
chapter 9

Dictionaries and Sets

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More Data Structures

• we have seen the list data structure and

what it can be used for

• we will now examine two more advanced

data structures, the set and the dictionary

• in particular, the dictionary is an important,

very useful part of Python, as well as

generally useful to solve many problems

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionaries

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

What is a Dictionary?

• in data structure terms, a dictionary is

better termed an associative array,

associative list or a map

• you can think if it as a list of pairs, where

the first element of the pair, the key, is

used to retrieve the second element, the

value

• thus, we map a key to a value

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Key/Value Pairs

• the key acts as an index to find the

associated value

• just like a dictionary, you look up a word

by its spelling to find the associated

definition

• a dictionary can be searched to locate the

value associated with a key

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Python Dictionary

• Use the { } marker to create a dictionary

• Use the : marker to indicate key:value

pairs

contacts= {'bill': '353-1234',

 'rich': '269-1234', 'jane': '352-1234'}

print contacts

{'jane': '352-1234',

 'bill': '353-1234',

 'rich': '369-1234'}

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Keys and Values

• key must be immutable

– strings, integers, tuples are fine

– lists are NOT

• value can be anything

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Collection But Not a Sequence

• dictionaries are collections but they are not

sequences, such as lists, strings or tuples

– there is no order to the elements of a

dictionary

– in fact, the order (for example, when printed)

might change as elements are added or

deleted.

• So how to access dictionary elements?

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Access Dictionary Elements

• access requires [], but the key is the

index!

 my_dict={}

– an empty dictionary

 my_dict['bill']=25

– added the pair 'bill':25

 print(my_dict['bill'])

– prints 25

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionaries are Mutable

• like a list, a dictionary is a mutable data

structure

– you can change the object via various

operations, such as index assignment

my_dict = {'bill':3, 'rich':10}

print(my_dict['bill']) # prints 3

my_dict['bill'] = 100

print(my_dict['bill']) # prints 100

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Again, Common Operators

• like others, dictionaries respond to these

– len(my_dict)

• number of key:value pairs in the dictionary

– element in my_dict

• boolean, is element a key in the dictionary

– for key in my_dict:

• iterates through the keys of a dictionary

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Fewer Methods

• only nine methods in total; here are some:
– key in my_dict

 does the key exist in the dictionary

– my_dict.clear() – empty the dictionary

– my_dict.update(yourDict) – for each key in
yourDict, updates my_dict with that key/value
pair

– my_dict.copy - shallow copy

– my_dict.pop(key)– remove key, return value

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionary Content Methods

• my_dict.items() – all the key/value pairs

• my_dict.keys() – all the keys

• my_dict.values() – all the values

• these return what is called a dictionary
view.

– the order of the views corresponds

– are dynamically updated with changes

– are iterable

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Views are Iterable
for key in my_dict:

 print key

– prints all the keys

for key,value in my_dict.items():

 print key,value

– prints all the key/value pairs

for value in my_dict.values():

 print value

– prints all the values

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my_dict = {'a':2, 3:['x', 'y'], 'joe':'smith}

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Frequency of Words in List

3 Ways

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Membership Test

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Exceptions

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

get Method

• the get method returns the value

associated with a dictionary key or a

default value provided as second

argument. Below, the default is 0

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Word Frequency

Gettysburg Address

Code Listings 9.2-9.5

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Four Dictionary Functions

• add_word(word, word_dict) adds

word to the dictionary; no return

• process_line(line, word_dict).

processes line and identifies words; calls
add_word ; no return.

• pretty_print(word_dict). nice

printing of the dictionary contents; no

return

• main() function to start the program

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Passing Mutables

• because we are passing a mutable data

structure, a dictionary, we do not have to

return the dictionary when the function

ends

• if all we do is update the dictionary

(change the object), then the argument will

be associated with the changed object

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sorting in Pretty Print
• the sort method works on lists, so if we

sort we must sort a list

• for complex elements (like a tuple), the

sort compares the first element of each

complex element:

(1, 3) < (2, 1) # True

(3,0) < (1,2,3) # False

• a list comprehension (commented out) is

the equivalent of the code below it

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Periodic Table Example

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Comma Separated Values (csv)

• csv files are a text format that are used by

many applications (especially

spreadsheets) to exchange data as text

• row-oriented representation where each

line is a row, and elements of the row

(columns) are separated by a comma

• despite the simplicity, there are variations

and we'd like Python to help

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

csv Module

• csv.reader takes an opened file object

as an argument and reads one line at a

time from that file

• Each line is formatted as a list with the

elements (the columns, the comma

separated elements) found in the file

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Encodings Other Than UTF-8

• this example uses a csv file encoded with

characters other than UTF-8 (our default)

– in particular, the symbol ± occurs

• can solve by opening the file with the
correct encoding, in this case windows-

1252

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.8

periodic table

(one file, two parts)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

import csv

def read_table(a_file, a_dict):

 """Read Periodic Table file into a dict. with element symbol as key.

 periodic_file is a file object opened for reading """

 data_reader = csv.reader(a_file)

 for row in data_reader:

 # ignore header rows: elements begin with a number

 if row[0].isdigit():

 symbol_str = row[1]

 a_dict[symbol_str] = row[:8] # ignore end of row

def parse_element(element_str):

 """Parse element string into symbol and quantity,

 e.g. Si2 returns ('Si',2)"""

 symbol_str=""

 quantity_str = ""

 for ch in element_str:

 if ch.isalpha():

 symbol_str = symbol_str + ch

 else:

 quantity_str = quantity_str + ch

 if quantity_str == "": # if no number, default is 1

 quantity_str = "1"

 return symbol_str, int(quantity_str)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

1. Read File

periodic_file = open("Periodic-Table.csv", "r",encoding="windows-1252")

2. Create Dictionary of Periodic Table using element symbols as keys

periodic_dict={}

read_table(periodic_file, periodic_dict)

3. Prompt for input and convert compound into a list of elements

compound_str = input("Input a chemical compound, hyphenated, e.g. C-O2: ")

compound_list = compound_str.split("-")

4. Initialize atomic mass

mass_float = 0.0

print("The compound is composed of: ", end=' ')

5. Parse compound list into symbol-quantity pairs, print name, and add mass

for c in compound_list:

 symbol_str, quantity_int = parse_element(c)

 print(periodic_dict[symbol_str][5], end=' ') # print element name

 mass_float = mass_float + quantity_int *\

 float(periodic_dict[symbol_str][6]) # add atomic mass

print("\n\nThe atomic mass of the compound is", mass_float)

periodic_file.close()

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sets

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Sets, as in Mathematical Sets

• in mathematics, a set is a collection of

objects, potentially of many different types

• in a set, no two elements are identical

– that is, a set consists of elements each of

which is unique compared to the other

elements

• there is no order to the elements of a set

• a set with no elements is the empty set

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Creating a Set

• a set can be created in one of two ways:
– constructor: set(iterable) where the

argument is iterable

 my_set = set('abc')

 my_set  {'a', 'b', 'c'}

• shortcut: {}, braces where the elements
have no colons (to distinguish them from
dicts)

 my_set = {'a', 'b','c'}

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Diverse Elements

• a set can consist of a mixture of different

types of elements

 my_set = {'a',1,3.14159,True}

• as long as the single argument can be

iterated through, you can make a set of it

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

No Duplicates

• duplicates are automatically removed

 my_set = set("aabbccdd")

 print(my_set)

  {'a', 'c', 'b', 'd'}

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Example

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common Operators

• most data structures respond to these:
– len(my_set)

• the number of elements in a set

– element in my_set

– boolean indicating whether element is in the
set

– for element in my_set:

– iterate through the elements in my_set

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Set Operators

• the set data structure provides some

special operators that correspond to the

operators you learned in middle school

• these are various combinations of set

contents

• these operations have both a method

name and a shortcut binary operator

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: intersection, Op: &
a_set=set("abcd") b_set=set("cdef")

a_set & b_set  {'c', 'd'}

b_set.intersection(a_set)  {'c', 'd'}

 e f a b c d

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: difference, Op: -
a_set=set("abcd") b_set=set("cdef")

a_set – b_set  {'a', 'b'}

b_set.difference(a_set)  {'e', 'f'}

 e f a b c d

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: union, Op: |
a_set=set("abcd") b_set=set("cdef")

a_set | b_set  {'a', 'b', 'c', 'd', 'e', 'f'}

b_set.union(a_set)  {'a', 'b', 'c', 'd', 'e',

'f'}

 a b c d e f

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method:
symmetric_difference, Op: ^

a_set=set("abcd"); b_set=set("cdef")

a_set ^ b_set  {'a', 'b', 'e', 'f'}

b_set.symmetric_difference(a_set)  {'a', 'b',

'e', 'f'}

 e f a b c d

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Method: issubset, Op: <=

Method: issuperset, Op: >=

small_set=set("abc"); big_set=set("abcdef")

small_set <= big_set  True

big_set >= small_set  True

a b c d e f

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Other Set Ops
• my_set.add("g")

– adds to the set, no effect if item is in set already

• my_set.clear()

– empties the set

• my_set.remove("g") versus

my_set.discard("g")

– remove throws an error if "g" isn't there

– discard doesn't care

– both remove "g" from the set

• my_set.copy()

– returns a shallow copy of my_set

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Copy vs. Assignment

my_set=set {'a', 'b', 'c'}

my_copy=my_set.copy()

my_ref_copy=my_set

my_set.remove('b')

my_set

myCopy

myRefCopy

set(['a','c'])

set(['a','b','c'])

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common/Unique words

Code Listings 9.9-9.12

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Common words in the Gettysburg Address

and the Declaration of Independence

• can reuse or only slightly modify much of

the code for document frequency

• the overall outline remains much the same

• for clarity, we will ignore any word that has

three characters or less (typically stop

words)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Four Set Functions
• add_word(word, word_set) add word

to the set (instead of dict); no return

• process_line(line, word_set)

process line and identify words; calls
add_word; no return (no change except

for parameters)

• pretty_print(word_set) nice printing

of the various set operations; no return

• main() function to start the program

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More Complicated Pretty Print

• the pretty_print function applies the

various set operators to the two resulting

sets

• prints, in particular, the intersection in a

nice format

• should this have been broken up into two

functions??

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

More on Scope

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Namespace Review

• a namespace is an association of a name

and a value

• it looks like a dictionary, and for the most

part it is (at least for modules and classes)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Scope

• the namespace you might be using is part

of identifying the scope of the variables

and function you are using

• by "scope" we mean the context, the part

of the code, where we can make a

reference to a variable or function

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Multiple Scopes

• often, there can be multiple scopes that

are candidates for determining a

reference.

• knowing which one is the right one (or

more importantly, knowing the order of

scopes) is important

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Two Kinds of Namespaces

• unqualified namespaces: what we have

pretty much seen so far – functions,

assignments etc.

• qualified namespaces: modules and

classes (we'll talk more about this one

later in the classes section)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Unqualified

• this is the standard assignment and def we

have seen so far

• determining the scope of a reference

identifies what its true 'value' is

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

LEGB Rule for Unqualified

• local – inside the function in which it was

defined

• enclosing/encompassing – is it defined

in an enclosing function?

• global

• built-in – finally, defined as part of the

special built-in scope

• else ERROR

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.13

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

locals() Function

• returns a dictionary of the current

(presently in play) local namespace

• useful for looking at what is defined where

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Function Local Values

• if a reference is assigned in a function,

then that reference is only available within

that function

• if a reference with the same name is

provided outside the function, the

reference is reassigned

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

global is still found

because of the

sequence of namespace

search

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.14

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

globals() Function

• like the locals() function, the

globals() function will return as a

dictionary the values in the global

namespace

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Global Assignment Rule

• a quirk of Python

• if an assignment occurs anywhere in the

suite of a function, Python adds that

variable to the local namespace

• even if the variable is assigned later in the

suite, the variable is still local

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.15

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my_var is local (is in the local namespace)

because it is assigned in the suite

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

The global Statement

• you can tell Python that you want the
object associated with the global, not local
namespace, using the global statement

• avoids the local assignment rule

• should be used carefully as it is an over-
ride of normal behavior

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.16

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

my_var is not in the local namespace

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

built-in

• just the standard library of Python

• to see what is there, look at

 import __builtin__

 dir(__builtin__)

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Enclosed

• functions which define other functions in a

function suite are enclosed, defined only

in the enclosing function

• the inner/enclosed function is then part of

the local namespace of the

outer/enclosing function

• remember, a function is an object too!

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Code Listing 9.18

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Building Dictionaries Faster
• zip creates pairs from two parallel lists

zip("abc",[1,2,3]) yields

[('a',1),('b',2),('c',3)]

• good for building dictionaries

• also call the dict function which takes a

list of pairs to make a dictionary

dict(zip("abc",[1,2,3])) yields

{'a': 1, 'c': 3, 'b': 2}

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionary and Set

Comprehensions
• like list comprehensions, you can write

shortcuts that generate either a dictionary

or a set, with the same control you had

with list comprehensions

• both are enclosed with {} (remember, list

comprehensions were in [])

• difference is if the collected item is a :

separated pair or not

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Dictionary Comprehension

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Set Comprehension

"The Practice of Computing Using Python, 3rd Edition",

Punch & Enbody, Copyright © 2017 Pearson Education, Inc.

Reminder, rules so far

1. Think before you program!

2. A program is a human-readable essay on problem

solving that executes on a computer.

3. The best way to improve your programming and

problem solving skills is to practice!

4. A foolish consistency is the hobgoblin of little minds

5. Test your code, often and thoroughly

6. If it was hard to write, it is probably hard to read. Add a

comment.

7. All input is evil, unless proven otherwise.

8. A function should do one thing.

