
6/10/2019 

1 

chapter 7 

Lists and Tuples 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Data Structures 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Data Structures and Algorithms 

• part of the "science" in computer science 

is the design and use of data structures 

and algorithms 

• as you progress in CS, you will learn more 

about these two areas  

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Data Structures 

• data structures are particular ways of 

storing data to make some operation 

easier or more efficient; i.e., they are 

tuned for certain tasks 

• data structures are suited to solving 

certain problems, and they are often 

associated with algorithms 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Kinds of Data Structures 

two kinds of data structures: 

• built-in data structures – so common as to 

be provided by default 

• user-defined data structures (classes in 

object oriented programming) – designed 

for a particular task 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Python Built-in Data Structures 

• Python includes a general set of built-in 
data structures: 

– lists 

– tuples 

– string 

– dictionaries 

– sets 

– others... 



6/10/2019 

2 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Lists 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Lists 

• a list is an ordered sequence of items 

• you have seen such a sequence before in 

a string 

– a string is just a particular kind of list (what 

kind)? 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Creating Lists 

• lists have a constructor, with the same 

name as the data structure 

– the constructor receives an iterable data 

structure and adds each item to the list 

• lists can use square brackets [ ] to include 

explicit items 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Making Lists 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Similarities with Strings 

• concatenate/+ (but only of lists) 

• repeat/* 

• indexing (using the [ ] operator) 

• slicing ([:]) 

• membership (using the in operator) 

• len (the length operator) 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Operators 
[1, 2, 3] + [4]  [1, 2, 3, 4] 

 

[1, 2, 3] * 2  [1, 2, 3, 1, 2, 3] 

 

1 in [1, 2, 3]  True 

 

[1, 2, 3] < [1, 2, 4]  True 

 compare index by index; first difference 

determines the result 



6/10/2019 

3 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Differences Between Lists and Strings 

• lists can contain a mixture of any python 

objects; strings can only hold characters 

– e.g., [1,"bill",1.2345, True] 

• lists are mutable, their values can be 

changed, while strings are immutable 

• lists are designated with [], with elements 

separated by commas; strings use "" or '' 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Indexing 

• indexing can be confusing, what does the 
[] mean, a list or an index? 

  [1, 2, 3][1]  2 

 

– context solves the problem 

– an index always comes at the end of an 

expression, and is preceded by something (a 

variable or a sequence) 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List of Lists 

my_list = ['a', [1, 2, 3], 'z'] 

 

• what is the second element (index 1) of 

that list? another list 

  my_list[1][0] # apply left to right 

  my_list[1]  [1, 2, 3] 

 [1, 2, 3][0]  1 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List Functions 

• len(lst): number of elements in list (top 

level) 

       len([1, [1, 2], 3])  3 

• min(lst): smallest element. Must all be 

the same type! 

• max(lst): largest element, again all must 

be the same type 

• sum(lst): sum of the elements, numeric 

only 
"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Iteration 

• you can iterate through the elements of a 

list like you did with a string: 

 



6/10/2019 

4 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Mutability 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Mutability 

• strings are immutable; i.e., once created, 

the object's contents cannot be changed 

• new objects can be created to reflect a 

change, but the object itself cannot be 

changed 

  my_str = 'abc' 

  my_str[0] = 'z'   # cannot do! 

  # instead, make new str 

  new_str = my_str.replace('a','z')  

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Lists are Mutable 

• unlike strings, lists are mutable – you can 

change the object's contents! 

 

  my_list = [1, 2, 3] 

  my_list[0] = 127 

  print(my_list)  [127, 2, 3] 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List Methods 

• remember, a function is a small program 
(such as len) that takes some arguments 

(in parentheses), and returns a value 

• a method is a function called in a special 

way, the dot call; it is called in the context 

of an object (or a variable associated with 

an object) 

 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List Methods  

my_list = ['a',1,True] 

my_list.append('z') 

object that we are  

calling the method with 
name of  

the method 

arguments to 

the method 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Some New Methods 

• list methods that change the list 

my_list[0] = 'a' # index assignment 

my_list.append() # append el to list 

my_list.extend() # append list as els 

my_list.pop()    # remove/return el 

my_list.insert() # put el at loc 

my_list.remove() # delete el 

my_list.sort()  

my_list.reverse() 



6/10/2019 

5 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List Methods 

• most of these methods do not return a 

value 

• since lists are mutable, the methods 

modify the list directly; no need to return 

anything 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Unusual Results 

my_list = [4, 7, 1, 2] 

my_list = my_list.sort() 

my_list  None   # what happened? 

 

• the sort operation changed the order of the 

list in place (right side of assignment) 

• the sort method returned None, which was 

assigned to the variable 

• the list was lost and None is now the value 

of the variable 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

 The split Method 

• the string method split generates a 

sequence of characters by splitting the 

string at certain split characters 

• it returns a list (we didn't mention that 

before) 

 

split_list = 'this is a test'.split() 

split_list  

      ['this', 'is', 'a', 'test'] 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Sorting 

• only lists have a built in sorting method 

• thus, you often convert your data to a list if 

it needs sorting 
 

  my_list = list('xyzabc') 

  my_list ['x','y','z','a','b','c'] 

  my_list.sort()   # no return 

  my_list   

   ['a', 'b', 'c', 'x', 'y', 'z'] 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Reverse Words in a String 

• join method of string places the 

argument between every element of a list 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

sorted Function 

• the sorted function breaks a sequence 

into elements and sorts the sequence, 

placing the results in a list 
 

  sort_list = sorted('hi mom')  

  sort_list   

  [' ','h','i','m','m','o'] 



6/10/2019 

6 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Examples 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Anagram Example 

• anagrams are words that contain the same 

letters arranged in a different order; e.g., 

'iceman' and 'cinema' 

• a strategy to identify anagrams is to take 

the letters of a word, sort those letters, 

then compare the sorted sequences; 

anagrams should have the same sorted 

sequence 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Code Listing 

7.1 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Code Listing 7.3 

Full Program 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

 

 



6/10/2019 

7 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Code Listing 7.4 

Check those errors 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Checking Valid Input 

valid_input_bool = False 

while not valid_input_bool: 

    try: 

        two_words = input("Enter two …") 

 word1, word2 = two_words.split() 

 valid_input_bool = True 

    except ValueError: 

        print("Bad Input") 

only runs when no error; 

otherwise, try again 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Code Listing 7.5 

Words from text file 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Code Listing 7.7 

Unique Words, 

Gettysburg Address 



6/10/2019 

8 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

More about Mutables 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Assignment 

• assignment takes an object (the final 

object after all operations) from the RHS 

and associates it with a variable on the 

LHS 

• when you assign one variable to another, 

you share the association with the same 

object 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Immutables 

• object sharing, two variables associated 

with the same object, is not a problem 

since the object cannot be changed 

• any changes that occur generate a new 

object 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 



6/10/2019 

9 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Mutability  

• if two variables associate with the same 

object, then both reflect any change to 

that object 

 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Copy 

• if we copy, does that solve the problem? 

 

  my_list = [1, 2, 3] 

  newLst = my_list[:] 

 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Copy 

• the big question is – what gets copied? 

– what actually gets copied is the top level 

reference 

– if the list has nested lists or uses other 

associations, only the association gets copied 

(a shallow copy) 



6/10/2019 

10 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Shallow vs. Deep Copy 

• regular copy, using [:], only copies the 

top level reference/association 

• if you want a full copy, you can use 

deepcopy 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 



6/10/2019 

11 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Tuples 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Tuples 

• tuples are simply immutable lists 

• they are printed with (,) 

 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Tuples 

• why have an immutable list, a tuple, as a 
separate type? 

• because an immutable list gives you a 
data structure with some integrity, some 
permanent-ness if you will 

• you know you cannot accidentally change 
it 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Lists and Tuples 

• everything that works with a list also works 

with a tuple, except methods that modify 

the tuple 

• thus, indexing, slicing, len, print all work as 

expected 

• however, none of the mutable methods 
work: append, extend, del 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Commas Create a Tuple 

• for tuples, you can think of a comma as 

the operator that creates a tuple, where 

the ( ) simply acts as a grouping 

 

  myTuple = 1,2   # creates (1,2) 

  myTuple = (1,)  # creates (1)  

  myTuple = (1)   # creates 1 not (1) 

  myTuple = 1,    # creates (1) 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Data Structures in General 



6/10/2019 

12 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Organization of Data 

• so far, we have seen strings, lists and 

tuples 

• each is an organization of data that is 

useful for some things, but not as useful 

for others 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Marks of Good Data Structures 

• efficient with respect to us (some 

algorithm) 

• efficient with respect to the amount of 

space used 

• efficient with respect to the time it takes to 

perform some operations 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

EPA Example 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

List Comprehensions 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Lists are a Big Deal! 

• the use of lists in Python is a major part of 

its power 

• lists are very useful and can be used to 

accomplish many tasks 

• Python therefore provides some pretty 

powerful support to make common list 

tasks easier 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Constructing Lists 

• one way is a "list comprehension" 

 [n for n in range(1,5)] 

[ n for n in range(1,5)] 
 

mark the comp with [ ] 

what we 

collect 

what we iterate 

through; note that 

we iterate over a set of  

values and collect some 

(in this case all) of them 

returns  

[1,2,3,4] 



6/10/2019 

13 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Modifying the Collected Items 

 [n**2 for n in range(1,6)] 

 

• returns [1,4,9,16,25] 

• note that we can only change the values 
we are iterating over, in this case n 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Multiple Collects 

[x+y for x in range(1,4) for y in range (1,4)] 

 

• it is as if we had done the following: 
  my_list = [ ] 

  for x in range (1,4): 

    for y in range (1,4): 

      my_list.append(x+y) 

  

 [2,3,4,3,4,5,4,5,6] 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Modifying What Gets Collected 

[c for c in "Hi There Mom" if c.isupper()] 

 

• the if part of the comprehensive controls 

which of the iterated values is collected  

• only those values which make the if part 

true will be collected 

  ['H','T','M'] 

"The Practice of Computing Using Python, 3rd Edition",  

Punch & Enbody, Copyright © 2017 Pearson Education, Inc. 

Rules 

1. Think before you program! 

2. A program is a human-readable essay on problem 

solving that also executes on a computer. 

3. The best way to improve your programming and 

problem solving skills is to practice! 

4. A foolish consistency is the hobgoblin of little minds 

5. Test your code, often and thoroughly 

6. If it was hard to write, it is probably hard to read. Add a 

comment.  

7. All input is evil, unless proven otherwise. 

8. A function should do one thing. 

 


