
chapter 8

More On Functions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Scope

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Scope

• definition: the set of program statements

over which a variable exists, i.e., can be

accessed

• it is about understanding, for any variable,

what its associated value is

• the problem is that multiple namespaces

might be involved

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Namespaces

• with Python, there are potentially multiple

namespaces that could be used to

determine the object associated with a

variable

• recall that a namespace is an association

of name and objects

• we will begin by looking at functions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Namespace

• each function maintains a namespace for

names defined locally within the

function

• locally means one of two things:

– a name assigned within the function

– an argument received by invocation of the

function

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Arguments

• for each argument in the function

invocation, the argument’s associated

object is passed to the corresponding

parameter in the function

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Immutable Objects

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

What Does “pass” Mean?

• the previous diagram should make it clear

that the parameter name is local to the

function namespace

• passing means that the argument and the

parameter, named in two different

namespaces, share an association with

the same object

• “passing” therefore means “sharing” in

Python

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment Changes

Association
• if a parameter is assigned to a new value,

then just like any other assignment, a new

association is created

• this assignment does not affect the object

associated with the argument, as a new

association was made with the parameter

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Mutable Objects

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sharing Mutables

• when passing mutable data structures, it is

possible that if the shared object is directly

modified, both the parameter and the

argument reflect that change

• note that the operation must be a mutable

change, a change of the object

– an assignment is not such a change

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More on Functions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Returns

• functions return one thing, but it

can be a ‘chunky’ thing (e.g., a tuple)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment in a Function

• if you assign a value in a function, that

name becomes part of the local

namespace of the function

• it can have some odd effects

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

def my_fun (param):

 param.append(4)

 return param

my_list = [1,2,3]

new_list = my_fun(my_list)

print(my_list,new_list)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

4

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More Functions

Example

def my_fun (param):

 param=[1,2,3]

 param.append(4)

 return param

my_list = [1,2,3]

new_list = my_fun(my_list)

print(my_list,new_list)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

1 2 3

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

1 2 3 4

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More Functions

Example

def my_fun (param):

 param=param.append(4)

 return param

my_list = [1,2,3]

new_list = my_fun(my_list)

print(my_list,new_list)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param

my_fun Namespace

4

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 2 3

Name value

my_list

Main Namespace

Name value

param None

my_fun Namespace

4

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Assignment to a Local

• assignment creates a local variable

• changes to a local variable affects only the

local context, even if it is a parameter and

mutable

• if a variable is assigned locally, it cannot

be referenced before this assignment,

even if it exists in main as well

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Default and Named Parameters

def box(height=10,width=10,depth=10,

 color= "blue"):

 ... do something ...

• the parameter assignment means two
things:

– if the caller does not provide a value, the
default is the parameter assigned value

– you can get around the order of parameters by
using the name

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Defaults

def box(height=10,width=10,length=10):

 print(height,width,length)

box() # prints 10 10 10

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Named Parameters

def box (height=10,width=10,length=10):

 print(height,width,length)

box(length=25,height=25)

 # prints 25 10 25

box(15,15,15) # prints 15 15 15

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Name Use Works in General Case

def my_fun(a,b):

 print(a,b)

my_fun(1,2) # prints 1 2

my_fun(b=1,a=2) # prints 2 1

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Default Arguments and Mutables

• one of the problem with default args

occurs with mutables

– the default value is created once, when the

function is defined, and stored in the function

name space

– a mutable can change the value of that

default

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Unusual Results

def fn1 (arg1=[], arg2=27):

 arg1.append(arg2)

 return arg1

my_list = [1,2,3]

print(fn1(my_list,4)) # [1, 2, 3, 4]

print(fn1(my_list)) # [1, 2, 3, 4, 27]

print(fn1()) # [27]

print(fn1()) # [27, 27]

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

fn1 Namespace

Name Value

arg1

arg2
27

• arg1 is either assigned to the passed

argument or to the function default for the

argument

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

fn1 Namespace

Name Value

arg1

arg2

27

27

• now the function default, a mutable, is

updated and will remain so for the next

call

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Functions as Objects and

docstrings

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Functions are Objects, Too!

• functions are objects, just like anything

else in Python

• as such, they have attributes:

__name__ : function name

__str__ : string function

__dict__ : function namespace

__doc__ : docstring

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Annotations

• you can associate strings of information,

ignored by Python, with a parameter

• to be used by the reader or user

• the colon ":" indicates the parameter

annotation

• the "->" annotation is associated with the

return value

• stored in dictionary,
name_fn.__annotations__

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

docstring

• if the first item after the def is a string,

then that string is specially stored as the

docstring of the function

• this string describes the function and is

what is shown if you do a help on a

function

• usually triple quoted since it is multi-lined

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

docstring

• every object (function, etc.) can have a

docstring

• it is stored as an attribute of the function (the
__doc__ attribute)

• listMean.__doc__

'Takes a list of integers, returns

the average of the list.'

• other programs can use the docstring to

report to the user (for example, Spyder)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example: Final Grade Program

• the following code shows how you can

read in a file of grades

• each line of the file contains five comma-

separated fields:
– last name

– first name

– exam1, exam2, final_exam

• print name and final grade

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.2

Weighted Grade

Function

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.3

parse_line

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def parse_line(line_str):

 ''' Expects a line of form last, first, exam1, exam2, final.

 returns a tuple containing first+last and list of scores. '''

 field_list = line_str.strip().split(',')

 name_str = field_list[1] + ' ' + field_list[0]

 score_list = []

 # gather the scores, now strings, as a list of ints

 for element in field_list[2:]:

 score_list.append(int(element))

 return name_str,score_list

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 8.4

main

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

def main ():

 ''' Get a line_str from the file,

 print the final grade nicely. '''

 file_name = input('Open what file:')

 grade_file = open(file_name, 'r')

 print('{:>13s} {:>15s}'.format('Name','Grade'))

 print('-'*30)

 for line_str in grade_file:

 name_str,score_list = parse_line(line_str)

 grade_float = weighted_grade(score_list)

 print('{:>15s} {:14.2f} '.format(name_str, grade_float))

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Arbitrary Arguments

• it is also possible to pass an arbitrary

number of arguments to a function

• the function simply collects all the

arguments (no matter how few or many) into

a tuple to be processed by the function

• tuple parameter preceeded by a * (which is

not part of the param name, its part of the

language)

• positional arguments only

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example
def aFunc(fixedParam,*tupleParam):

 print("fixed =" ,fixedParam)

 print ("tuple=" ,tupleParam)

aFunc(1,2,3,4)

prints fixed=1

 tuple=(2,3,4)

aFunc(1)

prints fixed=1

 tuple=()

aFunc(fixedParam=4)

prints fixed=4

 tuple=()

aFunc(tupleParam=(1,2,3),fixedParam=1)

Error!

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

lambda Functions

• lambda expressions are short functions

that are defined in-line

• can only contain a single expression

• cannot contain statements

• result is automatically returned

list.sort (key = lambda x: float(x[2]))

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Reminder, rules so far

1. Think before you program!

2. A program is a human-readable essay on problem

solving that also executes on a computer.

3. The best way to improve your programming and

problem solving skills is to practice!

4. A foolish consistency is the hobgoblin of little minds

5. Test your code, often and thoroughly

6. If it was hard to write, it is probably hard to read. Add a

comment.

7. All input is evil, unless proven otherwise.

8. A function should do one thing.

