chapter 8

More On Functions
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Scope

 definition: the set of program statements
over which a variable exists, I.e., can be
accessed

* |t IS about understanding, for any variable,
what its associated value is

 the problem is that multiple namespaces
might be involved
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Namespaces

« with Python, there are potentially multiple
namespaces that could be used to

determine the object associated with a
variable

 recall that a namespace Is an association
of name and objects

» we will begin by looking at functions
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Function Namespace

» each function maintains a namespace for
names defined locally within the
function

* |locally means one of two things:

— a nhame assigned within the function

— an argument received by invocation of the
function
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Passing Arguments

for each argument in the function
invocation, the argument’s associated

object is passed to the corresponding
parameter in the function
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Passing Immutable Objects
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arg =25
my_function( arg ) _
print(arg) def my_function( param ):

print(param)

- J

arg param
main Python my_function
namespace objects namespace

Function namespace: at function start.
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What Does “pass” Mean?

* the previous diagram should make it clear
that the parameter name is local to the
function namespace

* passing means that the argument and the
parameter, named In two different
namespaces, share an association with
the same object

“passing” therefore means “sharing” in
Python
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Assignment Changes
Association

* If a parameter Is assigned to a new value,
then just like any other assignment, a new
association is created

* this assignment does not affect the object
associated with the argument, as a new
association was made with the parameter

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.



arg =25
my_function( arg ) def my_function( param ):
print(arg) param = 32

print(param)

\ J

arg »@ param

main Python my_function
namespace objects namespace

Function namespace modified.
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Passing Mutable Objects
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Sharing Mutables

* when passing mutable data structures, It is
possible that If the shared object is directly
modified, both the parameter and the
argument reflect that change

* note that the operation must be a mutable
change, a change of the object

— an assignment is not such a change

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



arg_list=[1, 2, 3]

~\

my_function( arg_list ) def my_function( param_list ):
print(arg_list) param_list [0] = 100

\

print(param_list)

arg_list ——><—— param_list

main Python my_function
namespace objects namespace

Function namespace with mutable objects: at function start.
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arg_list =11, 2, 3] \
my_function( arg_list) » | def my_function( param_list ):
print(arg_list) param_list [0] = 100
print(param_list)

- J

arg_list ——»4—— param_list

main Python my_function
namespace objects namespace

Function namespace with mutable objects after param_1ist [0]=100.
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More on Functions
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Function Returns

 functions return one thing, but it
can be a ‘chunky’ thing (e.g., a tuple)

>>> def mirror (pair) :
""reverses first two elements;
assumes "pair" is as a collection with at least two elements '’
return pair([l], pair[0]

>>> mirror((2,3))

(3, 2) # the return was comma separated: implicitly handled as a tuple

>>> first,second = mirror((2,3)) # comma separated works on the left—hand—side also
>>> first

>>> second

>>> first, second # reconstruct the tuple

(3, 2)

>>> a_tuple = mirror((2,3)) # if we return and assign to one name, we get a tuple!
>>> a_tuple

(3, 2)
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Assignment in a Function

* If you assign a value in a function, that
name becomes part of the local
namespace of the function

* |t can have some odd effects
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Example

def my fun (param):
param. append (4)

return param

my list = [1,2,3]
new list = my fun(my list)

print (my list,new list)
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Main Namespace

Name value

my list

my_fun Namespace

Name value/
param
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Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

i
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Example

def my fun (param):
param=[1,2, 3]
param. append (4)
return param

my list = [1,2,3]
new list = my fun(my list)
print (my list,new list)
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Main Namespace

Name value

my list

my_fun Namespace

Name value/
param
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Main Namespace
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Example

def my fun (param):
param=param.append (4)
return param

my list = [1,2,3]
new list = my fun(my list)
print(my list,new list)
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Main Namespace

Name value

my list

my_fun Namespace

Name value/
param

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.



Main Namespace
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Main Namespace

Name

value

my list

my_fun Namespace

Name

value

param

None
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Assignment to a Local

» assignment creates a local variable

* changes to a local variable affects only the
local context, even if it Is a parameter and
mutable

* If a variable Is assigned locally, it cannot
be referenced before this assignment,
even If it exists in main as well
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Default and Named Parameters

def box (height=10,width=10,depth=10,
color= "blue" ):
do something ...

* the parameter assignment means two
things:
— If the caller does not provide a value, the
default is the parameter assigned value

— you can get around the order of parameters by
using the name
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Defaults

def box (height=10,width=10,length=10) :
print (height,width, length)

box () # prints 10 10 10
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Named Parameters

def box (height=10,width=10,length=10) :
print (height,width, length)

box (length=25,height=25)
# prints 25 10 25

box (15,15,15) # prints 15 15 15
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Name Use Works in General Case

def my fun(a,b):
print(a,b)

my fun(1,2) #prints 12
my fun(b=1,a=2) #prints21
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Default Arguments and Mutables

one of the problem with default args
occurs with mutables

— the default value Is created once, when the
function iIs defined, and stored in the function
name space

— a mutable can change the value of that
default
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Unusual Results

def fnl (argl=[], arg2=27):
argl . append (arg2)

return arqgl

my list = [1,2,3]
print (fnl (my list,4)) #[1, 2, 3, 4]
print (fnl (my list)) #[1, 2, 3, 4, 27]
print (£fnl () ) #[27]

print (£fnl () ) # 27, 27]
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argl is either assigned to the passed
argument or to the function default for the
argument

fnl Namespace

argl

arg2 =

27
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now the function default, a mutable, Is
updated and will remain so for the next
call

fnl Namespace

argl 27

arg2 =

27
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Functions as Objects and
docstrings
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Functions are Objects, Too!

 functions are objects, just like anything
else in Python

* as such, they have attributes:
__hame__ : function name
str__ : string function
__dict__ : function namespace
doc__ : docstring
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Function Annotations

you can associate strings of information,
ignored by Python, with a parameter

to be used by the reader or user

the colon ":" Indicates the parameter
annotation

the "->" annotation I1s assoclated with the
return value

stored In dictionary,
name_fn . annotations
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def my_func (paraml : int, param2 : float) -> None
print ('Result is:', paraml + param2)

>>> my_func(l, 2.0)
Result is: 3.0

>>> my_func(l, 2)
Result is: 3

>>> my_func('a', 'b')
Result is: ab

>>>

def my_func (paraml : int, param2 : float) -> None
print ('Result is:', paraml + param2)

>>> my_func.__annotations__
{'return': None, 'param2': <class 'float's, 'paraml': <class 'int's>}

>>>
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docstring

* If the first item after the def Is a string,
then that string Is specially stored as the
docstring of the function

* this string describes the function and Is
what is shown if you do a help on a
function

 usually triple quoted since it is multi-lined
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docstring

* every object (function, etc.) can have a
docstring

* |t IS stored as an attribute of the function (the
doc attribute)

e l1stMean. doc

'Takes a list of integers, returns
the average of the 1list.'

» other programs can use the docstring to
“ report to the user (for example, Spyder)
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Example: Final Grade Program

* the following code shows how you can
read In a file of grades

 each line of the file contains five comma-

separated fields:

— last name

— first name

— examl, examz2, final_exam

 print name and final grade
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Code Listing 8.2
Weighted Grade

Function
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1 def weighted_grade(score_list, weights_tuple=(0.3,0.3,0.4)):

2

3

4

5

rrr

grade_float = \

Expects 3 elements in score _list. Multiples each grade
by its weight. Returns the sum.

rrr

(score_list [0] *weights_tuple[0]) +\
(score_list[1] *weights_tuple[1]) +\
(score_1list[2] *welghts_ tuplel[2])

return grade_float
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Code Listing 8.3
parse _line
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def parse line(line_ str):
'''" Expects a line of form last, first, examl, exam2, final.
returns a tuple containing first+last and list of scores. '''

field list = line str.strip() .split(',"')
name str = field list[l] + ' ' + field 1list[O0]

score list = []

# gather the scores, now strings, as a list of ints
for element in field list[2:]:

score list.append(int (element))

return name str,score list
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Code Listing 8.4
main
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def main ():
''' Get a line str from the file,

print the final grade nicely.

LI |

file name = input('Open what file:')
grade file = open(file name, 'r')

print('{:>13s} {:>15s}'.format('Name',6 'Grade'))
print('-"'*30)

for line str in grade file:
name str,score_ list = parse line(line_str)

grade float = weighted grade(score list)

print('{:>15s} {:14.2f} '.format(name str, grade float))
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Arbitrary Arguments

* |t IS also possible to pass an arbitrary
number of arguments to a function

* the function simply collects all the
arguments (no matter how few or many) into
a tuple to be processed by the function

 tuple parameter preceeded by a * (which is
not part of the param name, its part of the

anguage)

positional arguments only
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Example

def aFunc (fixedParam, *tupleParam) :

print ("fixed =" ,fixedParam)
print ("tuple=" ,tupleParam)
aFunc(1l,2,3,4)

prints fixed=1
tuple=(2,3,4)
aFunc (1)
prints fixed=1
tuple=()
aFunc (fixedParam=4)
prints fixed=4
tuple=()
aFunc (tupleParam=(1,2,3) ,fixedParam=1)
S Error!
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lambda Functions

* lambda expressions are short functions
that are defined in-line

* can only contain a single expression
* cannot contain statements
* result is automatically returned

list.sort (key = lambda x: float(x[2]))
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Reminder, rules so far

Think before you program!

A program is a human-readable essay on problem
solving that also executes on a computer.

The best way to improve your programming and
problem solving skills is to practice!

A foolish consistency is the hobgoblin of little minds
Test your code, often and thoroughly

If it was hard to write, it is probably hard to read. Add a
comment.

All input is evil, unless proven otherwise.
A function should do one thing.
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