
Algorithms

Chapter 3

With Question/Answer
Animations

© 2019 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education.

© 2019 McGraw-Hill Education

Chapter Summary

• Algorithms

• Example Algorithms

• Algorithmic Paradigms

• Growth of Functions

• Big-O and other Notation

• Complexity of Algorithms

© 2019 McGraw-Hill Education

Algorithms
• Section 3.1

© 2019 McGraw-Hill Education

Section Summary 1

• Properties of Algorithms

• Algorithms for Searching and Sorting

• Greedy Algorithms

• Halting Problem

© 2019 McGraw-Hill Education

Problems and Algorithms

• In many domains there are key general problems that
ask for output with specific properties when given
valid input.

• The first step is to precisely state the problem, using
the appropriate structures to specify the input and
the desired output.

• We then solve the general problem by specifying the
steps of a procedure that takes a valid input and
produces the desired output. This procedure is called
an algorithm.

© 2019 McGraw-Hill Education

Algorithms

Definition: An algorithm is a finite set of precise
instructions for performing a computation or for solving a
problem.

Example: Describe an algorithm for finding the maximum
value in a finite sequence of integers.

Solution: Perform the following steps:
1. Set the temporary maximum equal to the first integer in the

sequence.

2. Compare the next integer in the sequence to the temporary
maximum.

• If it is larger than the temporary maximum, set the temporary maximum
equal to this integer.

3. Repeat the previous step if there are more integers. If not, stop.

4. When the algorithm terminates, the temporary maximum is the
largest integer in the sequence.

Abu Ja’far
Mohammed Ibin
Musa Al-Khowarizmi

(780-850)

© 2019 McGraw-Hill Education

Specifying Algorithms

• Algorithms can be specified in different ways. Their
steps can be described in English or in pseudocode.

• Pseudocode is an intermediate step between an English
language description of the steps and a coding of these
steps using a programming language.

• The form of pseudocode we use is specified in
Appendix 3. It uses some of the structures found in
popular languages such as C++ and Java.

• Programmers can use the description of an algorithm in
pseudocode to construct a program in a particular
language.

• Pseudocode helps us analyze the time required to solve
a problem using an algorithm, independent of the actual
programming language used to implement algorithm.

© 2019 McGraw-Hill Education

Properties of Algorithms

• Input: An algorithm has input values from a specified set.

• Output: From the input values, the algorithm produces
the output values from a specified set. The output values
are the solution.

• Correctness: An algorithm should produce the correct
output values for each set of input values.

• Finiteness: An algorithm should produce the output after
a finite number of steps for any input.

• Effectiveness: It must be possible to perform each step
of the algorithm correctly and in a finite amount of time.

• Generality: The algorithm should work for all problems of
the desired form.

© 2019 McGraw-Hill Education

Finding the Maximum Element in a
Finite Sequence

The algorithm in pseudocode:

procedure max (a1, a2, …., an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

return max {max is the largest element}

Does this algorithm have all the properties listed on the
previous slide?

© 2019 McGraw-Hill Education

Some Example Algorithm
Problems

• Three classes of problems will be studied in this
section.

1. Searching Problems: finding the position of a
particular element in a list.

2. Sorting problems: putting the elements of a list
into increasing order.

3. Optimization Problems: determining the optimal
value (maximum or minimum) of a particular
quantity over all possible inputs.

© 2019 McGraw-Hill Education

Searching Problems

• Definition: The general searching problem is to locate
an element x in the list of distinct elements a1,a2,...,an,
or determine that it is not in the list.

• The solution to a searching problem is the location of
the term in the list that equals x (that is, i is the
solution if x = ai) or 0 if x is not in the list.

• For example, a library might want to check to see if a
patron is on a list of those with overdue books before
allowing him/her to checkout another book.

• We will study two different searching algorithms:
linear search and binary search.

© 2019 McGraw-Hill Education

Linear Search Algorithm

• The linear search algorithm locates an item in a list by examining
elements in the sequence one at a time, starting at the beginning.

• First compare x with a1. If they are equal, return the position 1.

• If not, try a2. If x = a2, return the position 2.

• Keep going, and if no match is found when the entire list is scanned,
return 0.

procedure linear search (x : integer,

a1, a2, …,an : distinct integers)

i := 1

while (i ≤ n and x ≠ ai)

i := i + 1

if i ≤ n then location := i

else location := 0

return location {location is the subscript of the term
that equals x, or is 0 if x is not found}

© 2019 McGraw-Hill Education

Binary Search

• Assume the input is a list of items in increasing order.

• The algorithm begins by comparing the element to be
found with the middle element.

• If the middle element is lower, the search proceeds with the
upper half of the list.

• If it is not lower, the search proceeds with the lower half of the
list (through the middle position).

• Repeat this process until we have a list of size 1.

• If the element we are looking for is equal to the element in the
list, the position is returned.

• Otherwise, 0 is returned to indicate that the element was not
found.

• In Section 3.3, we show that the binary search
algorithm is much more efficient than linear search.

© 2019 McGraw-Hill Education

Binary Search 2

• Here is a description of the binary search algorithm in
pseudocode.

procedure binary search (x : integer, a1,a2,…, an : increasing integers)

i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}

while i < j

m := ⌊(i + j)/2⌋

if x > am then i := m + 1

else j := m

if x = ai then location := i

else location := 0
return location {location is the subscript i of the term ai equal to x,

or 0 if x is not found}

© 2019 McGraw-Hill Education

Binary Search 3

• Example: The steps taken by a binary search for 19 in the list:

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

1. The list has 16 elements, so the midpoint is 8. The value in the 8th position is 10.
Since 19 > 10, further search is restricted to positions 9 through 16.

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

2. The midpoint of the list (positions 9 through 16) is now the 12th position with a value
of 16. Since 19 > 16, further search is restricted to the 13th position and above.

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

3. The midpoint of the current list is now the 14th position with a value of 19. Since 19
≯ 19, further search is restricted to the portion from the 13th through the 14th

positions .

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

4. The midpoint of the current list is now the 13th position with a value of 18. Since 19
> 18, search is restricted to the portion from the 14th position through the 14th.

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

5. Now the list has a single element and the loop ends. Since 19=19, the location 14 is
returned.

© 2019 McGraw-Hill Education

Sorting
• To sort the elements of a list is to put them in increasing order

(numerical order, alphabetic, and so on).

• Sorting is an important problem because:

• A nontrivial percentage of all computing resources are devoted to
sorting different kinds of lists, especially applications involving large
databases of information that need to be presented in a particular
order (e.g., by customer, part number etc.).

• An amazing number of fundamentally different algorithms have been
invented for sorting. Their relative advantages and disadvantages have
been studied extensively.

• Sorting algorithms are useful to illustrate basic concepts in CS

• A variety of sorting algorithms are studied in this book; binary, insertion,
bubble, selection, merge, quick, and tournament.

• Section 3.3 shows time required to sort a list using sorting algorithms
covered in this section.

© 2019 McGraw-Hill Education

Bubble Sort

• Bubble sort makes multiple passes through a list.
Every pair of elements that are found to be out of
order are interchanged.

procedure bubblesort (a1,…,an: real numbers with n ≥ 2)

for i := 1 to n− 1

for j := 1 to n − i

if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}

© 2019 McGraw-Hill Education

Bubble Sort

Example: Show the steps of bubble sort with 3 2 4 1 5

At the first pass the largest element has been put into
the correct position

At the end of the second pass, the 2nd largest element
has been put into the correct position.

In each subsequent pass, an additional element is put in
the correct position.

Jump to long description

© 2019 McGraw-Hill Education

Insertion Sort

Insertion sort begins with the 2nd element. It compares
the 2nd element with the 1st and puts it before the first
if it is not larger.

Next the 3rd element is put
into the correct position
among the first 3
elements.

In each subsequent pass,
the n+1st element is put
into its correct position
among the first n+1
elements.

Linear search is used to
find the correct position.

procedure insertion sort (a1,…,an : real
numbers with n ≥ 2)

for j := 2 to n

i := 1

while aj > ai

i := i + 1

m := aj

for k := 0 to j − i − 1

aj-k := aj-k-1

ai := m

{Now a1,…,an is in increasing order}

© 2019 McGraw-Hill Education

Insertion Sort

• Example: Show all the steps of insertion sort with the
input: 3 2 4 1 5

i. 2 3 4 1 5 (first two positions are interchanged)

ii. 2 3 4 1 5 (third element remains in its position)

iii. 1 2 3 4 5 (fourth is placed at beginning)

iv. 1 2 3 4 5 (fifth element remains in its position)

© 2019 McGraw-Hill Education

Greedy Algorithms

• Optimization problems minimize or maximize some parameter over all
possible inputs.

• Among the many optimization problems we will study are:

• Finding a route between two cities with the smallest total mileage.

• Determining how to encode messages using the fewest possible bits.

• Finding the fiber links between network nodes using the least amount
of fiber.

• Optimization problems can often be solved using a greedy algorithm,
which makes the "best" choice at each step. Making the "best choice" at
each step does not necessarily produce an optimal solution to the overall
problem, but in many instances, it does.

• After specifying what the "best choice" at each step is, we try to prove
that this approach always produces an optimal solution, or find a
counterexample to show that it does not.

• The greedy approach to solving problems is an example of an algorithmic
paradigm, which is a general approach for designing an algorithm. We
return to algorithmic paradigms in Section 3.3.

© 2019 McGraw-Hill Education

Greedy Algorithms: Making
Change

• Example: Design a greedy algorithm for making change (in U.S.
money) of n cents with the following coins: quarters (25 cents),
dimes (10 cents), nickels (5 cents), and pennies (1 cent) , using the
least total number of coins.

• Idea: At each step choose the coin with the largest possible value
that does not exceed the amount of change left.

1. If n = 67 cents, first choose a quarter leaving 67−25 = 42
cents. Then choose another quarter leaving 42 −25 = 17
cents

2. Then choose 1 dime, leaving 17 − 10 = 7 cents.

3. Choose 1 nickel, leaving 7 – 5 = 2 cents.

4. Choose a penny, leaving one cent. Choose
another penny leaving 0 cents.

© 2019 McGraw-Hill Education

Greedy Change-Making Algorithm

Solution: Greedy change-making algorithm for n cents. The
algorithm works with any coin denominations c1, c2, …,cr .

procedure change(c1, c2, …, cr : values of coins, where c1> c2> … > cr ;
n : a positive integer)

for i := 1 to r

di := 0 [di counts the coins of denomination ci]

while n ≥ ci

di := di + 1 [add a coin of denomination ci]

n = n - ci

[di counts the coins ci]

For the example of U.S. currency, we may have quarters,
dimes, nickels and pennies: c1 = 25, c2 = 10, c3 = 5, and c4 = 1.

© 2019 McGraw-Hill Education

Proving Optimality for U.S. Coins

• Show that the change making algorithm for U.S. coins is optimal.

• Lemma 1: If n is a positive integer, then n cents in change using
quarters, dimes, nickels, and pennies, using the fewest coins
possible has at most 2 dimes, 1 nickel, 4 pennies, and cannot have 2
dimes and a nickel. The total amount of change in dimes, nickels,
and pennies must not exceed 24 cents.

• Proof: By contradiction

• If we had 3 dimes, we could replace them with a quarter and a
nickel.

• If we had 2 nickels, we could replace them with 1 dime.

• If we had 5 pennies, we could replace them with a nickel.

• If we had 2 dimes and 1 nickel, we could replace them with a
quarter.

• The allowable combinations, have a maximum value of 24 cents; 2
dimes and 4 pennies.

© 2019 McGraw-Hill Education

Proving Optimality for U.S. Coins

• Theorem: The greedy change-making algorithm for U.S. coins
produces change using the fewest coins possible.

• Proof: By contradiction.

1. Assume there is a positive integer n such that change can be
made for n cents using quarters, dimes, nickels, and
pennies, with a fewer total number of coins than given by
the algorithm.

2. Then, q ̍ ≤ q where q ̍ is the number of quarters used in this
optimal way and q is the number of quarters in the greedy
algorithm’s solution. But this is not possible by Lemma 1,
since the value of the coins other than quarters cannot be
greater than 24 cents.

3. Similarly, by Lemma 1, the two algorithms must have the
same number of dimes, nickels, and quarters.

© 2019 McGraw-Hill Education

Greedy Change-Making Algorithm

• Optimality depends on the denominations available.

• For U.S. coins, optimality still holds if we add half dollar
coins (50 cents) and dollar coins (100 cents).

• But if we allow only quarters (25 cents), dimes (10
cents), and pennies (1 cent), the algorithm no longer
produces the minimum number of coins.

• Consider the example of 31 cents. The optimal number
of coins is 4, i.e., 3 dimes and 1 penny. What does the
algorithm output?

© 2019 McGraw-Hill Education

Greedy Scheduling

• Example: We have a group of proposed talks with start and end
times. Construct a greedy algorithm to schedule as many as
possible in a lecture hall, under the following assumptions:

• When a talk starts, it continues till the end.

• No two talks can occur at the same time.

• A talk can begin at the same time that another ends.

• Once we have selected some of the talks, we cannot add a talk
which is incompatible with those already selected because it
overlaps at least one of these previously selected talks.

How should we make the “best choice” at each step of the
algorithm? That is, which talk do we pick?

• The talk that starts earliest among those compatible with chosen
talks?

• The talk that is shortest among those already compatible?

• The talk that ends earliest among compatible talks?

© 2019 McGraw-Hill Education

Greedy Scheduling 2

Picking the shortest talk doesn’t work.

Can you find a counterexample here?

But picking the one that ends soonest does work. The
algorithm is specified on the next page.

© 2019 McGraw-Hill Education

Greedy Scheduling algorithm

Solution: At each step, choose the talks with the
earliest ending time among the talks compatible with
those selected.

procedure schedule(s1 ≤ s2 ≤ … ≤ sn : start times, e1 ≤ e2 ≤ … ≤ en : end
times)

sort talks by finish time and reorder so that e1 ≤ e2 ≤ … ≤ en

S := ∅

for j := 1 to n

if talk j is compatible with S then

S := S ∪ {talk j}

return S [S is the set of talks scheduled]

Will be proven correct by induction in Chapter 5.

© 2019 McGraw-Hill Education

Halting Problem

• Example: Can we develop a procedure that takes as
input a computer program along with its input and
determines whether the program will eventually halt
with that input.

• Solution: Proof by contradiction.

Assume that there is such a procedure and call it
H(P,I). The procedure H(P,I) takes as input a program
P and the input I to P.

• H outputs "halt" if it is the case that P will stop when
run with input I.

• Otherwise, H outputs "loops forever."

© 2019 McGraw-Hill Education

Halting Problem

• Since a program is a string of characters, we can call
H(P,P). Construct a procedure K(P), which works as
follows.

• If H(P,P) outputs "loops forever" then K(P) halts.

• If H(P,P) outputs "halt" then K(P) goes into an
infinite loop printing "ha" on each iteration.

Jump to long description

© 2019 McGraw-Hill Education

Halting Problem

• Now we call K with K as input, i.e. K(K).

• If the output of H(K,K) is "loops forever" then K(K)
halts. A Contradiction.

• If the output of H(K,K) is "halts" then K(K) loops
forever. A Contradiction.

• Therefore, there cannot be a procedure that can
decide whether or not an arbitrary program halts. The
halting problem is unsolvable.

© 2019 McGraw-Hill Education

The Growth of
Functions

• Section 3.2

© 2019 McGraw-Hill Education

Section Summaries

Big-O Notation

Big-O Estimates for Important Functions

Big-Omega and Big-Theta Notation

Edmund Landau

(1877-1938)

Paul Gustav Heinrich Bachmann

(1837-1920)

Donald E. Knuth

(Born 1938)

© 2019 McGraw-Hill Education

The Growth of Functions

• In both computer science and in mathematics, there are many
times when we care about how fast a function grows.

• In computer science, we want to understand how quickly an
algorithm can solve a problem as the size of the input grows.

• We can compare the efficiency of two different algorithms for
solving the same problem.

• We can also determine whether it is practical to use a
particular algorithm as the input grows.

• We’ll study these questions in Section 3.3.

• Two of the areas of mathematics where questions about the
growth of functions are studied are:

• number theory (covered in Chapter 4)

• combinatorics (covered in Chapters 6 and 8)

© 2019 McGraw-Hill Education

Big-O Notation

• Definition: Let f and g be functions from the set of
integers or the set of real numbers to the set of real
numbers. We say that f(x) is O(g(x)) if there are
constants C and k such that

|f(x)| ≤ C|g(x)| when x > k

• read as

• f(x) is big-O of g(x)

• g asymptotically dominates f

• constants C and k are called witnesses or witness
points to the relationship f(x) is O(g(x))

• only one pair of witnesses is needed

© 2019 McGraw-Hill Education

Illustration of Big-O Notation 1

Jump to long description

𝑓(𝑥) is 𝑂 𝑔 𝑥

© 2019 McGraw-Hill Education

Some Important Points about
Big-O Notation

• if one pair of witnesses is found, then there are
infinitely many pairs

• we can always make the k or the C larger and still
maintain the inequality |f(x)| ≤ C|g(x)| .

• sometimes this is written as f(x) = O(g(x))

• may be confusing since an inequality relates f and g

• better to write f(x) ∊ O(g(x))

• usually, we will drop the absolute value sign since we
will always deal with functions of positive values

© 2019 McGraw-Hill Education

Using the Definition of Big-O
Notation

• Example: Show that f(x) = x2 + 2x + 1 is O(x2)

• Solution: when x > 1, x < x2 and 1 < x2, so

 0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2

• take C = 4 and k = 1 as witnesses to show that
f(x) is O(x2)

• alternatively, when x > 2, we have 2x ≤ x2 and 1 < x2,
so

 0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2 when x > 2

• take C = 3 and k = 2 as witnesses instead

© 2019 McGraw-Hill Education

Illustration of Big-O Notation

() ()2 2+2 1 is f x x x O x= +

Jump to long description

© 2019 McGraw-Hill Education

Big-O Notation

• if f(x) = x2 + 2x + 1 and g(x) = x2

• f(x) and g(x) are of the same order

• f(x) is O(g(x)) and g(x) is O(f(x))

• if f(x) is O(g(x)) and h(x) is larger than g(x) for all
positive real numbers, then f(x) is O(h(x))

• in practice, the goal is to select the function g(x) in
O(g(x)) as small as possible (up to multiplication by a
constant, of course)

© 2019 McGraw-Hill Education

Using the Definition of Big-O
Notation

• Example: Show that 7x2 is O(x3).

• Solution: when x > 7, 7x2 < x3, take C = 1 and k = 7 as
witnesses to establish that 7x2 is O(x3)

• would C = 7 and k = 1 work?

• Example: Show that n2 is not O(n).

• Solution: suppose there are constants C and k for which
n2 ≤ Cn, whenever n > k

• by dividing both sides of n2 ≤ Cn by n, n ≤ C must hold
for all n > k: a contradiction!

© 2019 McGraw-Hill Education

Big-O Estimates for Polynomials

Example: Let () 1

1 1 0

n n

n nf x a x a x a x a−

−= + + + +

0 1where , , , na a a are real numbers with an ≠0. Then f(x) is O(xn).

Proof: ()

()
()

1 1

1 1 0

1 1

1 1 0

1

1 1 0

1 1 0

| | | |

 | | | | | | | |

 | | | | / | | / | | /

 | | | | | | | |

n n

n n

n n

n n

n n n

n n

n

n n

f x a x a x a x a

a x a x a x a

x a a x a x a x

x a a a a

−

−

−

−

−

−

−

= + + + +

 + + + +

= + + + +

 + + + +

Take 1 0| | | | | |n nC a a a−= + + + and k = 1. Then f(x) is O(xn).

The leading term anx
n of a polynomial dominates its growth.

Assuming x > 1

Uses triangle inequality,
an exercise in Section 1.8.

© 2019 McGraw-Hill Education

Big-O Estimates for Some
Important Functions

• Example: Use big-O notation to estimate the sum of
the first n positive integers.

• Solution: 21 2 n n n n n+ + +  + + =

()21 2 is taking 1 and 1.n O n C k+ + + = =

• Example: Use big-O notation to estimate the factorial
function

• Solution:
() ! 1 2 .f n n n= =   

! 1 2 nn n n n n n=        =

()! is taking 1 and 1.nn O n C k= =

© 2019 McGraw-Hill Education

Big-O Estimates for Some
Important Functions

Example: Use big-O notation to estimate log n!

Solution: Given that ! nn n (previous slide)

then () ()log ! log .n n n 

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.

© 2019 McGraw-Hill Education

Display of Growth of Functions

Note the difference in behavior of functions as
n gets larger

Jump to long description

© 2019 McGraw-Hill Education

Useful Big-O Estimates Involving
Logs, Powers, and Exponents

• if d > c > 1, then

 nc is O(nd), but nd is not O(nc)

• if b > 1 and c and d are positive, then

 (logb n)c is O(nd), but nd is not O((logb n)c)

• if b > 1 and d is positive, then

 nd is O(bn), but bn is not O(nd)

• if c > b > 1, then

 bn is O(cn), but cn is not O(bn)

© 2019 McGraw-Hill Education

Combinations of Functions 1

• if f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then

 (f1 + f2)(x) is O(max (|g1(x)|, |g2(x)|))

• if f1 (x) and f2 (x) are both O(g(x)) then

 (f1 + f2)(x) is O(g(x))

• if f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then

 (f1 • f2)(x) is O(g1(x) • g2(x))

© 2019 McGraw-Hill Education

Ordering Functions by Order of
Growth

• Put the functions below in order so that each function
is big-O of the next function on the list.

() ()

()

() ()

()

() ()

() ()

() ()

() ()

()

()

1

3 2

2

2

3

4

5

32

6

2

7

23

8

9

10

1.5

8 17 111

log n

2

log log

log

2 1

log

10000

!

n

n

n

f n

f n n n

f n

f n

f n n

f n n n

f n n

f n n n n

f n

f n n

=

= + +

=

=

=

=

= +

= +

=

=

We solve this exercise by successively finding the
function that grows slowest among all those left on
the list.

()

() () ()

() () ()

() ()

()

3

9

5

2

3

32

6

2

constant, does not increase with

grows slowest of all the others

grows next slowest

next largest, log factor smaller than

10000 ()

log log

log

 any powe o

 n

log (r f ())

f n

f n n

f n

f n n n

f n

n

n n

=

=

=

=

()

() () ()

() () ()

() ()

() ()

3 2

23

8

1

4

2

7

tied with the one below

tied with the one above

next largest, an exponential function

grows faster than one above since 2 > 1.5

grows fas

8 17 111

log

1.5

2

2 1 (

n

n

n

n n

f n n n n

f n

f n

f n n

= + +

= +

=

=

= +

()

2

10

)

! ()

ter than above because of the +1 factor

! grows faster thancn for every f n nn

n

c=

© 2019 McGraw-Hill Education

Big-Omega Notation

Definition: Let f and g be functions from the set of
integers or the set of real numbers to the set of real
numbers. We say that
if there are constants C and k such that

() ()() is f x g x

() ()| | | |f x C g x when x > k.

We say that "f(x) is big-Omega of g(x)."

Big-O gives an upper bound on the growth of a function,
while Big-Omega gives a lower bound. Big-Omega tells us
that a function grows at least as fast as another.

f(x) is Ω(g(x)) if and only if g(x) is O(f(x)). This follows
from the definitions. See the text for details.

Ω is the upper case
version of the lower
case Greek letter ω.

© 2019 McGraw-Hill Education

Big-Omega Notation

Example: Show that () 3 28 5 7 isf x x x= + +

()() () 3 where .g x g x x =

Solution: () 3 2 38 5 7 8 for allf x x x x= + + 

positive real numbers x.

• Is it also the case that () ()3 3 2 is 8 5 7 ?g x x O x x= + +

© 2019 McGraw-Hill Education

Big-Theta Notation

Definition: Let f and g be functions from the set of
integers or the set of real numbers to the set of real
numbers. The function

() ()() () ()() () ()() is if is and is .f x g x f x O g x f x g x 

We say that "f is big-Theta of g(x)" and also that "f(x)
is of order g(x)" and also that "f(x) and g(x) are of the
same order."

() ()() is f x g x if and only if there exists constants C1, C2

and k such that C1g(x) < f(x) < C2 g(x) if x > k. This
follows from the definitions of big-O and big-Omega.

Θ is the upper case
version of the lower
case Greek letter θ.

© 2019 McGraw-Hill Education

Big-Theta Notation

Example: Show that the sum of the first n positive
integers is Θ(n2).

Solution: Let f(n) = 1 + 2 + ∙∙∙ + n

• We have already shown that f(n) is O(n2).

• To show that f(n) is Ω(n2), we need a positive constant C such
that f(n) > Cn2 for sufficiently large n. Summing only the terms
greater than n/2 we obtain the inequality

()

()
() () 2

1 2 / 2 / 2 1

 / 2 / 2 / 2

 / 2 1 / 2

 / 2 / 2 / 4

n n n n

n n n

n n n

n n n

+ + +    +   + + +

   +   + +  

= −   +  

 =

• Taking C =[¼, f(n) > Cn2 for all positive integers n. Hence, f(n)
is Ω(n2), and we can conclude that f(n) is Θ(n2).

© 2019 McGraw-Hill Education

Big-Theta Notation

• Example: Show that

• Solution:

() ()2 23 8 log is .f x x x x x= + 

()

()

()

2 2

2 2

2 2

2 2

2

 Hence, 3 8 log is O .

 is clearly O 3 8 log

Hence, 3 8 log is .

3 8 log 11 for 1,

since 0 8 log 8 .

x x x

x

x

x x

x x x x x

x

x x

x x x x

x

+  



+

+

+ 



© 2019 McGraw-Hill Education

Big-Theta Notation

When () ()() is f x g x it must also be the case that

() ()() is .g x f x

Note that () ()() is f x g x if and only if it is the cases

() ()() () ()()that is and is .f x O g x g x O f x

Sometimes writers are careless and write as if big-O
notation has the same meaning as big-Theta.

© 2019 McGraw-Hill Education

Big-Theta Estimates for
Polynomials

Theorem: Let () 1

1 1 0 n n

n nf x a x a x a x a−

−= + + + +

0 1 where , , , na a a are real numbers with an ≠ 0.

Then f(x) is of order xn (or Θ(xn)).

(The proof is an exercise.)

Example:

The polynomial () 5 2 8 5 10f x x x= + + is order of x5 (or Θ(x5)).

The polynomial () 199 100 99 2 8 7 5 25f x x x x x= + + +

is order of x199 (or Θ(x199)).

© 2019 McGraw-Hill Education

Complexity of
Algorithms

• Section 3.3

© 2019 McGraw-Hill Education

Section Summary

• Time Complexity

• Worst-Case Complexity

• Algorithmic Paradigms

• Understanding the Complexity of Algorithms

© 2019 McGraw-Hill Education

The Complexity of Algorithms 1

• Given an algorithm, how efficient is this algorithm for
solving a problem given input of a particular size? To
answer this question, we ask:

• How much time does this algorithm use to solve a problem?

• How much computer memory does this algorithm use to solve a
problem?

• When we analyze the time the algorithm uses to solve
the problem given input of a particular size, we are
studying the time complexity of the algorithm.

• When we analyze the computer memory the algorithm
uses to solve the problem given input of a particular
size, we are studying the space complexity of the
algorithm.

© 2019 McGraw-Hill Education

The Complexity of Algorithms 2

• In this course, we focus on time complexity. The space
complexity of algorithms is studied in later courses.

• We will measure time complexity in terms of the number of
operations an algorithm uses and we will use big-O and big-
Theta notation to estimate the time complexity.

• We can use this analysis to see whether it is practical to
use this algorithm to solve problems with input of a
particular size. We can also compare the efficiency of
different algorithms for solving the same problem.

• We ignore implementation details (including the data
structures used and both the hardware and software
platforms) because it is extremely complicated to consider
them.

© 2019 McGraw-Hill Education

Time Complexity

• To analyze the time complexity of algorithms, we determine the
number of operations, such as comparisons and arithmetic
operations (addition, multiplication, etc.). We can estimate the
time a computer may actually use to solve a problem using the
amount of time required to do basic operations.

• We ignore minor details, such as the "house keeping" aspects of
the algorithm.

• We will focus on the worst-case time complexity of an algorithm.
This provides an upper bound on the number of operations an
algorithm uses to solve a problem with input of a particular size.

• It is usually much more difficult to determine the average case
time complexity of an algorithm. This is the average number of
operations an algorithm uses to solve a problem over all inputs of
a particular size.

© 2019 McGraw-Hill Education

Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm
for finding the maximum element in a finite sequence.

procedure max(a1, a2, …., an: integers)

 max := a1

 for i := 2 to n

 if max < ai then max := ai

 return max{max is the largest element}

Solution: Count the number of comparisons.

• The max < ai comparison is made n − 1 times.

• Each time i is incremented, a test is made to see if i ≤ n.

• One last comparison determines that i > n.

• Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

 Hence, the time complexity of the algorithm is Θ(n).

© 2019 McGraw-Hill Education

Worst-Case Complexity of Linear
Search

Example: Determine the time complexity of linear search algorithm.

procedure linear search (x : integer, a1, a2, …,an : distinct integers)

 i := 1

 while (i ≤ n and x ≠ ai)

 i := i + 1

 if i ≤ n then location := i

 else location := 0

 return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.

• At each step two comparisons are made; i ≤ n and x ≠ ai .

• To end the loop, one comparison i ≤ n is made.

• After the loop, one more i ≤ n comparison is made.

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1
comparisons are made and then an additional comparison is used to
exit the loop. So, in the worst case 2n + 2 comparisons are made.
Hence, the complexity is Θ(n).

© 2019 McGraw-Hill Education

Average-Case Complexity of
Linear Search

• Example: Describe the average case performance of
the linear search algorithm. (Although usually it is very
difficult to determine average-case complexity, it is
easy for linear search.)

• Solution: Assume the element is in the list and that
the possible positions are equally likely. By the
argument on the previous slide, if x = ai , the number
of comparisons is 2i + 1.

() ()
()1

2
23 5 7 2 1 2 1 2 3

1 2
2

n n

n n n
n

n n

 + 
 

+ + + + + + + + + +  
= = + = +

Hence, the average-case complexity of linear search is
Θ(n).

© 2019 McGraw-Hill Education

Worst-Case Complexity of Binary
Search

Example: Describe the time complexity of binary search in terms of the
number of comparisons used.

procedure binary search(x: integer, a1,a2,…, an: increasing integers)

 i := 1 {i is the left endpoint of interval}

 j := n {j is right endpoint of interval}

 while i < j

 m := ⌊(i + j)/2⌋

 if x > am then i := m + 1

 else j := m

 if x = ai then location := i

 else location := 0

 return location{location is the subscript i of the term ai equal to x, or 0 if x is not found}

Solution: Assume (for simplicity) n = 2k elements. Note that k = log n.
• Two comparisons are made at each stage; i < j, and x > am .
• At the first iteration the size of the list is 2k and after the first iteration it is

2k-1. Then 2k-2 and so on until the size of the list is 21 = 2.
• At the last step, a comparison tells us that the size of the list is the size is 20 = 1

and the element is compared with the single remaining element.
• Hence, at most 2k + 2 = 2 log n + 2 comparisons are made.
• Therefore, the time complexity is Θ (log n), better than linear search.

© 2019 McGraw-Hill Education

Worst-Case Complexity of
Bubble Sort

Example: What is the worst-case complexity of bubble
sort in terms of the number of comparisons made?

procedure bubblesort (a1,…,an: real numbers with n ≥ 2)

 for i := 1 to n− 1

 for j := 1 to n − i

 if aj >aj+1 then interchange aj and aj+1

 {a1,…, an is now in increasing order}

Solution: A sequence of n−1 passes is made through the
list. On each pass n − i comparisons are made.

() ()
()1

1 2 2 1
2

n n
n n

−
− + − + + + =

The worst-case complexity of bubble sort is Θ(n2) since
() 21 1 1

.
2 2 2

n n
n n

−
= −

© 2019 McGraw-Hill Education

Worst-Case Complexity of
Insertion Sort

Example: What is the worst-case complexity of
insertion sort in terms of the number of comparisons
made?

Solution: The total number
of comparisons are

()1
2 3 1

2

n n
n

−
+ + + = −

Therefore the complexity is
Θ(n2).

procedure insertion sort (a1,…,an :

 real numbers with n ≥ 2)

 for j := 2 to n

 i := 1

 while aj > ai

 i := i + 1

 m := aj

 for k := 0 to j − i − 1

 aj-k := aj-k-1

 ai := m

© 2019 McGraw-Hill Education

Matrix Multiplication Algorithm

• The definition for matrix multiplication can be
expressed as an algorithm; C = A B where C is an m  n
matrix that is the product of the m  k matrix A and
the k  n matrix B.

• This algorithm carries out matrix multiplication based
on its definition.

procedure matrix multiplication(A,B: matrices)

 for i := 1 to m
 for j := 1 to n
 cij := 0
 for q := 1 to k
 cij := cij + aiq bqj

return C{C = [cij] is the product of A and B}

 is a matrix

 is a matrix

ij

ij

a m k

b k n

 =  

 =  

A

B

© 2019 McGraw-Hill Education

Complexity of Matrix
Multiplication

• Example: How many additions of integers and
multiplications of integers are used by the matrix
multiplication algorithm to multiply two n  n matrices.

• Solution: There are n2 entries in the product. Finding
each entry requires n multiplications and n − 1
additions. Hence, n3 multiplications and n2(n − 1)
additions are used.

• Hence, the complexity of matrix multiplication is
O(n3).

© 2019 McGraw-Hill Education

Boolean Product Algorithm

• The definition of Boolean product of zero-one
matrices can also be converted to an algorithm.

procedure Boolean product (A, B: zero-one matrices)
 for i := 1 to m
 for j := 1 to n
 cij := 0
 for q := 1 to k
 cij := cij ∨ (aiq ∧ bqj)

 return C{C = [cij] is the Boolean product of A and B}

© 2019 McGraw-Hill Education

Complexity of Boolean Product
Algorithm

• Example: How many bit operations are used to find
A ⊙ B, where A and B are n  n zero-one matrices?

• Solution: There are n2 entries in the A ⊙ B. A total of
n ORs and n ANDs are used to find each entry. Hence,
each entry takes 2n bit operations. A total of 2n3
operations are used.

• Therefore the complexity is O(n3)

© 2019 McGraw-Hill Education

Matrix-Chain Multiplication

• How should the matrix-chain A1A2∙ ∙ ∙An be computed using the
fewest multiplications of integers, where A1 , A2 , ∙ ∙ ∙ , An are m1 m2,
m2 m3 , ∙ ∙ ∙ mn mn+1 integer matrices. Matrix multiplication is
associative (exercise in Section 2.6).

• Example: In which order should the integer matrices A1A2A3 -
where A1 is 30 20 , A2 20 40, A3 40 10 - be multiplied to use the least
number of multiplications.

• Solution: There are two possible ways to compute A1A2A3.

• A1(A2A3): A2A3 takes 20 ∙ 40 ∙ 10 = 8000 multiplications. Then multiplying A1
by the 20 10 matrix A2A3 takes 30 ∙ 20 ∙ 10 = 6000 multiplications. So the
total number is 8000 + 6000 = 14,000.

• (A1A2)A3: A1A2 takes 30 ∙ 20 ∙ 40 = 24,000 multiplications. Then multiplying
the 30 40 matrix A1A2 by A3 takes 30 ∙ 40 ∙ 10 = 12,000 multiplications. So the
total number is 24,000 + 12,000 = 36,000.

• So the first method is best.
An efficient algorithm for finding the best
order for matrix-chain multiplication can be
based on the algorithmic paradigm known as
dynamic programming. (see Ex. 57 in Sec 8.1)

© 2019 McGraw-Hill Education

Algorithmic Paradigms

• An algorithmic paradigm is a general approach based on
a particular concept for constructing algorithms to
solve a variety of problems.

• Greedy algorithms were introduced in Section 3.1.

• We discuss brute-force algorithms in this section.

• We will see divide-and-conquer algorithms (Chapter
8), dynamic programming (Chapter 8), backtracking
(Chapter 11), and probabilistic algorithms (Chapter 7).
There are many other paradigms that you may see in
later courses.

© 2019 McGraw-Hill Education

Brute-Force Algorithms

• A brute-force algorithm is solved in the most
straightforward manner, without taking advantage of
any ideas that can make the algorithm more efficient.

• Brute-force algorithms we have previously seen are
sequential search, bubble sort, and insertion sort.

© 2019 McGraw-Hill Education

Computing the Closest Pair of
Points by Brute-Force

Example: Construct a brute-force algorithm for finding
the closest pair of points in a set of n points in the
plane and provide a worst-case estimate of the number
of arithmetic operations.

 Solution: Recall that the distance between (xi,yi) and
(xj, yj) is () ()

2 2

j i j ix x y y− + − . A brute-force algorithm

simply computes the distance between all pairs of points
and picks the pair with the smallest distance.

Note: There is no need to compute the square root, since the
square of the distance between two points is smallest when the
distance is smallest.

© 2019 McGraw-Hill Education

Computing the Closest Pair of
Points by Brute-Force

Algorithm for finding the closest pair in a set of n points.

procedure closest pair((x1, y1), (x2, y2), … ,(xn, yn): xi, yi real numbers)

 min = ∞

 for i := 2 to n

 for j := 1 to i-1

 if (xj − xi)
2 + (yj − yi)

2 < min

 then min := (xj − xi)
2 + (yj − yi)

2

 closest pair := (xi, yi),
 (xj, yj)

 return closest pair

The algorithm loops through n(n −1)/2 pairs of points, computes
the value
(xj − xi)

2 + (yj − yi)
2 and compares it with the minimum, etc. So,

the algorithm uses Θ(n2) arithmetic and comparison operations.

We will develop an algorithm with O(n log n) worst-case
complexity in Section 8.3.

© 2019 McGraw-Hill Education

Understanding the Complexity of
Algorithms

• TABLE 1 Commonly Used Terminology for the
Complexity of Algorithms.

Complexity Terminology

Θ(1) Constant complexity

Θ(log n) Logarithmic complexity

Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity

Θ(nb) Polynomial complexity

Θ(bn), where b > 1 Exponential complexity

Θ(n!) Factorial complexity

© 2019 McGraw-Hill Education

Understanding the Complexity of
Algorithms

• TABLE 2 The Computer Time Used by Algorithms.

Problem Size Bit Operations Used

n 𝐥𝐨𝐠 n n n 𝐥𝐨𝐠 n n2 2n n!

2

3

4

5

6

10

10

10

10

10

10

11

11

10

10

10

10

 3 10 s

 7 10 s

1.0 10 s

1.3 10 s

1.7 10 s

 2 10 s

−

−

−

−

−

−













10

9

8

7

6

5

10 s

10 s

10 s

10 s

10 s

10 s

−

−

−

−

−

−

10

9

7

6

5

4

 3 10 s

 7 10 s

1 10 s

1 10 s

2 10 s

2 10 s

−

−

−

−

−

−













9

7

5

3

10 s

10 s

10 s

10 s

0.1 s

0.17 min

−

−

−

−

8

11

10 s

4 10 yr

*

*

*

*

−



73 10 s

*

*

*

*

*

−

Times of more than 10100 years are indicated with an *.

© 2019 McGraw-Hill Education

Complexity of Problems

• Tractable Problem: There exists a polynomial time
algorithm to solve this problem. These problems are
said to belong to the Class P.

• Intractable Problem: There does not exist a polynomial
time algorithm to solve this problem

• Unsolvable Problem: No algorithm exists to solve this
problem, e.g., halting problem.

• Class NP: Solution can be checked in polynomial time.
But no polynomial time algorithm has been found for
finding a solution to problems in this class.

• NP Complete Class: If you find a polynomial time
algorithm for one member of the class, it can be used
to solve all the problems in the class.

© 2019 McGraw-Hill Education

P Versus NP Problem

The P versus NP problem asks whether the class P = NP? Are there problems whose
solutions can be checked in polynomial time, but can not be solved in polynomial time?

• Note that saying no one has yet found a polynomial time algorithm is different
from showing that the problem cannot be solved by a polynomial time algorithm.

If a polynomial time algorithm for any of the problems in the NP complete class were
found, then that algorithm could be used to obtain a polynomial time algorithm for
every problem in the NP complete class.

• Satisfiability (in Section 1.3) is an NP complete problem.

It is generally believed that P≠NP since no one has been able to find a polynomial time
algorithm for any of the problems in the NP complete class.

The problem of P versus NP remains one of the most famous unsolved problems in
mathematics (including theoretical computer science). The Clay Mathematics Institute
has offered a prize of $1,000,000 for a solution.

Stephen
Cook

(Born
1939)

© 2019 McGraw-Hill Education

Appendix of Image
Long Descriptions

© 2019 McGraw-Hill Education

Bubble Sort - Appendix
• There are four passes of using a bubble sort for a column of numbers. There are

5 columns in the first pass. In the first column, the numbers from the top to the
bottom are 3, 2, 4, 1, and 5. Numbers 3 and 2 are interchanged. In the second
column, the numbers are 2, 3, 4, 1, and 5. Numbers 3 and 4 are in the correct
order. In the third column, numbers 4 and 1 are interchanged. In the fourth
column, the numbers are 2, 3, 1, 4, and 5. Numbers 4 and 5 are in the correct
order. There are 3 columns in the second pass. In the first column, the numbers
are 2, 3, 1, 4, and 5. Numbers 2 and 3 are in the correct order, number 5 is
guaranteed to be in the correct order. In the second column, numbers 3 and 1 are
interchanged, number 5 is guaranteed to be in the correct order. In the third
column, the numbers are 2, 1, 3, 4, and 5. Numbers 3 and 4 are in the correct
order, and number 5 is guaranteed to be in the correct order. There are 2
columns in the third pass. In the first column, the numbers are 2, 1, 3, 4, and 5.
Numbers 2 and 1 are interchanged, numbers 4 and 5 are guaranteed to be in the
correct order. In the second column, the numbers are 1, 2, 3, 4, and 5. Numbers 2
and 3 are in the correct order, numbers 4 and 5 are guaranteed to be in the
correct order. There is one column in the fourth pass. The numbers are 1, 2, 3, 4,
and 5. Numbers 1 and 2 are in the correct order, numbers 3, 4 and 5 are
guaranteed to be in the correct order.s

Jump to the image

© 2019 McGraw-Hill Education

Halting Problem - Appendix

• There is an input Program P. It divides into 2
branches. P as a program and P as an input.
They both go to a box named Program H left
parenthesis P, I right parenthesis. An output
of this box is H left parenthesis P, P right
parenthesis. It goes to a box called Program K
left parenthesis P right parenthesis. The box
has two outputs. The first output is if H left
parenthesis P, P right parenthesis equals
"halts", then loop forever. The second output
is if H left parenthesis P, P right parenthesis
equals "loops forever" then halt.

Jump to the image

© 2019 McGraw-Hill Education

Illustration of Big-O Notation -
Appendix

• The first curve is given by the equation x
squared. The second curve is given by the
equation x squared plus two x plus one. The
third curve is given by the equation 4 times x
squared. The first and the second curves
intersect at the point 1, 4. After the
intersection point, the second curve is
between the first and the third curves and
highlighted.

Jump to the image

© 2019 McGraw-Hill Education

Illustration of Big-O Notation -
Appendix

• The first curve is Cg(x). The second curve is
f(x). The third curve is g(x). The first and the
second curves intersect at x = k. After the
intersection point, the second curve is
between the first and the third curves and
highlighted.

Jump to the image

© 2019 McGraw-Hill Education

Display of Growth of Functions -
Appendix

• The vertical scale is logarithmic, and it ranges
from 0 to 4096. From the top to the bottom
the curves are: n factorial starting from y = 2,
two raised to the n power starting from y = 4,
n squared starting from y = 4, n logarithm n
starting from y = 2, n starting from y = 2,
logarithm n starting from y = 1, one starting
from y = 1.

Jump to the image

	Slide 1: Algorithms
	Slide 2: Chapter Summary
	Slide 3: Algorithms
	Slide 4: Section Summary 1
	Slide 5: Problems and Algorithms
	Slide 6: Algorithms
	Slide 7: Specifying Algorithms
	Slide 8: Properties of Algorithms
	Slide 9: Finding the Maximum Element in a Finite Sequence
	Slide 10: Some Example Algorithm Problems
	Slide 11: Searching Problems
	Slide 12: Linear Search Algorithm
	Slide 13: Binary Search
	Slide 14: Binary Search 2
	Slide 15: Binary Search 3
	Slide 16: Sorting
	Slide 17: Bubble Sort
	Slide 18: Bubble Sort
	Slide 19: Insertion Sort
	Slide 20: Insertion Sort
	Slide 21: Greedy Algorithms
	Slide 22: Greedy Algorithms: Making Change
	Slide 23: Greedy Change-Making Algorithm
	Slide 24: Proving Optimality for U.S. Coins
	Slide 25: Proving Optimality for U.S. Coins
	Slide 26: Greedy Change-Making Algorithm
	Slide 27: Greedy Scheduling
	Slide 28: Greedy Scheduling 2
	Slide 29: Greedy Scheduling algorithm
	Slide 30: Halting Problem
	Slide 31: Halting Problem
	Slide 32: Halting Problem
	Slide 33: The Growth of Functions
	Slide 34: Section Summaries
	Slide 35: The Growth of Functions
	Slide 36: Big-O Notation
	Slide 37: Illustration of Big-O Notation 1
	Slide 38: Some Important Points about Big-O Notation
	Slide 39: Using the Definition of Big-O Notation
	Slide 40: Illustration of Big-O Notation
	Slide 41: Big-O Notation
	Slide 42: Using the Definition of Big-O Notation
	Slide 43: Big-O Estimates for Polynomials
	Slide 44: Big-O Estimates for Some Important Functions
	Slide 45: Big-O Estimates for Some Important Functions
	Slide 46: Display of Growth of Functions
	Slide 47: Useful Big-O Estimates Involving Logs, Powers, and Exponents
	Slide 48: Combinations of Functions 1
	Slide 49: Ordering Functions by Order of Growth
	Slide 50: Big-Omega Notation
	Slide 51: Big-Omega Notation
	Slide 52: Big-Theta Notation
	Slide 53: Big-Theta Notation
	Slide 54: Big-Theta Notation
	Slide 55: Big-Theta Notation
	Slide 56: Big-Theta Estimates for Polynomials
	Slide 57: Complexity of Algorithms
	Slide 58: Section Summary
	Slide 59: The Complexity of Algorithms 1
	Slide 60: The Complexity of Algorithms 2
	Slide 61: Time Complexity
	Slide 62: Complexity Analysis of Algorithms
	Slide 63: Worst-Case Complexity of Linear Search
	Slide 64: Average-Case Complexity of Linear Search
	Slide 65: Worst-Case Complexity of Binary Search
	Slide 66: Worst-Case Complexity of Bubble Sort
	Slide 67: Worst-Case Complexity of Insertion Sort
	Slide 68: Matrix Multiplication Algorithm
	Slide 69: Complexity of Matrix Multiplication
	Slide 70: Boolean Product Algorithm
	Slide 71: Complexity of Boolean Product Algorithm
	Slide 72: Matrix-Chain Multiplication
	Slide 73: Algorithmic Paradigms
	Slide 74: Brute-Force Algorithms
	Slide 75: Computing the Closest Pair of Points by Brute-Force
	Slide 76: Computing the Closest Pair of Points by Brute-Force
	Slide 77: Understanding the Complexity of Algorithms
	Slide 78: Understanding the Complexity of Algorithms
	Slide 79: Complexity of Problems
	Slide 80: P Versus NP Problem
	Slide 81: Appendix of Image Long Descriptions
	Slide 82: Bubble Sort - Appendix
	Slide 83: Halting Problem - Appendix
	Slide 84: Illustration of Big-O Notation - Appendix
	Slide 85: Illustration of Big-O Notation - Appendix
	Slide 86: Display of Growth of Functions - Appendix

