chapter 9

Dictionaries and Sels

PEARSON

THE PRACTICE OF COMPUTING USING

HG

3RD EDITION °

}

r;
P I 4
L

.

o" ‘.

p"
‘d

< 4
~

a&&ooo‘,f
& It &%
'

o s A
i s

A\

AR
232338

S~

WILLIAM RICHARD
PUNCH - ENBODY

ALWAYS LEARNING

More Data Structures

 we have seen the list data structure and
what it can be used for

« we will now examine two more advanced
data structures, the set and the dictionary

* In particular, the dictionary Is an important,
very useful part of Python, as well as
generally useful to solve many problems

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Dictionaries

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

What Is a Dictionary?

* In data structure terms, a dictionary Is
better termed an associative array,
associative list or a map

* you can think If it as a list of pairs, where
the first element of the pair, the key, Is
used to retrieve the second element, the

value
 thus, we map a key to a value

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Key/Value Pairs

 the key acts as an index to find the
assoclated value

* Just like a dictionary, you look up a word
by its spelling to find the associated
definition

 a dictionary can be searched to locate the
value associated with a key

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Python Dictionary

 Use the { } marker to create a dictionary

* Use the : marker to indicate key:value
pairs

contacts= {'bill': '353-1234'",

'rich': '269-1234', 'jane': '352-1234'}
print contacts
{'jJane': '352-1234"',

'bill': '353-1234',

'rich': '369-1234"'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Contacts Phone numbers

‘bill’

‘rich’

‘jane’

FIGURE 9.1 Phone contact list: names and phone numbers.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Keys and Values

* key must be immutable
— strings, integers, tuples are fine
— lists are NOT

 value can be anything

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Collection But Not a Segquence

* dictionaries are collections but they are not
seguences, such as lists, strings or tuples

— there 1s no order to the elements of a
dictionary

— In fact, the order (for example, when printed)

might change as elements are added or
deleted.

* S0 how to access dictionary elements?

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Access Dictionary Elements

e accessrequires [1, but the key Is the

iIndex!

my dict={}
—an empty dictionary
my dict['bill']=25
— added the pair 'bill":25
print (my dict['bill'])
— prints 25

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionaries are Mutable

* like a list, a dictionary Is a mutable data
structure

— you can change the object via various
operations, such as index assignment

my dict = {'bill':3, 'rich':10}

print (my dict['bill']) # prints 3
my dict['bill'] = 100
print (my dict['bill']) # prints 100

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Again, Common Operators

* like others, dictionaries respond to these
—len(my dict)
* number of key:value pairs in the dictionary
—element in my dict
* boolean, is element a key In the dictionary
—for key in my dict:
* Iterates through the keys of a dictionary

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Fewer Methods

* only nine methods In total; here are some:
— key in my dict
does the key exist in the dictionary
- my dict.clear () —empty the dictionary

- my dict.update (yourDict) — for each key In
yourDict, updates my dict with that key/value
pair

- my dict.copy - shallow copy

- my dict.pop (key)-—remove key, return value

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionary Content Methods

my dict.items () — all the key/value pairs
my dict.keys () —all the keys
my dict.values () — all the values

 these return what is called a dictionary
view.

— the order of the views corresponds
— are dynamically updated with changes
— are iterable

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Views are lterable

for key in my dict:
print key
— prints all the keys
for key,value in my dict.items():
print key,value
— prints all the key/value pairs
for value in my dict.values():
print value
— prints all the values

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my dict = {'a':2, 3:['x'", 'y'], 'Joe':'smith}

>>> dict_value_view = my_dict.values ()
>>> dict value view
dict_values([2, ['x', 'y']l, 'smith'])
>>> type(dict_value_view)
<class 'dict_values'>
>>> for val in dict_wvalue_ view:

print (val)

2

['x", 'y']

smith

>>> my_dict['new_key'] = 'new_value'

>>> dict_value_view

dict_values([2, 'new_value', ['x', 'y'l, 'smith'l])

>>> dict_key_view = my_dict.keys /()

dict_keys(['a', 'new_key', 3, 'joe'l)

>>> dict_value_view

dict_values([2, 'new_value', ['x', 'y'l, 'smith'])

>>>

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Freqguency of Words In List
3 Ways

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Membership Test

count dict ={}
for word in word_list:
if word in count_dict:
count _dict [word] += 1
else:
count _dict [word] = 1

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Exceptions

count_dict ={}
for word in word_list:
try:
count_dict [word] += 1
except KeyError:
count_dict [word] = 1

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

get Method

* the get method returns the value

assoclated with a dictionary key or a
default value provided as second
argument. Below, the default is O

count dict ={}
for word in word list:
count_dict [word] = count_dict.get (word,0) + 1

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Word Frequency
Gettysburg Address

Code Listings 9.2-9.5

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Four Dictionary Functions

« add word(word, word dict) adds
word to the dictionary; no return

* process line(line, word dict).
processes line and identifies words; calls
add word ; no return.

« pretty print(word dict). nice
printing of the dictionary contents; no
return

f\ main () function to start the program
"The Practice of Computing Using Python, 3 Editio

Punch & Enbody, Copyright © 2017 Pearson Educato Inc.

Passing Mutables

* pbecause we are passing a mutable data
structure, a dictionary, we do not have to
return the dictionary when the function
ends

* If all we do Is update the dictionary
(change the object), then the argument will
be associated with the changed object

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 def add word (word, word count dict) :

Update the word frequency: word is the key, frequency is the value.

2

3

4

5

rr

if word in word count dict:

word_ count dict [word]
else:
word_count dict [word]

+= 1

1

rrs

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 ilmport string
» def process_line(line, word_count_dict) :

3

4

5

10
11
12

13

rr

"""Process the line to get lowercase words to add to the dictionary.
line = line.strip()
word_list = line.split ()
for word in word_list:
ignore the '——' that is in the file
if word != '--':
word = word.lower ()
word = word.strip()
get commas, periods and other punctuation out as well
word = word.strip(string.punctuation)
add_word (word, word_count_dict)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sorting In Pretty Print

 the sort method works on lists, so If we
sort we must sort a list

» for complex elements (like a tuple), the
sort compares the first element of each
complex element:

(1, 3) < (2, 1) # True
(3,0) < (1,2,3) # False

 a list comprehension (commented out) Is
the equivalent of the code below it

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 def pretty_print (word_count_dict) :

10

11

12

13

14

15

""'Print nicely from highest to lowest frequency.

create a list of tuples, (value, key)

value key _list = [(val, key) for key,val in d.items()]

value_key_list=1[]

for key,val in word_count_dict.items() :
value_key_list.append((val,key))

sort method sorts on list's first element, the frequency.

Reverse to get biggest first

value_key_list.sort (reverse=True)

value key _list = sorted ([(v, k) for k,v in value_key_list.items ()],

reverse=1rue)

print ('{:11s}{:11s}'.format ('Word', 'Count'))
print('_'*21)
for val,key in value_key list:

print ('{:12s5} {:<3d}'.format (key,val))

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 def main () :

2

word_count_dict={}
gba_file = open('gettysburg.txt',6 'r')
for line in gba_file:
process_line(line, word_count_dict)
print ('Length of the dictionary:',6 len(word_count_dict))
pretty_print (word_count_dict)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Periodic Table Example

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Comma Separated Values (csv)

» csv files are a text format that are used by
many applications (especially
spreadsheets) to exchange data as text

* row-oriented representation where each

line Is a row, and elements of the row
(columns) are separated by a comma

* despite the simplicity, there are variations
and we'd like Python to help

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

csv Module

e csv.reader takes an opened file object

as an argument and reads one line at a
time from that file

* Each line Is formatted as a list with the
elements (the columns, the comma
separated elements) found in the file

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Encodings Other Than UTF-8

* this example uses a csv file encoded with
characters other than UTF-8 (our default)

— In particular, the symbol + occurs

* can solve by opening the file with the
correct encoding, In this case windows-
1252

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

>>> import csv
>>> periodic_file = open("Periodic-Table.csv", "r",encoding="windows-1252")
>>> reader = csv.reader (periodic_file)
>>> for row in reader:
print (row)

some of the output data

['2' 'He', '18', 'VvIiir A', '1', '"helium', '4.003', '0', '', '', ...]
['3 'p,i', '1*, 'r A, '2', 'lithium', '6.941', '+1', ‘', ‘', ...]

['4' '"Be', '2', 'IT A', '2'", 'beryllium', '9.012', '+2', '', '', ...]
[*5'", 'B', '13', 'I1IT A', '2', 'bOron', '10.81', '+3', ‘', ', ...]

etc. etc.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.8
periodic table

(one file, two parts)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

import csv

def read table(a file, a dict):

mwimn

data reader = csv.reader(a file)
for row in data reader:

if row[0].isdigit () :
symbol str = rowl[l]
a dict[symbol str] = row[:8]

def parse element (element str):

mwwmn

symbol str=""
quantity str = ""
for ch in element str:
if ch.isalpha() :
symbol str = symbol str + ch
else:
quantity str = quantity str + ch
if quantity str == "":
quantity str = "I"
return symbol str, int(quantity str)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

periodic file = open("Periodic-Table.csv", "r",encoding="windows-1252")

periodic dict={}
read table(periodic file, periodic dict)

compound str = input ("Input a chemical compound, hyphenated, e.g. C-02: ")
compound list = compound str.split("-")

mass float = 0.0
print ("The compound is composed of: ", end=' ")

5. Parse compound 1ist into symbol-quantity pairs, print name, and add mass
for ¢ in compound list:

symbol str, quantity int = parse element (c)
print (periodic dict[symbol str][5], end="' ')
mass_float = mass float + quantity int *\

float (periodic dict[symbol str][6])
print ("\n\nThe atomic mass of the compound is", mass float)

periodic file.close ()

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sets

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sets, as In Mathematical Sets

* In mathematics, a set is a collection of
objects, potentially of many different types
* |In a set, no two elements are identical

—that IS, a set consists of elements each of
which is unigue compared to the other
elements

* there Is no order to the elements of a set
* a set with no elements Is the empty set

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Creating a Set

* a set can be created Iin one of two ways:

— constructor: set (iterable) where the
argument is iterable

my set = set('abc')
my set 2 {'a', 'b', 'c'}
e shortcut: {}, braces where the elements

have no colons (to distinguish them from
dicts)

my set = {'a', 'b','c'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Diverse Elements

e a set can consist of a mixture of different
types of elements

my set = {'a',1,3.14159,True}

 as long as the single argument can be
iterated through, you can make a set of it

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

No Duplicates

 duplicates are automatically removed

my set = set("aabbccdd")
print (my set)
9 {vav, 'C', 'b', 'd'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

>>> null_set = set() # set() creates the empty set
>>> null set

set ()

>>> a_set = {1,2,3,4} # no colons means set

>>> a_set

{1, 2, 3, 4}

>>> b_set = {1,1,2,2,2} # duplicates are ignored
>>> b set

{1, 2}

>>> c_set = {'a', 1, 2.5, (5,6)} # different types is OK
>>> C_set

{(5, 6), 1, 2.5, 'a'}

>>> a_set = set("abcd") # set constructed from iterable
>>> a_set
{ra', 'c¢', 'b', 'd'} # order not maintained!

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common Operators

* most data structures respond to these:
— len (my set)
* the number of elements in a set
—element in my set

— boolean indicating whether element is in the
set
— for element in my set:

— Iterate through the elements inmy_set

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Set Operators

 the set data structure provides some
special operators that correspond to the
operators you learned in middle school

e these are various combinations of set
contents

 these operations have both a method
name and a shortcut binary operator

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: intersection, Op: &
a set=set("abcd") b set=set("cdef")

a set & b set 2 {'c', 'd'}
b set.intersection(a_set) 2 {'ec', 'd'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: difference, Op: -

a set=set("abcd") b set=set('"cdef")

a set - b set 2 {'a', 'b'}
b set.difference(a set) > {'e', 'f'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: union, Op: |

a set=set("abcd") b set=set ("cdef")

-6)-

a set | b set > {'a', 'b', 'c', 'd', 'e', '"f'}
b_set.un:l.on(a_set) 9 {'a', 'b', 'e¢', 'd', 'e',
|f|}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method:
symmetric difference, Op:

a set=set("abcd"); b set=set("cdef")

-

a set ~ b set 2 {'a', 'b', 'e', 'f'}
b_set symmetric difference(a set) =2 {'a', 'b',
@ 'e', 'f'}

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: issubset, Op: <=
Method: issuperset, Op: >=

small set=set("abc"); big set=set ("abcdef")

small set <= big set > True
» big set >= small set > True

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Other Set Ops

my set.add("g")

— adds to the set, no effect if item Is In set already
my set.clear()

— empties the set

my set.remove ("g'") Versus
my set.discard("g")

— remove throws an error If "g" isn't there
— discard doesn't care

— both remove "g" from the set
my set.copy ()

* — returns a shallow copy of my set

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Copy vs. Assignment

my set=set {'a', 'b', 'c'}
my copy=my set.copy ()

my ref copy=my set

my set.remove('b')

my set

myRefCopy

myCopy

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common/Unique words
Code Listings 9.9-9.12

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common words In the Gettysburg Address
and the Declaration of Independence

» can reuse or only slightly modify much of
the code for document frequency

 the overall outline remains much the same

« for clarity, we will ignore any word that has
three characters or less (typically stop
words)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Four Set Functions

« add word(word, word set) add word
to the set (instead of dict); no return

* process line(line, word set)
process line and identify words; calls
add word; no return (no change except
for parameters)

« pretty print(word set) nice printing
of the various set operations; no return

 main () function to start the program

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 def add word(word, word set) :

) """Add the word to the set. No word smaller than length 3. """
3 if len(word) > 3:
4 word set.add (word)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1 import string
» def process_line(line, word_set) :

3

4

5

10

11

12

13

rrr

line = line.strip()
word_list = line.split ()
for word in word list:

Process the line to get lowercase words to be added to the set.

rrr

ignore the '——"that is in the file

if word != '"--"':
word = word.strip()

get commas, periods and other punctuation out as well
word = word.strip(string.punctuation)

word = word.lower ()
add_word (word, word_ set)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More Complicated Pretty Print

* the pretty print function applies the

various set operators to the two resulting
sets

 prints, In particular, the intersection in a
nice format

 should this have been broken up into two
functions??

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

1

2

3
4

20

21

22

23

24

def pretty print(ga_set, doi_set):

print some stats about the two sets
print (' Count of unique words of length 4 or greater')
print ('Gettysburg Addr: {}, Decl of Ind: {}\n'.format (len(ga_set),len

doi_set)))

print ('{:15s} {:15s}'.format ('Operation',

print ('-'*35)

print ('{:15s} {:15d}'.format ('Union',

print ('{:15s} {:15d}'.format (' Intersection',
doi_set))))

print ('{:15s} {:15d}'.format ('Sym Diff"',
doi_set))))

print ('{:15s} {:15d}'.format ('GA-DoI"',

print ('{:15s} {:15d}'.format ('DoI-GA",

[ist the intersection words, 5 to a line,
= ga_set.intersection(doi_set)

intersection_set
word_1list = list(intersection_set)
word_1list.sort ()

print (' \n Common words to both')
print('-'*20)

count = 0

for w in word_list:

if count ¥ 5 == 0:
print ()
print ('{:13s}'.format (w), end='

count += 1

'Count'))

len(ga_set.union(doi_set))))
len(ga_set.intersection (

len(ga_set.symmetric_difference (

len(ga_set.difference(doi_set))))
len(doi_set.difference(ga_set))))

alphabetical order

")

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More on Scope

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Namespace Review

* @ hamespace Is an association of a name
and a value

* It looks like a dictionary, and for the most
part it Is (at least for modules and classes)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Scope

* the namespace you might be using Is part
of identifying the scope of the variables
and function you are using

* by "scope" we mean the context, the part
of the code, where we can make a
reference to a variable or function

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Multiple Scopes

 often, there can be multiple scopes that
are candidates for determining a
reference.

* knowing which one is the right one (or
more importantly, knowing the order of
scopes) Is Important

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Two Kinds of Namespaces

* ungqualified namespaces: what we have
pretty much seen so far — functions,
assignments etc.

« qualified namespaces: modules and
classes (we'll talk more about this one
later In the classes section)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Unqgualified

* this Is the standard assignment and def we
have seen so far

* determining the scope of a reference
identifies what its true 'value' is

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

LEGB Rule for Unqualified

 |local — inside the function in which It was
defined

* enclosing/encompassing — Is it defined
In an enclosing function?

* global
* bulilt-in — finally, defined as part of the
special built-in scope
* else ERROR

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.13

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

locals () Function

 returns a dictionary of the current
(presently in play) local namespace

 useful for looking at what is defined where

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Local Values

* If a reference Is assigned in a function,
then that reference is only available within
that function

* If a reference with the same name Is
provided outside the function, the
reference Is reassigned

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

global_X = 27

def my_ function(paraml=123, param2='hi mom') :
local X = 654.321
print (' \n=== local namespace ===')
for key,val in locals() .items() :
print ('key:{}, object:{}'.format (key, str(val)))
print ('local_ X:',6local_X)
print ('global_X:',global_ X)

my_function ()

=== local namespace ===

key:local_X, object:654.321 gIObaI |S Stl” found

key:paraml, object:123

key:param2, object:hi mom because Of the

local X: 654.321

global X: 27 sequence of namespace
search

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.14

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

globals () Function

 like the 1locals () function, the
globals () function will return as a

dictionary the values in the global
namespace

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

import math
global X = 27

def my_ function(paraml=123, param2='hi mom') :
local X = 654.321
print (' \n=== local namespace ===')
for key,val in locals() .items() :
print ('key: {}, object: {}'.format (key, str(val)))
print ('local_X:',6 local_X)
print('global_X:',global_ X)

my function()

key,val = 0,0 # add to the global namespace. Used below
print (' \n--- global namespace ---')

for key,val in globals() .items() :
print ('key: {:15s} object: {}'.format (key, str(val)))

print('\n-------\-----—\-—~-—\——\-——~-—-—- ")
#print 'Local X:', local X

print ('Global_ X:', global_X)
print('Math.pi:',math.pi)
print('Pi:',pi)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

=== local namespace ===

key: local X, object: 654.321
key: paraml, object: 123

key: param2, object: hi mom
local X: 654.321

global X: 27

--- global namespace ---

key: my_function object: <function my_function at 0xel5a30>

key: __builtins__ object: <module '__builtin__' (built-in)>

key: __package__ object: None

key: global_X object: 27

key: __name_ _ object: _ _main_ _

key: __doc__ object: None

key: math object: <module 'math' from '/Library/Frameworks/Python.

framework/Versions/3.2/1ib/python3.2/1ib-dynload/math.so'>

Global X: 27
Math.pi: 3.14159265359
Pi:

Traceback (most recent call last):
File "/Volumes/Admin/Book/chapterDictionaries/localsAndGlobals.py", line 22, in
<module>
print ('Pi:',pi)
NameError: name 'pi' is not defined

"The Practice of Computing Using Python, 3" Edition"

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Global Assignment Rule

* a quirk of Python

* If an assignment occurs anywhere in the
suite of a function, Python adds that
variable to the local namespace

* even If the variable Is assigned later in the
suite, the variable is still local

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.15

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my_var = 27

def my_ function(paraml=123, param2='Python') :
for key,val in locals() .items() :
print ('key {}: {}'.format (key, str(val)))
my_var = my_var + 1

my_function (123456, 765432.0)

key param2: 765432.0
key paraml: 123456
Traceback (most recent call last):
File "lIocalAssignmentl.py", line 9, in <module>
my_function (123456, 765432.0)
File "localAssignmentl.py", line 7, in my_function
my_var = my_var + 1
UnboundLocalError: local variable 'my_var' referenced before assignment

my var IS local (is in the local namespace)
because It Is assigned In the suite

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

The global Statement

* you can tell Python that you want the
object associated with the global, not local
namespace, using the global statement

* avoids the local assignment rule

* should be used carefully as it is an over-
ride of normal behavior

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.16

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my_var = 27

def my_function(paraml=123, param2='Python') :
for key,val in locals() .items() :
print ('key {}: {}'.format (key, str(val)))
my_var = my_var + 1 # causes an errvor!

def better_function(paraml=123, param2='Python') :
global my_var
for key,val in locals() .items() :
print ('key {}: {}'.format (key, str(val)))
my_var = my_var + 1
print ('my_var:', my_var)

my_function (123456, 765432.0)

better function/()

key param2: Python
key paraml: 123
my_var: 28

my var IS not in the local namespace

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

built-in

* Just the standard library of Python
* to see what is there, look at
import builtin
dir(builtin)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Enclosed

 functions which define other functions in a
function suite are enclosed, defined only
In the enclosing function

 the Inner/enclosed function Is then part of
the local namespace of the
outer/enclosing function

* remember, a function is an object too!

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.18

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

global _wvar = 27

def outer_function(param_outer = 123):
outer_var = global_var + param_outer

def inner_ function (param_inner = 0) :
get inner, enclosed and global

inner_var = param_inner + outer_var + global_var

print inner namespace
print (' \n--- inner local namespace ---')
for key,val in locals() .items() :

print ('{}:{}'.format (key, str(val)))
return inner_var

result = inner function(outer var)
pfint outer namespace
print (' \n--- outer local namespace ---')

for key,val in locals() .items() :
print ('{}:{}'.format (key, str(val)))
return result

result = outer function(7)
print (' \n--- result ---")
print ('Result:',result)

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

--- inner local namespace ---
outer_var:34

inner_var:95

param_Inner:34

--- outer local namespace ---

outer_var:34

param_Outer:7/

result:95

inner_ function:<function inner_ function at 0xe2ba30>

o mEEulEe oo
Result: 95

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Building Dictionaries Faster

« zip creates pairs from two parallel lists
zip("abec",[1,2,3]) yields
[('a’',1),('D',2),('c',3)]

» good for building dictionaries

 also call the dict function which takes a

list of pairs to make a dictionary
dict (zip("abec",[1,2,3])) vyields
{'a': 1, 'e': 3, 'b': 2}

Th Practice of Computing Using Python, 3 Edition",
nch & En b ody, Copyright © 2017 Pearson Education, Inc.

Dictionary and Set
Comprehensions

* like list comprehensions, you can write
shortcuts that generate either a dictionary
or a set, with the same control you had
with list comprehensions

* both are enclosed with {} (remember, list
comprehensions were in [])

» difference is If the collected itemis a :
separated pair or not

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionary Comprehension

>>> a_dict = {k:v for k,v in enumerate('abcdefg') }

>>> a_dict

{O: 'a', 1: 'b', 2: 'c¢', 3: 'd', 4: 'e', 5: 'f', 6: 'g'}
>>> b_dict = {v:k for k,v in a_dict.items() }

>>> b _dict

{'a': o, '¢': 2, 'b': 1, 'e': 4, '4d': 3, 'g': 6, 'f': 5}
>>> sorted(b_dict)

['a', 'b', 'c', 'd', 'e', 'f', 'g']

>>> b list = [(v,k) for v,k in b _dict.items ()]

>>> sorted(b_list)

[('a', 0), ('b', 1), ('c¢', 2), ('d', 3), ('e', 4), ('f', 5), ('g', 6)]

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Set Comprehension

>>> a_set = {ch for ch in 'to be or not to be'}

>>> a_set

{ ', 'p', 'e', ‘o', 'n', 'r', 't'} # set of unique characters
>>> gsorted(a_set)

[* ', 'b', 'e', 'n', 'o', 'r', 't']

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

o

Reminder, rules so far

Think before you program!

A program is a human-readable essay on problem
solving that executes on a computer.

The best way to improve your programming and
problem solving skills is to practice!

A foolish consistency is the hobgoblin of little minds
Test your code, often and thoroughly

If it was hard to write, it is probably hard to read. Add a
comment.

All input is evil, unless proven otherwise.
A function should do one thing.

"The Practice of Computing Using Python, 3 Edition",
Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

