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Membership Operations

» can check to see if a substring exists in
the string, the in operator
—returns True or False
my str = 'aabbccdd'
'a' in my str = True
'abb' in my str = True
'x' in my str = False

Y
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Strings are Immutable

« strings are immutable, that is, you cannot
change one once you make it
—a_str = 'spam'
—a_str[l] = 'l' 2 ERROR

» however, you can use it to make another
string (copy it, slice it, etc.)
-new_str = a str[:1] + 'l' + a_str[2:]
-a str > 'spam'
- new_str = 'slam'

4
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Functions: First Cut

« a function is a program that performs
some operation

* its details are hidden (encapsulated)
—only its interface provided

+ a function takes some number of inputs
(arguments) and returns a value based on
the arguments and the function's operation
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String Method

» amethod is a variation on a function
— like a function, it represents a program
— like a function, it has input arguments and an
output
* unlike a function, it is applied in the
context of a particular object
— indicated by the dot notation invocation

“The Practice of Computing Using Python, 3 Edition”, 35
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String Methods and Functions
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String Function: 1en

* The 1len function takes as an argument a
string and returns an integer, the length of a
string.

my str = 'Hello World'
len(my_str) = 11 # space counts!

2
3
“The Practice of Computing Using Python, 31 Edition”, 34

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

- upper is the name of a method that
generates a new string with all upper case
characters of the string it was called with

my str = 'Python Rules!'
my str.upper () = 'PYTHON RULES!''

* the upper () method was called in the
context of my str, indicated by the dot
between them

Y
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More Dot Notation find

my str = 'hello'

* in general, dot notation looks like
my_str.find('l') # find index of 'l' in my str

object.method(...)

= 2

+ it means that the object in front of the dot

is calling a method that is associated with » note how the method 'find' operates on the string object

] ' my str

that ObJeCt S type « the two are associated by using the “dot” notation:

+ the methods that can be called are tied to ;ny_;trl.fmt:(;;-)( ; .
i Aeya s « terminology: the thing(s) in parenthesis, i.e. the 'I' in this case,
the type of the object calling it; each type 5 Galllzd 510 eI

has different methods
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Chaining Methods Optional Arguments

some methods have optional arguments

« if the user doesn't provide one of these, a
default is assumed

« find has a default second argument of 0,

methods can be chained together
+ perform first operation, yielding an object
+ use the yielded object for the next method

my str = 'Python Rules!' h h h beai
my str.upper() = 'PYTHON RULES!' BUIUETE (112 Sl E DEae
- a_str = 'He had the bat'

3 Al Al
my_str.upper() - Eind'(Ho)E =84 a_str.find('t') = 7 # 1%t 't',start at 0
a str.find('t',8) = 13 # 27 't',6start at 8
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Nesting Methods How to Know?
* you can "nest” methods « use Spyder IDE to find available methods
—that is the result of one method is an for any type.
ST . . —you enter a variable of the type, followed by
+ remember that parenthetical expressions the '.' (dot) and then a tab
are done “inside out” « remember, methods match with a type
—do the inner parenthetical expression first, _ different types have different methods

then the next, using the result as an argument
a str.find('t', a_str.find('t')+1)
— translation: find the second 't'

« if you type a method name, Spyder will
remind you of the needed and optional
arguments

iy Y
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o0 IPythan conscle
i ‘O Console 29443/A

In [3]: my_str.
capitalize
casefold
center
count
encode
endswith
expandtabs
find
format
format_map
index

Figure 4.7
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¥ |Q Console 29443/A |
In [3]: my_str.find(
Arguments

find(sub[, start[, end]])

Figure 4.9
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String Formatting
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v |0 Console 29443/A

In [3]: my_str.i
index
isalnum
isalpha
isdecimal
isdigit
isidentifier
islower
isnumeric
isprintable
isspace
istitle

Figure 4.8
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capitalize( ) lstrip( [chars])
center ( width [, fillchar] ) partition( sep)

count ( subl, start[, end] 1) replace ( old, new|, count] )
decode ( [encoding [, errors]]) rfind ( sub [start[,end]])
encode ( [encoding[,errors] 1) rindex ( subl, start[, end]])
endswith ( suffix[, start[, end1 1) | rjust ( width |, fillchar] )
expandtabs ( [tabsize] ) rpartition (sg)

find ( subl, start[, end] 1) rsplit ( [sep [,maxsplit] 1)
index ( subl, start[, end] 1) rstrip( [chars])

isalnum( ) split ( [sep [,maxsplit] 1)
isalpha( ) splitlines ( [keepends])
isdigit ( ) startswith ( prefix[, start[, end] 1)
islower( ) strip( [chars])

isspace( ) swapcase ( )

istitle( ) title( )

isupper( ) translate ( table[, deletechars] )
join (seq) upper ( )

lower ( ) z£111 ( width)

1just ( widthl[, fillchar] )

TABLE 4.2 Python String Methods
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String Formatting for Better
Printing
+ so far, we have just used the defaults of
the print function

» we can do many more complicated things
to make that output “prettier” and more
pleasing

+ we will try this in our display function

“The Practice of Computing Using Python, 3 Edition”, 48
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.
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Basic Form format Method
* to understand string formatting, it is - format is a method that creates a new
probably better to start with an example string where certain elements of the string
are re-organized, i.e., formatted
print("Sorry, is this the {} minute + the elements to be re-organized are the
{}?".format (5, 'ARGUMENT')) curly bracket elements in the string
« formatting is complicated; this is just some
prints of the easy stuff (see the docs)
Sorry, is this the 5 minute ARGUMENT?
iy iy,
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Map Arguments to {}

string indicated by quotes

* the string is modified so that the {}
elements in the string are replaced by the
format method arguments

* the replacement is in order:
—first {} is replaced by the first argument

print('Sorry, is this the {} minute {}?' format(5,ARGUMENT"))

(Sorry, is this the 5 minute ARGUMENT?)

—second { } by the second argument and so FIGURE 4.10 String formatting example.
forth
:1'3\
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Format String Format String
« the contents of the curly bracket elements « each bracket formatted as
are the format string: descriptors of how to (oA A e SR ]

organize that particular substitution
—types are the kind of thing to substitute
—numbers indicate total spaces.

—align is optional (default left)
- width is how many spaces (default just

enough)
s sting - .precision is for floating point rounding
| d | decimal integer .
£ floating-point decimal < lefe | (default no rOUndIng)
| & | floating-point exponential | > | right | - type is the expected type (error if the arg is
% floating-point as percent ~  center ‘

the wrong type)

“The Practice of Computing Using Python, 3 Edition”, 54
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print('{:>10s} is {:<10d} years old. format('Bill’, 25))

Decimal 10 spaces wide
including the object,
left justified (<).

String 10 spaces wide
including the object,
right justified (>).

OUTPUT:
Bill is 25 years old.
[ I—

10 spaces 10 spaces

FIGURE 4.11 String formatting with width descriptors and alignment.
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Floating Point Precision

round floating point to specific number of
decimal places

>>> import math

>>> print (math.pi) unformatted prir

3.141592653589793

>>> print("Pi is {:.4f}".format (math.pi)) # floating—point precision 4

Pi is 3.1416

>>> print ("Pi is {:8.4f}".format (math.pi)) specify both precision and width

Pi is  3.1416
>>> print ("Pi is {:8.2f}".format (math.pi))
Pi is 3.14

additional example
print (" Surface Area = {:8.3f}".format (surface_area fl))

6/6/2022

Formatting a Table

>>> for i in range(5) :
print ("{:10d} --> {:4d}".format (i,i**2))

0 ==p 0
1--> 1
2 --> 4
3 oo 9
4 --> 16

iy
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Iteration through a Sequence

* to date we have seen the while loop as a
way to iterate over a suite (a group of
Python statements)

» we briefly touched on the for statement
for iteration, such as the elements of a list
or a string

“The Practice of Computing Using Python, 31 Edition", 59
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for Statement

we use the for statement to process each
element of a list, one element at a time

for item in sequence:

suite

=N
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What for Means

my str='abc'
for char in 'abc':
print (char)

» first time through, char='a' (my_str[0])

 second time through, char='b"'
(my_str[1])

» third time through, char="'c' (my_str[2])

* no more sequence left, for ends

N
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Code Listing 4.1
Find a letter

“The Practice of Computing Using Python, 31 Edition", 63
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enumerate Function

 the enumerate function prints out two
values: the index of an element and the
element itself

 can use it to iterate through both the index
and element simultaneously, doing dual
assignment

iy
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Power of the for Statement

* sequence iteration as provided by the for
statement is very powerful and very useful
in Python

+ allows you to write some very “short”
programs that do powerful things

N
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s river = 'Mississippi'

¢ target = input('Input a character to find: ')

; for index in range(len(river)): # for each index

8 if river[index] == target: # check if the target is found

) print ("Letter found at index: ", index) # if so, print the index
0 break # stop searching

n else:

2 print ('Letter',target, 'not found in',river)

“The Practice of Computing Using Python, 31 Edition", 64
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Code Listings 4.2
find with enumerate

“The Practice of Computing Using Python, 3 Edition”, 66
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river = 'Mississippi'
target = input('Input a character to find: ')
for index,letter in enumerate(river):
if letter == target:
print ("Letter found at index: ", index)
break #

else:
print ('Letter', target, 'not found in', river)

“The Practice of Computing Using Python, 31 Edition", 67
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Reorder a Name

>>> name = 'John Marwood Cleese'

>>> first, middle, last = name.split ()
>>> transformed = last + ', ' + first + ' ' + middle
>>> print (transformed)

Cleese, John Marwood

>>> print (name)

John Marwood Cleese

>>> print (first)

John

>>> print (middle)

Marwood

“The Practice of Computing Using Python, 31 Edition", 69
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Lower Case and Punctuation

* every letter is converted using the lower

method

import string brings in a series of

predefined sequences (string.digits,

string.punctuation,

string.whitespace)

» we remove all non-wanted characters with
the replace method; first, arg is what to
replace; second, the replacement

“The Practice of Computing Using Python, 31 Edition", 71
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split Function

« split function takes a string and breaks it

into multiple new string parts depending on

the argument character

by default, if no argument is provided, split

is on any whitespace character (tab, blank,

etc.)

* you can assign the pieces with multiple
assignment if you know how many pieces
are yielded

=N
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Palindromes and the Rules

+ a palindrome is a string that prints the
same forward and backwards

» same implies that
— case does not matter
— punctuation is ignored

» "Madam I'm Adam" is thus a palindrome

“The Practice of Computing Using Python, 31 Edition", 70
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Code Listing 4.4
Palindromes
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Punch & Ervbudx CuEmeht © 2017 Pearson Education, Inc.
72



» import string
i original_str = input('Input a string:')
s modified_str = original_str.lower ()

bad_chars = string.whitespace + string.punctuation

9 for char in modified_str:
if char in bad_chars: emove bad characters
modified_str = modified_str.replace(char,'')

1 if modified_str == modified_strl[::-11: # / ¢ palindrome

" print (\

15 'The original string is: {}\n\

& the modified string is: {}\n\

7 the reversal is: {}\n\

s String is a palindrome'.format (original_str, modified_str, modified_str[::-1
1)

» else:

" print (\

2 'The original string is: {}\m\

2 the modified string is: {}\n\

2 the reversal is: {}\n\
u String is not a palindrome'.format (original_str,modified_str,modified_str[::-
i)
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String Formatting

» we said a format string was of the following form:
{:align width .precision descriptor}
+ well, it can be more complicated than that
{arg : fill align sign # 0 width ,
.precision descriptor}
« that's a lot, so let's look at the details

C.N
The Practice of Computing Using Python, 31 Edition", 75
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Fill

besides alignment, you can fill empty spaces
with a fill character:

* 0= fill with O's
° += fill with +

“The Practice of Computing Using Python, 31 Edition", 77
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More String Formatting
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arg

to over-ride the {}-to-argument matching we

have seen, you can indicate the argument

you want in the bracket

« if other descriptor stuff is needed, it goes
behind the arg, separated by a :

>>> print ('{0} is {2} and {0} is also {1}'.format('Bill',25,'tall'))
Bill is tall and Bill is also 25

=N
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Sign
* + means include a sign for both positive

and negative numbers

» - means include a sign, but for only
negative numbers

» space means space for positive, minus for
negative

=N
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Example # 0, and ,

args are before the :, format after

>>> print('{0:.>12s} | {1:0=+10d} | {2:->5d}'.format ('abc',35,22)) < #is Compllca’ted’ bUt the Slmple Version Is
--------- abc | 4000000035 | ---22 that it forces a decimal point
for example {1:0=+10d} means: * O fill of zero's (equivalent to 0=)
« 1- second (count from 0) arg of format, 35 * , put commas every three digits
o« Separator >>> gx'::'mt( '{:#6.0f}" .format (3)) # decimal point forced
O 0: eﬂll W|th OIS >>> print('{:04d}'.format(4)) # zero preceeds width
. . 0004
* + - plus or minus sign >>> print ('{:,d}'.format (1234567890))
2+ 10d = occupy 10 spaces (left justify) , 10234567890
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Nice for Tables Reminder, rules so far
1. Think before you program!
or o 11 2. A program is a human-readable essay on problem
S o P A w10 TG ofEErSTELE i, e A (-3 S/ solving that also executes on a computer.
3. The best way to improve your programming and
Joiges 150 000 13000 problem solving skills is to practice!
S-gichgs 800 20,00 B0 4. A foolish consistency is the hobgoblin of little minds
6-sides: 720 120.00 60.00
TegidEgs S 12857 G148 5. Test your code, often and thoroughly
8-sides: 1080 135.00 45.00
9-sides: 1260  140.00  40.00 6. Ifit was hard to write, it is probably hard to read. Add a
10-sides: 1440 144.00 36.00
comment.
=N 3&
The Practice of Computing Using Python, 31 Edition", 81 “The Practice of Computing Using Python, 3 Edition’" 82
Punch & Enbo(iz. Co)xnghl © 2017 Pearson Education, Inc. Punch & Enhodz‘ CoEzth[ © 2017 Pearson Education, Inc.
81 82

14



