chapter 8

More On Functions

PEARSON

b

S qrdiv
SIS ~ i I
(RS LT 3-’

ALY -
R SRR T \\E;
) .V"-

cwemtae .\'-'7

.“.,?5 Py 72

N e
o BN S '
Sy Ve RS oA A
, v BV B ,_;‘\:_.-k ‘
. sl RN SSRUANTY R S 4 < :
3 A Y e A A e T AT Lo o
N . \.; e d R i.:“__\\ Qﬂ _‘"’
e SRR Y e e SRS

N

THE PRACTICE OF COMPUTING USING

- HO

3RD EDITION °

e
a:d‘
v
V

o’i >/

"
.

L
d

< 4
~

(i ['S .
" g

AN

Oy
i

S
e

Do

335553

S~

WILLIAM RICHARD
PUNCH « ENBODY

ALWAYS LEARNING

Scope

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Scope

 definition: the set of program statements
over which a variable exists, I.e., can be
accessed

* |t IS about understanding, for any variable,
what its associated value is

 the problem is that multiple namespaces
might be involved

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Namespaces

« with Python, there are potentially multiple
namespaces that could be used to

determine the object associated with a
variable

 recall that a namespace Is an association
of name and objects

» we will begin by looking at functions

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Namespace

» each function maintains a namespace for
names defined locally within the
function

* |locally means one of two things:

— a nhame assigned within the function

— an argument received by invocation of the
function

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Arguments

for each argument in the function
invocation, the argument’s associated

object is passed to the corresponding
parameter in the function

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Immutable Objects

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

arg =25
my_function(arg) _
print(arg) def my_function(param):

print(param)

- J

arg param
main Python my_function
namespace objects namespace

Function namespace: at function start.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

What Does “pass” Mean?

* the previous diagram should make it clear
that the parameter name is local to the
function namespace

* passing means that the argument and the
parameter, named In two different
namespaces, share an association with
the same object

“passing” therefore means “sharing” in
Python

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Assignment Changes
Association

* If a parameter Is assigned to a new value,
then just like any other assignment, a new
association is created

* this assignment does not affect the object
associated with the argument, as a new
association was made with the parameter

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

arg =25
my_function(arg) def my_function(param):
print(arg) param = 32

print(param)

\ J

arg »@ param

main Python my_function
namespace objects namespace

Function namespace modified.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Mutable Objects

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sharing Mutables

* when passing mutable data structures, It is
possible that If the shared object is directly
modified, both the parameter and the
argument reflect that change

* note that the operation must be a mutable
change, a change of the object

— an assignment is not such a change

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

arg_list=[1, 2, 3]

~\

my_function(arg_list) def my_function(param_list):
print(arg_list) param_list [0] = 100

\

print(param_list)

arg_list ——><—— param_list

main Python my_function
namespace objects namespace

Function namespace with mutable objects: at function start.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

arg_list =11, 2, 3] \
my_function(arg_list) » | def my_function(param_list):
print(arg_list) param_list [0] = 100
print(param_list)

- J

arg_list ——»4—— param_list

main Python my_function
namespace objects namespace

Function namespace with mutable objects after param_1ist [0]=100.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More on Functions

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Returns

 functions return one thing, but it
can be a ‘chunky’ thing (e.g., a tuple)

>>> def mirror (pair) :
""reverses first two elements;
assumes "pair" is as a collection with at least two elements '’
return pair([l], pair[0]

>>> mirror((2,3))

(3, 2) # the return was comma separated: implicitly handled as a tuple

>>> first,second = mirror((2,3)) # comma separated works on the left—hand—side also
>>> first

>>> second

>>> first, second # reconstruct the tuple

(3, 2)

>>> a_tuple = mirror((2,3)) # if we return and assign to one name, we get a tuple!
>>> a_tuple

(3, 2)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment in a Function

* If you assign a value in a function, that
name becomes part of the local
namespace of the function

* |t can have some odd effects

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

def my fun (param):
param. append (4)

return param

my list = [1,2,3]
new list = my fun(my list)

print (my list,new list)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name value

my list

my_fun Namespace

Name value/
param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

i

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

def my fun (param):
param=[1,2, 3]
param. append (4)
return param

my list = [1,2,3]
new list = my fun(my list)
print (my list,new list)

More FUREEOBSctice of Computing Using Python, 31 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name value

my list

my_fun Namespace

Name value/
param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

def my fun (param):
param=param.append (4)
return param

my list = [1,2,3]
new list = my fun(my list)
print(my list,new list)

More FUREEOBSctice of Computing Using Python, 31 Edition”,
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name value

my list

my_fun Namespace

Name value/
param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

i

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

None

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment to a Local

» assignment creates a local variable

* changes to a local variable affects only the
local context, even if it Is a parameter and
mutable

* If a variable Is assigned locally, it cannot
be referenced before this assignment,
even If it exists in main as well

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Default and Named Parameters

def box (height=10,width=10,depth=10,
color= "blue"):
do something ...

* the parameter assignment means two
things:
— If the caller does not provide a value, the
default is the parameter assigned value

— you can get around the order of parameters by
using the name

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Defaults

def box (height=10,width=10,length=10) :
print (height,width, length)

box () # prints 10 10 10

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Named Parameters

def box (height=10,width=10,length=10) :
print (height,width, length)

box (length=25,height=25)
prints 25 10 25

box (15,15,15) # prints 15 15 15

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Name Use Works in General Case

def my fun(a,b):
print(a,b)

my fun(1,2) #prints 12
my fun(b=1,a=2) #prints21

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Default Arguments and Mutables

one of the problem with default args
occurs with mutables

— the default value Is created once, when the
function iIs defined, and stored in the function
name space

— a mutable can change the value of that
default

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Unusual Results

def fnl (argl=[], arg2=27):
argl . append (arg2)

return arqgl

my list = [1,2,3]
print (fnl (my list,4)) #[1, 2, 3, 4]
print (fnl (my list)) #[1, 2, 3, 4, 27]
print (£fnl ()) #[27]

print (£fnl ()) # 27, 27]

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

argl is either assigned to the passed
argument or to the function default for the
argument

fnl Namespace

argl

arg2 =

27

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

now the function default, a mutable, Is
updated and will remain so for the next
call

fnl Namespace

argl 27

arg2 =

27

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Functions as Objects and
docstrings

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Functions are Objects, Too!

 functions are objects, just like anything
else in Python

* as such, they have attributes:
__hame__ : function name
str__ : string function
__dict__ : function namespace
doc__ : docstring

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Annotations

you can associate strings of information,
ignored by Python, with a parameter

to be used by the reader or user

the colon ":" Indicates the parameter
annotation

the "->" annotation I1s assoclated with the
return value

stored In dictionary,
name_fn . annotations

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def my_func (paraml : int, param2 : float) -> None
print ('Result is:', paraml + param2)

>>> my_func(l, 2.0)
Result is: 3.0

>>> my_func(l, 2)
Result is: 3

>>> my_func('a', 'b')
Result is: ab

>>>

def my_func (paraml : int, param2 : float) -> None
print ('Result is:', paraml + param2)

>>> my_func.__annotations__
{'return': None, 'param2': <class 'float's, 'paraml': <class 'int's>}

>>>

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

docstring

* If the first item after the def Is a string,
then that string Is specially stored as the
docstring of the function

* this string describes the function and Is
what is shown if you do a help on a
function

 usually triple quoted since it is multi-lined

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

docstring

* every object (function, etc.) can have a
docstring

* |t IS stored as an attribute of the function (the
doc attribute)

e l1stMean. doc

'Takes a list of integers, returns
the average of the 1list.'

» other programs can use the docstring to
“ report to the user (for example, Spyder)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example: Final Grade Program

* the following code shows how you can
read In a file of grades

 each line of the file contains five comma-

separated fields:

— last name

— first name

— examl, examz2, final_exam

 print name and final grade

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.2
Weighted Grade

Function

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 def weighted_grade(score_list, weights_tuple=(0.3,0.3,0.4)):

2

3

4

5

rrr

grade_float = \

Expects 3 elements in score _list. Multiples each grade
by its weight. Returns the sum.

rrr

(score_list [0] *weights_tuple[0]) +\
(score_list[1] *weights_tuple[1]) +\
(score_1list[2] *welghts_ tuplel[2])

return grade_float

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.3
parse _line

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def parse line(line_ str):
'''" Expects a line of form last, first, examl, exam2, final.
returns a tuple containing first+last and list of scores. '''

field list = line str.strip() .split(',"')
name str = field list[l] + ' ' + field 1list[O0]

score list = []

gather the scores, now strings, as a list of ints
for element in field list[2:]:

score list.append(int (element))

return name str,score list

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.4
main

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def main ():
''' Get a line str from the file,

print the final grade nicely.

LI |

file name = input('Open what file:')
grade file = open(file name, 'r')

print('{:>13s} {:>15s}'.format('Name',6 'Grade'))
print('-"'*30)

for line str in grade file:
name str,score_ list = parse line(line_str)

grade float = weighted grade(score list)

print('{:>15s} {:14.2f} '.format(name str, grade float))

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Arbitrary Arguments

* |t IS also possible to pass an arbitrary
number of arguments to a function

* the function simply collects all the
arguments (no matter how few or many) into
a tuple to be processed by the function

 tuple parameter preceeded by a * (which is
not part of the param name, its part of the

anguage)

positional arguments only

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

def aFunc (fixedParam, *tupleParam) :

print ("fixed =" ,fixedParam)
print ("tuple=" ,tupleParam)
aFunc(1l,2,3,4)

prints fixed=1
tuple=(2,3,4)
aFunc (1)
prints fixed=1
tuple=()
aFunc (fixedParam=4)
prints fixed=4
tuple=()
aFunc (tupleParam=(1,2,3) ,fixedParam=1)
S Error!

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

lambda Functions

* lambda expressions are short functions
that are defined in-line

* can only contain a single expression
* cannot contain statements
* result is automatically returned

list.sort (key = lambda x: float(x[2]))

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Reminder, rules so far

Think before you program!

A program is a human-readable essay on problem
solving that also executes on a computer.

The best way to improve your programming and
problem solving skills is to practice!

A foolish consistency is the hobgoblin of little minds
Test your code, often and thoroughly

If it was hard to write, it is probably hard to read. Add a
comment.

All input is evil, unless proven otherwise.
A function should do one thing.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

