chapter 7
Lists and Tuples
WILLIAM RICHARD
PUNCH « ENBODY
PEARSON ' e e ke

6/10/2019

Data Structures

The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Data Structures and Algorithms

* part of the "science" in computer science
is the design and use of data structures
and algorithms

* as you progress in CS, you will learn more
about these two areas

)
.
“The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Data Structures

« data structures are particular ways of
storing data to make some operation
easier or more efficient; i.e., they are
tuned for certain tasks

« data structures are suited to solving

certain problems, and they are often
associated with algorithms

“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Kinds of Data Structures

two kinds of data structures:

* built-in data structures — so common as to
be provided by default

« user-defined data structures (classes in

object oriented programming) — designed
for a particular task

Practice of Computing Using Python, 3" Edit

2

Ry
“The Pract on, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc

Python Built-in Data Structures

data structures:
— lists

—tuples

— string

— dictionaries
—sets

— others...

Python includes a general set of built-in

The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

Lists

Lists

« alist is an ordered sequence of items
» you have seen such a sequence before in

— the constructor receives an iterable data
structure and adds each item to the list

lists can use square brackets [] to include
explicit items

“The Practice of Computing Using Python, 3¢ Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

a string
— a string is just a particular kind of list (what
kind)?
ﬁ&a
"The Practice of Computing Using Python, 3" Edition", The Practice of Computing Using Python, 3¢ Edition’
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc
Creating Lists Making Lists
+ lists have a constructor, with the same e e = (s, sy, Trsra, e,
name as the data structure >>> list_of lists = [[1,2,3], ['a','b','c']]

>>> list_from_collection = list('Hello')
>>> a_list

[1, 2, 'a', 3.1415899999999999]

>>> week_days_list

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'l
>>> list_of_lists

rra, 2, 31, [ra', 'b', 'c'll

>>> list_from_collection

['H', 'e', 'I', '1', 'o']

>>> [

(8]

>>>

s

Ry
“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Similarities with Strings

concatenate/+ (but only of lists)
repeat/*

indexing (using the [] operator)
slicing ([:])

membership (using the in operator)
len (the length operator)

"The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc,

Operators
[1, 2, 3] + [4] = [1, 2, 3, 4]

[1, 2, 3] *2 = [1, 2, 3, 1, 2, 3]
1 in [1, 2, 3] = True
[1, 2, 3] < [1, 2, 4] = True

compare index by index; first difference
determines the result

3y

o
The Practice of Computing Using Python, 3¢ Edition
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

Differences Between Lists and Strings

« lists can contain a mixture of any python
objects; strings can only hold characters
—-eg., [1,"bill",1.2345, True]

« lists are mutable, their values can be
changed, while strings are immutable

* lists are designated with []1, with elements
separated by commas; strings use "" or "'

myList = [1, 'a', 3.14159, True]

myList

1 ‘a' 3.14159 True

0 1 2 3 Index forward

—4 | -3 -2 -1 Index backward

myList [1] — 'a'
myList[:3] — [1, 'a', 3.14159]

FIGURE 7.1 The structure of a list.

3
.
“The Practice of Computing Using Python, 3 Edition”, The Practice of Computing Using Python, 3¢ Edition
Punch & Enbody. Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

* indexing can be confusing, what does the
[1 mean, a list or an index?
[1, 2, 3][1] = 2

— context solves the problem

— an index always comes at the end of an
expression, and is preceded by something (a
variable or a sequence)

s
Ry
“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my list = ['a', [1, 2, 3], 'z']

» what is the second element (index 1) of
that list? another list
my list[1][0] # apply left to right
my list[1] = [1, 2, 3]
[1, 2, 3][0] = 1

s
Ry
“The Practice of Computing Using Python, 3¢ Edition”
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

List Functions

» len(1st): number of elements in list (top
level)
len([1, [1, 2], 3]) = 3
- min (1st): smallest element. Must all be
the same type!
- max (1st): largest element, again all must
be the same type

.+ sum(1st): sum of the elements, numeric
™ only

"The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc,

Iteration

* you can iterate through the elements of a
list like you did with a string:

>>> my_list = [1,3,4,8]
>>> for element in my_list: # iterate through list elements
print (element ,end=' ') # prints on one line

1348

3y

o
The Practice of Computing Using Python, 3¢ Edition
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

Mutability

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Mutability

« strings are immutable; i.e., once created,
the object's contents cannot be changed
* new objects can be created to reflect a
change, but the object itself cannot be
changed
my str = 'abc'
my str[0] = 'z' # cannot do!
instead, make new str

ﬂ&,ﬁ new_str = my str.replace('a','z')

The Practice of Computing Using Python, 3¢ Edition

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Lists are Mutable

« unlike strings, lists are mutable — you can
change the object's contents!

my list = [1, 2, 3]
my list[0] = 127
print (my list) = [127, 2, 3]

» remember, a function is a small program

» a method is a function called in a special

“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

List Methods

(such as len) that takes some arguments
(in parentheses), and returns a value

way, the dot call; it is called in the context
of an object (or a variable associated with
an object)

“The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

List Methods Some New Methods
my list = ['a',61l,True] * list methods that change the list
my list.append('z'),___ agumensto my list[0] = 'a' # index assignment
N the method my list.append() # append el to list
/ my list.extend() # append list as els
R —— e of my list.pop () # remove/return el
calling the method with the method my list.insert() # put el at loc
my list.remove() # delete el
my list.sort()
‘»,5 \»Q my list.reverse()
W Pineh & Enody, o © 7037 Pearson Ecucaton, n. ﬁa‘ Puneh & Enoay, oty © 7047 paarson Edcaton, n

6/10/2019

List Methods Unusual Results

(4, 7, 1, 2]
my list = my list.sort()

my list

most of these methods do not return a
value
since lists are mutable, the methods

:nc;:tj;]fi);;he TEF ey, o Metse D) * the sort operation changed the order of the

list in place (right side of assignment)

the sort method returned None, which was
assigned to the variable

ﬁ% ﬂ% * the list was lost and None is now the value

my list = None # what happened?

of the variable

The Practice of Computing Using Python, 3¢ Edition

Punch & Enbody. Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

The split Method Sorting
- the string method split generates a only lists have a built in sorting method_ _
sequence of characters by splitting the * thus, you often convert your data to a list if
string at certain split characters it needs sorting
* it returns a list (we didn't mention that my list = list('xyzabc')
before) my list =2['x','y','z','a','b','c']
my list.sort() # no return
split_list = 'this is a test'.split() my list >
split_list ['a', 'b', '¢', 'x', |y|, 'z']
N = ['this', 'is', 'a', 'test'] N
‘PThe‘:?iscEnc:c:f,cgmpum:q L;Jszwrégl:i/;h?m 3ﬂ§1u}un\ ‘ ghe"PEchc’ezt Cgmptmr;g Liszwggl;‘);hun 3"EEudumn‘ -

Reverse Words in a String sorted Function

* join method of string places the

argument between every element of a list * the sorted function breaks a sequence
R into elements and sorts the sequence,
>>> string elements = my str.split() # list of words placing the results in a list
>>> string_elements
['This', 'is', 'a', 'test']
>>> reversed_elements = []

sort_list = sorted('hi mom')

>>> for element in string elements: for
reversed_elements.append (element [::-1])

sort_list =

>>> reversed_elements

. . |l |l |l |l Ta0 |l |l |l]]]
['sihT', 'si', 'a', 'tset'] [,h') 'i' , 'm' ,'m' ,'o"']
>>> new_str = ' '.join(reversed_elements) # join with space sep
>>> new_str
'sihT si a tset' # each words reversed
.
L3>>> 2.,
.Y Ry
"The Practice of Computing Using Python, 31 Edition", The Practice of Computing Using Python, 3" Edition’
Punch & Enbod) COEX”(ht © 2017 Pearson Education, Inc. Punch & Enbudz‘ Cop:’ngln © 2017 Pearson Education, Inc.

6/10/2019

Anagram Example

Examples * anagrams are words that contain the same
letters arranged in a different order; e.g.,
‘iceman’ and ‘cinema’

+ a strategy to identify anagrams is to take
the letters of a word, sort those letters,
then compare the sorted sequences;
anagrams should have the same sorted
sequence

"The Practice of Computing Using Python, 3 Edition", The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright 17 Pearson Education. Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc

| def are_anagrams (wordl, word2):

"""Return True, if

ds are anagrams. """

3 #2. Sort the characters in the words
4 wordl_sorted = sorted (wordl) # sorted returns a sorted list
5 word2_sorted = sorted (word2)

7 #3. Check that the sorted words are identical.

8 if wordl_sorted == word2_sorted: # compare sorted lists
] return True

0 else:

u return False

“The Practice of Computing Using Python, 3¢ Edition", “The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 7.3 def are_anagrams (wordl, word2) :
. """Return True, if words are anagrams.""'
Full Program

#2. Sort the characters of the words.

wordl_sorted = sorted (wordl) # sorted returns a sorted list
word2_sorted = sorted(word2)

#3. Check that the sorted words are identical

return wordl_sorted == word2_sorted

print ("Anagram Test")

1. Input two words.
two_words = input ("Enter two space separated words: ")

wordl,word2 = two_words.split() # split into a list of words

if are_anagrams (wordl, word2) : # return True or False
print ("The words are anagrams.")

else:

print ("The words are not anagrams.")

"The Practice of Computing Using Python, 3 Edition”, "The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

Code Listing 7.4
Check those errors

"The Practice of Computing Using Python, 3 Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc

Checking Valid Input

valid_input bool = False
while not valid input bool:
try:
two_words = input ("Enter two ..")
wordl, word2 = two_words.split ()

valid_input_bool = True

except ValueError:
print ("Bad Input")

only runs when no error;
otherwise, try again

The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbudx‘ Co i jht © 2017 Pearson Education, Inc.

def are_anagrams (wordl, word2):
Return True, if words
#2. Sor the words
wordl_sorted = sorted(wordl) # sorted returns a sorted list
word2_sorted = sorted (word2)

he characters

#3. Check that the sorted words are identical
return wordl_sorted == word2_sorted

print ("Anagram Test")
1. Input two words, checking for errors nou
valid_input_bool = False
while not valid_input_bool:
try:
two_words = input ("Enter two space separated words: ")
wordl,word2 = two_words.split() # split the input string into a list
of words
valid_input_bool = True
except ValueError:
print("Bad Tnput")

if are_anagrams (wordl, word2): # function returned True or False
print ("The words {} and {} are anagrams.".format (wordl, word2))
else:

print ("The words {} and {} are not anagrams.".format (wordl, word2))

“The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education. Inc

Code Listing 7.5
Words from text file

"The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def make_word_list (a_file):
"""Create a list of words from the file
word_list = [] # list of speech words: initialized to be e

for line_str in a_file: ¢ read file line by line
line_list = line_str.split() # split each line into a list of words
for word in line_list:
if word

get words one at a time from list
if the word is not "——'
word_list.append (word) # add the word to the speech list
return word_list

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 7.7
Unique Words,

Gettysburg Address

"The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc

6/10/2019

def make_word_list(a_file) :
word_list = []

for line_str in a_file:
line list = line_str.split()
for word in line list:
if word 1= "--v
word_list.append (word)
return word_list

def make_unique (word_list):
unique_list = (1
for word in word list:
if word not in unique_list

unique_list.append (word)

return unique_list

gba_file = open("gettysburg.txt", "r")
speech_list = make_word_list (gba_file)

print (speech_list)
print ("Speech Length: ", len(speech list))
print("Unique Length: ", len(make_unique (speech list)))

“The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More about Mutables

The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment

assignment takes an object (the final
object after all operations) from the RHS
and associates it with a variable on the
LHS

when you assign one variable to another,
you share the association with the same
object

my_int=27
your_int = my_int

NameList Values

my_int

your_int

"The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

e e D e [e e 175
my_int =27
Immutables R S
NamelList Values
* object sharing, two variables associated
with the same object, is not a problem mAnt
since the object cannot be changed your_int
» any changes that occur generate a new
object
‘;ﬁ FIGURE 7.3 Modification of a reference to an immutable object.

The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

Mutability

« if two variables associate with the same
object, then both reflect any change to
that object

3
“The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education. Inc

a_list=1[1,2,3]
b_list =a_list

NameList Values

a_list —

b_list -

FIGURE 7.4 Namespace snapshot after assigning mutable objects.

The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

a_list=[1,2,3]
b_list=a_list
a_list.append(27)

NameList Values

a_list —

b_list T

FIGURE 7.5 Modification of shared, mutable objects.

“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Copy

« if we copy, does that solve the problem?

my list = [1, 2, 3]
newLst = my list[:]

s

Ry
“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

a_list=[1,2,3]
b_list=a_list[:] # explicitly make a distinct copy
a_list.append(27)

NameList Values

¢

FIGURE 7.6 Making a distinct copy of a mutable object.

a_list —

b_list ~

"The Practice of Computing Using Python, 3 Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Copy

* the big question is — what gets copied?
— what actually gets copied is the top level
reference
— if the list has nested lists or uses other
associations, only the association gets copied
(a shallow copy)

The Practice of Computing Using Python, 3¢ Edition”,

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

6/10/2019

a_list=1[1,2,3] a_list=[1,2,3]
a_listappend(a_list) b_list =[5,6,7]
print(a_listy —» [1,2,3,[.]]

NamelList Values NamelList Values
a_list — a_list —
b_list ~

FIGURE 7.7 Self-referencing.

FIGURE 7.8 Simple lists before append.

"The Practice of Computing Using Python, 3 Edition”, The Practice of Computing Using Python, 3" Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbudz‘ Coy)i jht © 2017 Pearson Education, Inc.
a_list=11,2,3] a_list=1[1,2,3]
b_list =[5,6,7] b_list =[5,6,7]
a_list.append(b_list) a_listappend(b_list)
c_list=b_list
Values - — Values

NameList c_list[2] = 88

NamelList
a_list _ /
a_list —1
b_list N

b_list -
c_list _ 15,6, 88]
FIGURE 7.9 Lists after append. FIGURE 7.10 Final state of copying example.
“The Practice of Computing Using Python, 3¢ Edition", “The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

a_list=[1,23]

Shallow vs. Deep Copy Sl 5en

a_list.append(b_list)

[c;||i5t[; opy.deepcopy(a_list) Vel
. .)_list[0] = 1000
« regular copy, using [:], only copies the Namelist
top level reference/association
. a_list //
« if you want a full copy, you can use
b_list —_ [1000, 6, 7]

deepcopy

>>> a_list = [1, 2, 3] c_list -

>>> b_list = [5, 6, 7] \
>>> a_list.append (b_list)

>>> import copy

>>> c_list = copy.deepcopy (a_list)

>>> b_1ist[0]=1000

>>> a_list

[1, 2, 3, [1000, 6, 71]
>>> c_list

[1, 2, 3, [5, 6, 7]

FIGURE 7.12 Using the copy module for a deep copy.

. "The Practice of Computing Using Python, 3 Edition”, The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc. Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

10

6/10/2019

Tuples

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

s S>> X7
) (ra', 3.14159)

Tuples

* tuples are simply immutable lists
* they are printed with (,)

>>> 10,12

(10, 12)

>>> tup = 2,3 # assigning a tuple
>>> tup

(2, 3)

>>> (1)

1

>>> (1,)

(1,)

>>> X,y = 'a',3.14159 # from o
>>> x

e

>>> y

3.14159

The Practice of Computing Using Python, 3¢ Edition

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Tuples

why have an immutable list, a tuple, as a
separate type?

because an immutable list gives you a
data structure with some integrity, some
permanent-ness if you will

you know you cannot accidentally change
it

s
Ry
“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Lists and Tuples

everything that works with a list also works
with a tuple, except methods that modify
the tuple

« thus, indexing, slicing, len, print all work as
expected

* however, none of the mutable methods
work: append, extend, del

“The Practice of Computing Using Python, 3¢ Edition”
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Commas Create a Tuple

« for tuples, you can think of a comma as

the operator that creates a tuple, where
the () simply acts as a grouping

myTuple = 1,2 # creates (1,2)
myTuple = (1,) # creates (1)
myTuple = (1) # creates 1 not (1)
myTuple = 1, # creates (1)

"The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc,

Data Structures in General

The Practice of Computing Using Python, 3¢ Edition

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

11

6/10/2019

Organization of Data

« so far, we have seen strings, lists and
tuples
» each is an organization of data that is

useful for some things, but not as useful
for others

)
.
"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Marks of Good Data Structures

« efficient with respect to us (some
algorithm)

« efficient with respect to the amount of
space used

« efficient with respect to the time it takes to
perform some operations

iy
)
The Practice of Computing Using Python, 3¢ Edition
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

EPA Example

“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

List Comprehensions

“The Practice of Computing Using Python, 3¢ Edition”
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Lists are a Big Deal!

« the use of lists in Python is a major part of
its power

« lists are very useful and can be used to
accomplish many tasks

» Python therefore provides some pretty

powerful support to make common list
tasks easier

3
=
"The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc,

Y
Ww&

* one way is a "list comprehension"

returns
[1.2,34]

Constructing Lists

[n for n in range(1,5)]

mark the comp with [

/7]\-
@@‘for n in range(1,5)@
!

what we iterate

through; note that

we iterate over a set of
values and collect some
(in this case all) of them

The Practice of Computing Using Python, 3¢ Edition

what we
collect

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

12

6/10/2019

Modifying the Collected Items

[n**2 for n in range(1,6)]

e returns [1,4,9,16,25]

 note that we can only change the values
we are iterating over, in this case n

3
.
“The Practice of Computing Using Python, 3 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education. Inc

Multiple Collects

[x+y for x in range(l,4) for y in range (1,4)]

* it is as if we had done the following:
my list = []
for x in range (1,4):
for y in range (1,4):
my_ list.append (x+y)

= [2,3,4,3,4,5,4,5,6]

3

o
The Practice of Computing Using Python, 3¢ Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Modifying What Gets Collected

[c for ¢ in "Hi There Mom" if c.isupper()]

« the if part of the comprehensive controls
which of the iterated values is collected

« only those values which make the if part
true will be collected

= ['H,T,'M]

s
Ry
“The Practice of Computing Using Python, 3¢ Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Rules

1. Think before you program!

2. A program is a human-readable essay on problem
solving that also executes on a computer.

3. The best way to improve your programming and
problem solving skills is to practice!

4. A foolish consistency is the hobgoblin of little minds
5. Testyour code, often and thoroughly

6. If it was hard to write, it is probably hard to read. Add a
comment.

7. Allinputis evil, unless proven otherwise.

“The Practice of Computing Using Python, 3¢ Edition",

ﬂé% 8. A function should do one thing.

Punch & Enbody. Copyright © 2017 Pearson Education, Inc

13

