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Chapter Summary

• Algorithms

• Example Algorithms

• Algorithmic Paradigms

• Growth of Functions

• Big-O and other Notation

• Complexity of Algorithms
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Algorithms 
• Section 3.1
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Section Summary 1

• Properties of Algorithms

• Algorithms for Searching and Sorting

• Greedy Algorithms

• Halting Problem
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Problems and Algorithms

• In many domains there are key general problems that 
ask for output with specific properties when given 
valid input.

• The first step is to precisely state the problem, using 
the appropriate structures to specify the input and 
the desired output.

• We then solve the general problem by specifying the 
steps of a procedure that takes a valid input and 
produces the desired output. This procedure is called 
an algorithm.
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Algorithms

Definition: An algorithm is a finite set of precise 
instructions for performing a computation or for solving a 
problem.

Example: Describe an algorithm for finding the maximum 
value in a finite sequence of integers.

Solution: Perform the following steps:
1. Set the temporary maximum equal to the first integer in the 

sequence.

2. Compare the next integer in the sequence to the temporary 
maximum.

• If it is larger than the temporary maximum, set the temporary maximum 
equal to this integer.

3. Repeat the previous step if there are more integers. If not, stop.

4. When the algorithm terminates, the temporary maximum is the 
largest integer in the sequence.

Abu Ja’far
Mohammed Ibin
Musa Al-Khowarizmi

(780-850)
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Specifying Algorithms

• Algorithms can be specified in different ways. Their 
steps can be described in English or in pseudocode.

• Pseudocode is an intermediate step between an English 
language description of the steps and a coding of these 
steps using a programming language.

• The form of pseudocode we use is specified in 
Appendix 3. It uses some of the structures found in 
popular languages such as C++ and Java.

• Programmers can use the description of an algorithm in 
pseudocode to construct a program in a particular 
language.

• Pseudocode helps us analyze the time required to solve 
a problem using an algorithm, independent of the actual 
programming language used to implement algorithm.
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Properties of Algorithms

• Input: An algorithm has input values from a specified set.

• Output: From the input values, the algorithm produces 
the output values from a specified set. The output values 
are the solution.

• Correctness: An algorithm should produce the correct 
output values for each set of input values.

• Finiteness: An algorithm should produce the output after 
a finite number of steps for any input.

• Effectiveness: It must be possible to perform each step 
of the algorithm correctly and in a finite amount of time.

• Generality: The algorithm should work for all problems of 
the desired form.
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Finding the Maximum Element in a 
Finite Sequence

The algorithm in pseudocode:

procedure max (a1, a2, …., an: integers)

max := a1

for i := 2 to n

if max < ai then max := ai

return max {max is the largest element}

Does this algorithm have all the properties listed on the 
previous slide?
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Some Example Algorithm 
Problems

• Three classes of problems will be studied in this 
section.

1. Searching Problems: finding the position of a 
particular element in a list.

2. Sorting problems: putting the elements of a list 
into increasing order.

3. Optimization Problems: determining the optimal 
value (maximum or minimum) of a particular 
quantity over all possible inputs.
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Searching Problems

• Definition: The general searching problem is to locate 
an element x in the list of distinct elements a1,a2,...,an, 
or determine that it is not in the list.

• The solution to a searching problem is the location of 
the term in the list that equals x (that is, i is the 
solution if  x = ai) or 0 if x is not in the list.

• For example, a library might want to check to see if a 
patron is on a list of those with overdue books before 
allowing him/her to checkout another book.

• We will study two different searching algorithms: 
linear search and binary search.
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Linear Search Algorithm

• The linear search algorithm locates an item in a list by examining 
elements in the sequence one at a time, starting at the beginning.

• First compare x with a1. If they are equal, return the position 1.

• If not, try a2. If x = a2, return the position 2.

• Keep going, and if no match is found when the entire list is scanned,   
return 0.

procedure linear search (x : integer, 

a1, a2, …,an : distinct integers)

i := 1

while (i ≤ n and x ≠ ai)

i := i + 1

if i ≤ n then location := i

else location := 0

return location  {location is the subscript of the term
that equals x, or is 0 if x is not found}
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Binary Search

• Assume the input is a list of items in increasing order.

• The algorithm begins by comparing the element to be 
found with the middle element.

• If the middle element is lower, the search proceeds with the 
upper half of the list.

• If it is not lower, the search proceeds with the lower half of the 
list (through the middle position).

• Repeat this process until we have a list of size 1.

• If the element we are looking for is equal to the element in the 
list, the position is returned.

• Otherwise, 0 is returned to indicate that the element was not 
found.

• In Section 3.3, we show that the binary search 
algorithm is much more efficient than linear search.
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Binary Search 2

• Here is a description of the binary search algorithm in 
pseudocode.

procedure binary search (x : integer, a1,a2,…, an : increasing integers)

i := 1 {i is the left endpoint of interval}
j := n {j is right endpoint of interval}

while i < j

m := ⌊(i + j)/2⌋

if x > am then i := m + 1

else j := m

if x = ai then location := i

else location := 0
return location {location is the subscript i of the term ai equal to x,

or 0 if x is not found}
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Binary Search 3

• Example: The steps taken by a binary search for 19 in the list:

1  2  3  5  6  7  8  10  12  13  15  16  18  19  20  22

1. The list has 16 elements, so the midpoint is 8. The value in the 8th position is 10. 
Since 19 > 10, further search is restricted to positions 9 through 16.

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

2. The midpoint of the list (positions 9 through 16) is now the 12th position with a value 
of 16. Since 19 > 16, further search is restricted to the 13th position and above.

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

3. The midpoint of the current list is now the 14th position with a value of 19. Since 19 
≯ 19, further search is restricted to the portion from the 13th through the 14th

positions .

1  2  3  5  6  7  8  10 12  13  15  16  18  19  20  22

4. The midpoint of the current list is now the 13th position with a value of 18. Since 19 
> 18, search is restricted to the portion from the 14th position through the 14th.

1  2  3  5  6  7  8  10 12  13  15  16  18 19 20  22

5. Now the list has a single element and the loop ends. Since 19=19, the location 14 is 
returned.
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Sorting
• To sort the elements of a list is to put them in increasing order

(numerical order, alphabetic, and so on).

• Sorting is an important problem because:

• A nontrivial percentage of all computing resources are devoted to 
sorting different kinds of lists, especially applications involving large 
databases of information that need to be presented in a particular 
order (e.g., by customer, part number etc.).

• An amazing number of fundamentally different algorithms have been 
invented for sorting. Their relative advantages and disadvantages have 
been studied extensively.

• Sorting algorithms are useful to illustrate basic concepts in CS

• A variety of sorting algorithms are studied in this book; binary, insertion, 
bubble, selection, merge, quick, and tournament.

• Section 3.3 shows time required to sort a list using sorting algorithms 
covered in this section.
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Bubble Sort

• Bubble sort makes multiple passes through a list. 
Every pair of elements that are found to be out of 
order are interchanged.

procedure bubblesort (a1,…,an: real numbers with n ≥ 2)

for i := 1 to n− 1

for j := 1 to n − i

if aj >aj+1 then interchange aj and aj+1

{a1,…, an is now in increasing order}
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Bubble Sort

Example:  Show the steps of bubble sort with  3  2  4  1  5

At the first pass the largest element has been put into 
the correct position

At the end of the second pass, the 2nd largest element 
has been put into the correct position.

In each subsequent pass, an additional element is put in 
the correct position.

Jump to long description
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Insertion Sort

Insertion sort begins with the 2nd element. It compares 
the 2nd element with the 1st and puts it before the first 
if it is not larger.

Next the 3rd element is put 
into the correct position 
among the first 3 
elements. 

In each subsequent pass, 
the n+1st element is put 
into its correct position 
among the first n+1
elements.

Linear search is used to 
find the correct position.

procedure insertion sort (a1,…,an : real  
numbers with n ≥ 2)

for j := 2 to n

i := 1

while aj > ai

i := i + 1

m := aj

for k := 0 to j − i − 1

aj-k := aj-k-1

ai := m

{Now a1,…,an is in increasing order}
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Insertion Sort

• Example: Show all the steps of  insertion sort with the 
input: 3 2 4 1 5

i. 2 3 4 1 5 (first two positions are interchanged)

ii. 2 3 4 1 5 (third element remains in its position)

iii. 1 2 3 4 5 (fourth is placed at beginning)

iv. 1 2 3 4 5 (fifth  element remains in its position)
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Greedy Algorithms

• Optimization problems minimize or maximize some parameter over all 
possible inputs.

• Among the many optimization problems we will study are:

• Finding a route between two cities with the smallest total mileage.

• Determining how to encode messages using the fewest possible bits.

• Finding the fiber links between network nodes using the least amount 
of fiber.

• Optimization problems can often be solved using a greedy algorithm, 
which makes the "best" choice at each step. Making the "best choice" at 
each step does not necessarily produce an optimal solution to the overall 
problem, but in many instances, it does. 

• After specifying what the "best choice" at each step is, we try to prove 
that this approach always produces an optimal solution, or find a 
counterexample to show that it does not.

• The greedy approach to solving problems is an example of an algorithmic 
paradigm, which is a general approach for designing an algorithm. We 
return to algorithmic paradigms in Section 3.3.



© 2019 McGraw-Hill Education

Greedy Algorithms: Making 
Change

• Example: Design a greedy algorithm for making change (in U.S. 
money) of n cents with the following coins: quarters (25 cents), 
dimes (10 cents), nickels (5 cents), and pennies (1 cent) , using the 
least total number of coins.

• Idea: At each step choose the coin with the largest possible value 
that does not exceed the amount of change left.

1. If n = 67 cents, first choose a quarter leaving 67−25 = 42
cents. Then choose another quarter leaving 42 −25 = 17 
cents

2. Then choose 1 dime, leaving 17 − 10 = 7 cents.

3. Choose 1 nickel, leaving 7 – 5 = 2 cents.

4. Choose a penny, leaving one cent. Choose 
another penny leaving 0 cents.
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Greedy Change-Making Algorithm

Solution: Greedy change-making algorithm for n cents. The 
algorithm works with any coin denominations c1, c2, …,cr .

procedure change(c1, c2, …, cr : values of coins, where c1> c2> … > cr ;
n : a positive integer)

for i := 1 to r

di := 0 [di counts the coins of denomination ci]

while n ≥ ci

di := di + 1 [add a coin of denomination ci]

n = n - ci

[di counts the coins ci]

For the example of U.S. currency, we may have quarters, 
dimes, nickels and pennies: c1 = 25, c2 = 10, c3 = 5, and c4 = 1.
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Proving Optimality for U.S. Coins

• Show that the change making algorithm for U.S. coins is optimal.

• Lemma 1: If n is a positive integer, then n cents in change using 
quarters, dimes, nickels, and pennies, using the fewest coins 
possible has at most 2 dimes, 1 nickel, 4 pennies, and cannot have 2
dimes and a nickel. The total amount of change in dimes, nickels, 
and pennies must not exceed 24 cents.

• Proof: By contradiction

• If we had 3 dimes, we could replace them with a quarter and a 
nickel. 

• If we had 2 nickels, we could replace them with 1 dime.

• If we had 5 pennies, we could replace them with a nickel.

• If we had 2 dimes and 1 nickel, we could replace them with a 
quarter.

• The allowable combinations, have a maximum value of 24 cents; 2
dimes and 4 pennies.
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Proving Optimality for U.S. Coins

• Theorem: The greedy change-making algorithm for U.S. coins 
produces change using the fewest coins possible.

• Proof: By contradiction.

1. Assume there is a positive integer n such that change can be 
made for  n cents using quarters, dimes, nickels, and 
pennies, with a fewer total number of coins than given by 
the algorithm.

2. Then, q ̍ ≤ q  where q ̍ is the number of quarters used in this 
optimal way and q is the number of quarters in the greedy 
algorithm’s solution. But this is not possible by Lemma 1, 
since the value of the coins other than quarters cannot be 
greater than 24 cents.

3. Similarly, by Lemma 1, the two algorithms must have the 
same number of dimes, nickels, and quarters.
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Greedy Change-Making Algorithm

• Optimality depends on the denominations available.

• For U.S. coins, optimality still holds if we add half dollar 
coins (50 cents) and dollar coins (100 cents).

• But if we allow only quarters (25 cents), dimes (10
cents), and pennies (1 cent), the algorithm no longer 
produces the minimum number of coins.

• Consider the example of 31 cents. The optimal number 
of coins is 4, i.e., 3 dimes and 1 penny. What does the 
algorithm output?
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Greedy Scheduling

• Example: We have a group of proposed talks with start and end 
times. Construct a greedy algorithm to schedule as many as 
possible in a lecture hall, under the following assumptions:

• When a talk starts, it continues till the end.

• No two talks can occur at the same time.

• A talk can begin at the same time that another ends.

• Once we have selected some of the talks, we cannot add a talk 
which is incompatible with those already selected because it 
overlaps at least one of these previously selected talks.

How should we make the “best choice” at each step of the 
algorithm? That is, which talk do we pick?

• The talk that starts earliest among those compatible with chosen 
talks?

• The talk that is shortest among those already compatible?

• The talk that ends earliest among compatible talks?
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Greedy Scheduling 2

Picking the shortest talk doesn’t work.

Can you find a counterexample here?

But picking the one that ends soonest does work. The 
algorithm is specified on the next page.
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Greedy Scheduling algorithm

Solution: At each step, choose the talks with the 
earliest ending time among the talks compatible with 
those selected.

procedure schedule(s1 ≤ s2 ≤ … ≤ sn : start times, e1 ≤ e2 ≤ … ≤ en : end      
times)

sort talks by finish time and reorder so that e1 ≤ e2 ≤ … ≤ en

S :=  ∅

for j := 1 to n

if talk j is compatible with S then

S := S ∪ {talk j}

return S [ S is the set of talks scheduled]

Will be proven correct by induction in Chapter 5.
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Halting Problem

• Example: Can we develop a procedure that takes as 
input a computer program along with its input and 
determines whether the program will eventually halt 
with that input.

• Solution: Proof by contradiction.

Assume that there is such a procedure and call it 
H(P,I). The procedure H(P,I) takes as input a program 
P and the input I to P. 

• H outputs "halt" if it is the case that P will stop when 
run with input I. 

• Otherwise, H outputs "loops forever."
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Halting Problem

• Since a program is a string of characters, we can call 
H(P,P). Construct a procedure K(P), which works as 
follows. 

• If H(P,P) outputs "loops forever" then K(P) halts.

• If H(P,P) outputs "halt" then K(P) goes into an 
infinite loop printing "ha" on each iteration.

Jump to long description
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Halting Problem

• Now we call K with K as input, i.e. K(K).

• If the output of H(K,K) is "loops forever" then K(K) 
halts. A Contradiction.

• If the output of H(K,K) is "halts" then K(K) loops 
forever. A Contradiction.

• Therefore, there cannot be a procedure that can 
decide whether or not an arbitrary program halts. The 
halting problem is unsolvable.
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The Growth of 
Functions 

• Section 3.2
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Section Summaries

Big-O Notation

Big-O Estimates for Important Functions

Big-Omega and Big-Theta Notation

Edmund Landau

(1877-1938)

Paul Gustav Heinrich Bachmann

(1837-1920)

Donald E. Knuth

(Born 1938)
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The Growth of Functions

• In both computer science and in mathematics, there are many 
times when we care about how fast a function grows.

• In computer science, we want to understand how quickly an 
algorithm can solve a problem as the size of the input grows.

• We can compare the efficiency of two different algorithms for 
solving the same problem.

• We can also determine whether it is practical to use a 
particular algorithm as the input grows.

• We’ll study these questions in Section 3.3.

• Two of the areas of mathematics where questions about the 
growth of functions are studied are:

• number theory (covered in Chapter 4)

• combinatorics (covered in Chapters 6 and 8)
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Big-O Notation

• Definition: Let f and g be functions from the set of 
integers or the set of real numbers to the set of real 
numbers. We say that f(x) is O(g(x)) if there are 
constants C and k such that

|f(x)| ≤ C|g(x)|     when x > k

• read as

• f(x) is big-O of g(x)

• g asymptotically dominates f

• constants C and k are called witnesses or witness 
points to the relationship f(x) is O(g(x))

• only one pair of witnesses is needed
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Illustration of Big-O Notation 1

Jump to long description

𝑓(𝑥) is 𝑂 𝑔 𝑥
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Some Important Points about 
Big-O Notation

• if one pair of witnesses is found, then there are 
infinitely many pairs

• we can always make the k or the C larger and still 
maintain the inequality |f(x)| ≤ C|g(x)|     . 

• sometimes this is written as f(x) = O(g(x))

• may be confusing since an inequality relates f and g

• better to write f(x) ∊ O(g(x))

• usually, we will drop the absolute value sign since we 
will always deal with functions of positive values
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Using the Definition of Big-O 
Notation

• Example: Show that f(x) = x2 + 2x + 1 is O(x2)

• Solution: when x > 1,  x < x2 and 1 < x2, so

    0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2  

• take C = 4 and k = 1 as witnesses to show that 
f(x) is O(x2)

• alternatively, when x > 2, we have 2x ≤ x2 and 1 < x2, 
so

   0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2 when x > 2

• take C = 3 and k = 2 as witnesses instead
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Illustration of Big-O Notation

( ) ( )2 2+2 1 is   f x x x O x= +

Jump to long description
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Big-O Notation

• if f(x) = x2 + 2x + 1  and  g(x) = x2

• f(x) and g(x) are of the same order 

• f(x) is O(g(x))   and   g(x) is O(f(x))

• if f(x) is O(g(x)) and h(x) is larger than g(x) for all 
positive real numbers, then f(x) is O(h(x)) 

• in practice, the goal is to select the function g(x) in 
O(g(x)) as small as possible (up to multiplication by a 
constant, of course)
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Using the Definition of Big-O 
Notation

• Example: Show that 7x2 is O(x3).

• Solution: when x > 7, 7x2 < x3, take C = 1 and k = 7 as 
witnesses to establish that 7x2 is O(x3)

• would C = 7 and k = 1 work?

• Example: Show that n2 is not O(n).

• Solution: suppose there are constants C and k for which 
n2 ≤ Cn, whenever n > k

• by dividing both sides of n2 ≤ Cn by n, n ≤ C must hold 
for all n > k: a contradiction!
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Big-O Estimates for Polynomials

Example: Let ( ) 1

1 1 0

n n

n nf x a x a x a x a−

−= + + + +

0 1where ,  , , na a a are real numbers with an ≠0. Then f(x) is O(xn).

Proof: ( )

( )
( )

1 1

1 1 0

1 1

1 1 0

1

1 1 0

1 1 0

| |   | |

              | | | | | | | |

             | | | | / | | / | | /

            | | | | | | | |

n n

n n

n n

n n

n n n

n n

n

n n

f x a x a x a x a

a x a x a x a

x a a x a x a x

x a a a a

−

−

−

−

−

−

−

= + + + +

 + + + +

= + + + +

 + + + +

Take 1 0| | | | | |n nC a a a−= + + + and k = 1. Then f(x) is O(xn).

The leading term anx
n of a polynomial dominates its growth.

Assuming x > 1

Uses triangle inequality, 
an exercise in Section 1.8.
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Big-O Estimates for Some 
Important Functions

• Example: Use big-O notation to estimate the sum of 
the first n positive integers.

• Solution: 21 2   n n n n n+ + +  + + =

( )21 2  is  taking 1 and 1.n O n C k+ + + = =

• Example: Use big-O notation to estimate the factorial 
function 

• Solution:
( ) ! 1 2  .f n n n= =   

! 1 2   nn n n n n n=        =

( )! is  taking 1 and 1.nn O n C k= =
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Big-O Estimates for Some 
Important Functions

Example: Use big-O notation to estimate log n!

Solution: Given that ! nn n (previous slide)

then ( ) ( )log !  log .n n n 

Hence, log(n!) is O(n∙log(n)) taking C = 1 and k = 1.
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Display of Growth of Functions

Note the difference in behavior of functions as 
n gets larger

Jump to long description
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Useful Big-O Estimates Involving 
Logs, Powers, and Exponents

• if d > c > 1, then

  nc  is O(nd), but nd is not O(nc)

• if  b > 1 and c and d are positive, then

  (logb n)c  is O(nd), but nd is not O((logb n)c)

•  if  b > 1 and d is positive, then

  nd  is O(bn), but bn is not O(nd)

•  if c > b > 1, then

  bn  is O(cn), but cn is not O(bn)
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Combinations of Functions 1

• if  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

   (f1 + f2)(x) is O(max (|g1(x)|, |g2(x)|))

• if  f1 (x) and f2 (x) are both O(g(x)) then 

   (f1 + f2)(x) is O(g(x))

• if  f1 (x) is O(g1(x)) and f2 (x) is O(g2(x)) then 

   (f1 • f2)(x) is O(g1(x) • g2(x))
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Ordering Functions by Order of 
Growth

• Put the functions below in order so that each function 
is big-O of the next function on the list.

( ) ( )

( )

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

1

3 2

2

2

3

4

5

32

6

2

7

23

8

9

10

1.5

8 17 111

log n

2

log log 

log 

2 1

log 

10000

!

n

n

n

f n

f n n n

f n

f n

f n n

f n n n

f n n

f n n n n

f n

f n n

=

= + +

=

=

=

=

= +

= +

=

=

We  solve this exercise by successively finding the 
function that grows slowest among all those left on 
the list.

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

3

9

5

2

3

32

6

2

constant, does not increase with 

grows slowest of all the others

grows next slowest

next largest, log  factor smaller than

10000   ( )

log log    

log

 any powe o

 n    

log  ( r f  ( ) )

f n

f n n

f n

f n n n

f n

n

n n

=

=

=

=

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

3 2

23

8

1

4

2

7

tied with the one below

tied with the one above

next largest, an exponential function

grows faster than one above since 2 > 1.5

grows fas

8 17 111   

log    

1.5     

2   

2 1    (

n

n

n

n n

f n n n n

f n

f n

f n n

= + +

= +

=

=

= +

( )

2

10

)

!   ( )

ter than above because of the  +1 factor

!  grows faster thancn  for every f n nn

n

c=
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Big-Omega Notation

Definition: Let f and g be functions from the set of 
integers or the set of real numbers to the set of real 
numbers. We say that
if there are constants C and k such that

( ) ( )( ) is f x g x

( ) ( )| |  | |f x C g x when x > k.

We say that "f(x) is big-Omega of g(x)."

Big-O gives an upper bound on the growth of a function, 
while Big-Omega gives a lower bound. Big-Omega tells us 
that a function grows at least as fast as another.

f(x) is  Ω(g(x)) if and only if g(x) is O(f(x)). This follows 
from the definitions. See the text for details.

Ω is the upper case 
version of the lower 
case Greek letter ω.
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Big-Omega Notation

Example:  Show that ( ) 3 28 5 7 isf x x x= + +

( )( ) ( ) 3   where .g x g x x =

Solution: ( ) 3 2 38 5 7  8  for allf x x x x= + + 

positive real numbers x.

• Is it also the case that ( ) ( )3 3 2 is 8 5 7 ?g x x O x x= + +
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Big-Theta Notation

Definition: Let f and g be functions from the set of 
integers or the set of real numbers to the set of real 
numbers. The function

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) is  if   is  and  is .f x g x f x O g x f x g x 

We say that "f is big-Theta of g(x)" and also that "f(x) 
is of order g(x)" and also that "f(x) and g(x) are of the 
same order."

( ) ( )( ) is f x g x if and only if there exists constants C1, C2

and k such that C1g(x) < f(x) < C2 g(x)  if x > k. This 
follows from the definitions of big-O and big-Omega.

Θ is the upper case 
version of the lower 
case Greek letter θ.
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Big-Theta Notation

Example: Show that the sum of the first n positive 
integers is Θ(n2).

Solution: Let f(n) = 1 + 2 + ∙∙∙  + n

• We have already shown that f(n) is O(n2).

• To show that f(n) is Ω(n2), we need a positive constant C such 
that f(n) > Cn2 for sufficiently large n. Summing only the terms 
greater than n/2 we obtain the inequality

( )

( )
( ) ( ) 2

1 2 / 2 / 2 1

                   / 2 / 2 / 2

                   / 2 1 / 2

                   / 2 / 2 / 4

n n n n

n n n

n n n

n n n

+ + +    +   + + +

   +   + +  

= −   +  

 =

• Taking C =[ ¼, f(n) > Cn2 for all positive integers n. Hence, f(n) 
is Ω(n2), and we can conclude that f(n) is Θ(n2).
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Big-Theta Notation

• Example: Show that

• Solution:

( ) ( )2 23 8  log  is .f x x x x x= + 

( )

( )

( )

2 2

2 2

2 2

2 2

2

    Hence, 3 8  log  is O .

 is clearly  O 3 8  log 

Hence, 3 8  log  is .

3 8  log 11  for 1,

since 0 8  log 8 .

x x x

x

x

x x

x x x x x

x

x x

x x x x

x

+  



+

+

+ 


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Big-Theta Notation

When ( ) ( )( ) is f x g x it must  also be the case that

( ) ( )( ) is .g x f x

Note that ( ) ( )( ) is f x g x if and only if it is the cases

( ) ( )( ) ( ) ( )( )that  is  and  is .f x O g x g x O f x

Sometimes writers are careless and write as if big-O 
notation has the same meaning as big-Theta.
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Big-Theta Estimates for 
Polynomials

Theorem: Let ( ) 1

1 1 0 n n

n nf x a x a x a x a−

−= + + + +

0 1 where  , , , na a a are real numbers with an ≠ 0.

Then f(x) is of order xn (or   Θ(xn)).

(The proof is an exercise.) 

Example: 

The polynomial ( ) 5 2 8 5 10f x x x= + + is order of x5 (or Θ(x5)).

The polynomial ( ) 199 100 99 2 8 7 5 25f x x x x x= + + +

is order of x199 (or Θ(x199) ).
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Complexity of 
Algorithms

• Section 3.3



© 2019 McGraw-Hill Education

Section Summary

• Time Complexity

• Worst-Case Complexity

• Algorithmic Paradigms

• Understanding the Complexity of Algorithms
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The Complexity of Algorithms 1

• Given an algorithm, how efficient is this algorithm for 
solving a problem given input of a particular size? To 
answer this question, we ask:

• How much time does this algorithm use to solve a problem?

• How much computer memory does this algorithm use to solve a 
problem?

• When we analyze the time the algorithm uses to solve 
the problem given input of a particular size, we are 
studying the time complexity of the algorithm.

• When we analyze the computer memory the algorithm 
uses to solve the problem given input of a particular 
size, we are studying the space complexity of the 
algorithm.
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The Complexity of Algorithms 2

• In this course, we focus on time complexity. The space 
complexity of algorithms is studied in later courses.

• We will measure time complexity in terms of the number of 
operations an algorithm uses and we will use big-O and big-
Theta notation to estimate the time complexity.

• We can use this analysis to see whether it is practical to 
use this algorithm to solve problems with input of a 
particular size. We can also compare the efficiency of 
different algorithms for solving the same problem.

• We ignore implementation details (including the data 
structures used and both the hardware and software 
platforms) because it is extremely complicated to consider 
them.
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Time Complexity

• To analyze the time complexity of algorithms, we determine the 
number of operations, such as comparisons and arithmetic 
operations (addition, multiplication, etc.). We can estimate the 
time a computer may actually use to solve a problem using the 
amount of time required to do basic operations. 

• We ignore minor details, such as the "house keeping" aspects of 
the algorithm.

• We will focus on the worst-case time complexity of an algorithm. 
This provides an upper bound on the number of operations an 
algorithm uses to solve a problem with input of a particular size.

• It is usually much more difficult to determine the average case 
time complexity of an algorithm. This is the average number of 
operations an algorithm uses to solve a problem over all inputs of 
a particular size.
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Complexity Analysis of Algorithms

Example: Describe the time complexity of the algorithm 
for finding the maximum element in a finite sequence.

procedure max(a1, a2, …., an: integers)

 max := a1

 for i := 2 to n

  if max < ai then max := ai

 return max{max is the largest element}

Solution: Count the number of comparisons.

• The max < ai comparison is made n − 1 times.

• Each time i is incremented, a test is made to see if i ≤ n.

• One last comparison determines that i > n.               

• Exactly 2(n − 1) + 1 = 2n − 1 comparisons are made.

 Hence, the time complexity of the algorithm is Θ(n).
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Worst-Case Complexity of Linear 
Search

Example: Determine the time complexity of linear search algorithm.

procedure linear search (x : integer, a1, a2, …,an : distinct integers)

   i := 1

   while (i ≤ n and x ≠ ai)

 i := i + 1

   if i ≤ n then location := i

   else location := 0

   return location{location is the subscript of the term that equals x, or is 0 if x is not found}

Solution: Count the number of comparisons.

•  At each step two comparisons are made; i ≤ n and x ≠ ai .

•  To end the loop, one comparison i ≤ n is made.

•  After the loop, one more i ≤ n comparison is made. 

If x = ai , 2i + 1 comparisons are used. If x is not on the list, 2n + 1 
comparisons are made and then an additional comparison is used to 
exit the loop. So, in the worst case 2n + 2 comparisons are made. 
Hence, the complexity is Θ(n).
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Average-Case Complexity of 
Linear Search

• Example: Describe the average case performance of 
the linear search algorithm. (Although usually it is very 
difficult to determine average-case complexity, it is 
easy for linear search.)

• Solution: Assume the element is in the list and that 
the possible positions are equally likely. By the 
argument on the previous slide, if x = ai , the number 
of comparisons is 2i + 1.

( ) ( )
( )1

2
23 5 7 2 1 2 1 2 3

1 2
2

n n

n n n
n

n n

 + 
 

+ + + + + + + + + +  
= = + = +

Hence, the average-case complexity of linear search is 
Θ(n).
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Worst-Case Complexity of Binary 
Search 

Example: Describe the time complexity of binary search in terms of the 
number of comparisons used.

procedure binary search(x: integer, a1,a2,…, an: increasing integers)

 i := 1 {i is the left endpoint of interval}

 j := n {j is right endpoint of interval}

 while i < j

    m := ⌊(i + j)/2⌋

    if x > am then i := m + 1

    else j := m

 if x = ai then location := i

 else location := 0

 return location{location is the subscript i of the term ai equal to x, or 0 if x is not found} 

Solution: Assume (for simplicity) n = 2k elements. Note that k = log n.
• Two comparisons are made at each stage; i < j, and x > am .
• At the first iteration the size of the list is 2k and after the first iteration it is 

2k-1. Then 2k-2 and so on until the size of the list is 21 = 2. 
• At the last step, a comparison tells us that the size of the list is the size is 20 = 1 

and the element is compared with the single remaining element.  
• Hence, at most 2k + 2 = 2 log n + 2 comparisons are made. 
• Therefore, the time complexity is Θ (log n), better than linear search. 
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Worst-Case Complexity of 
Bubble Sort

Example: What is the worst-case complexity of bubble 
sort in terms of the number of comparisons made?

procedure bubblesort (a1,…,an: real numbers with n ≥ 2)

 for i := 1 to n− 1

     for j := 1 to n − i

         if aj >aj+1 then interchange aj and aj+1

     {a1,…, an is now in increasing order}

Solution: A sequence of n−1 passes is made through the 
list. On each pass n − i comparisons are made.

( ) ( )
( )1

1 2 2 1
2

n n
n n

−
− + − + + + =

The worst-case complexity of bubble sort is  Θ(n2) since
( ) 21 1 1

.
2 2 2

n n
n n

−
= −
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Worst-Case Complexity of 
Insertion Sort

Example: What is the worst-case complexity of 
insertion sort in terms of the number of comparisons 
made?

Solution: The total number 
of comparisons are

( )1
2 3 1

2

n n
n

−
+ + + = −

Therefore the complexity is 
Θ(n2).

procedure insertion sort (a1,…,an : 

  real numbers with n ≥ 2)

 for j := 2 to n

 i := 1

 while aj > ai

  i := i + 1

 m := aj

 for k := 0 to j  − i − 1

  aj-k := aj-k-1

 ai := m
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Matrix Multiplication Algorithm

• The definition for matrix multiplication can be 
expressed as an algorithm; C = A B where C is an m  n 
matrix that is the product of the m  k matrix A and 
the k  n matrix B.

• This algorithm carries out matrix multiplication based 
on its definition.

procedure matrix multiplication(A,B: matrices)

 for i := 1 to m              
  for j := 1 to n
  cij := 0
   for q := 1 to k
           cij := cij + aiq bqj

return C{C = [cij] is the product of A and B}

 is a  matrix

 is a  matrix

ij

ij

a m k

b k n

 =  

 =  

A

B
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Complexity of Matrix 
Multiplication

• Example: How many additions of integers and 
multiplications of integers are used by the matrix 
multiplication algorithm to multiply two n  n matrices.

• Solution: There are n2  entries in the product. Finding 
each entry requires n multiplications and n − 1 
additions. Hence, n3 multiplications and n2(n − 1) 
additions are used.

• Hence, the complexity of matrix multiplication is 
O(n3).
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Boolean Product Algorithm

• The definition of Boolean product  of zero-one 
matrices can also be converted to an algorithm.

procedure Boolean product (A, B: zero-one matrices)
 for i := 1 to m
  for j := 1 to n
  cij := 0
   for q := 1 to k
      cij  := cij  ∨ (aiq ∧ bqj)

     return C{C = [cij] is the Boolean product of A and B}
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Complexity of Boolean Product 
Algorithm

• Example: How many bit operations are used to find 
A ⊙ B, where A and B are n  n zero-one matrices?

• Solution: There are n2  entries in the A ⊙ B. A total of 
n ORs and n ANDs are used to find each entry. Hence, 
each entry takes 2n bit operations. A total of 2n3 
operations are used.

• Therefore the complexity is O(n3)
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Matrix-Chain Multiplication

• How should the matrix-chain  A1A2∙ ∙ ∙An be computed using the 
fewest multiplications of integers, where A1 , A2 , ∙ ∙ ∙ , An are m1 m2, 
m2 m3 , ∙ ∙ ∙ mn mn+1 integer matrices. Matrix multiplication is 
associative  (exercise in Section 2.6).

• Example: In which order should the integer matrices A1A2A3 - 
where A1 is 30    20 , A2 20 40,  A3 40 10 - be multiplied to use the least 
number of multiplications. 

• Solution: There are two possible ways to compute A1A2A3.

• A1(A2A3): A2A3  takes 20 ∙ 40 ∙ 10 = 8000 multiplications. Then multiplying A1 
by the 20 10 matrix A2A3 takes 30 ∙ 20 ∙ 10 = 6000 multiplications. So the 
total number is 8000 + 6000 = 14,000.

• (A1A2)A3: A1A2  takes 30 ∙ 20 ∙ 40 = 24,000 multiplications. Then multiplying 
the 30 40 matrix  A1A2 by A3 takes 30 ∙ 40 ∙ 10 = 12,000 multiplications. So the 
total number is 24,000 + 12,000 = 36,000.

• So the first method is best.
An efficient algorithm for finding the best 
order for matrix-chain multiplication can be 
based on the algorithmic paradigm known as 
dynamic programming. (see Ex. 57 in Sec 8.1)
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Algorithmic Paradigms

• An algorithmic paradigm is a general approach based on 
a particular concept for constructing algorithms to 
solve a variety of problems. 

• Greedy algorithms were introduced in Section 3.1.

• We discuss brute-force algorithms in this section.

• We will see divide-and-conquer algorithms (Chapter 
8), dynamic programming (Chapter 8), backtracking 
(Chapter 11), and probabilistic algorithms (Chapter 7). 
There are many other paradigms that you may see in 
later courses.
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Brute-Force Algorithms

• A brute-force algorithm is solved in the most 
straightforward manner, without taking advantage of 
any ideas that can make the algorithm more efficient.

• Brute-force algorithms we have previously seen are 
sequential search, bubble sort, and insertion sort.
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Computing the Closest Pair of 
Points by Brute-Force

Example: Construct a brute-force algorithm for finding 
the closest pair of points in a set of n points in the 
plane and provide a worst-case estimate of the number 
of arithmetic operations.

 Solution: Recall that the distance between (xi,yi) and 
(xj, yj) is ( ) ( )

2 2

j i j ix x y y− + − . A brute-force algorithm

simply computes the distance between all pairs of points 
and picks the pair with the smallest distance.

Note: There is no need to compute the square root, since the 
square of the distance between two points is smallest when the 
distance is smallest.
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Computing the Closest Pair of 
Points by Brute-Force

Algorithm for finding the closest pair in a set of n points.

procedure closest pair((x1, y1), (x2, y2), … ,(xn, yn): xi, yi  real numbers)

    min =  ∞                     

    for i := 2 to n

 for j := 1 to i-1

  if (xj − xi)
2   + (yj − yi)

2   < min

  then min := (xj − xi)
2   + (yj − yi)

2  

                closest pair  := (xi, yi),
 (xj, yj)

   return closest pair 

The algorithm loops through n(n −1)/2 pairs of points, computes 
the value
(xj − xi)

2 + (yj − yi)
2 and compares it with the minimum, etc. So, 

the algorithm uses Θ(n2) arithmetic and comparison operations.

We will develop an algorithm with O(n log n) worst-case 
complexity in Section 8.3.
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Understanding the Complexity of 
Algorithms

• TABLE 1 Commonly Used Terminology for the 
Complexity of Algorithms.

Complexity Terminology

Θ(1) Constant complexity

Θ(log n) Logarithmic complexity

Θ(n) Linear complexity

Θ(n log n) Linearithmic complexity

Θ(nb) Polynomial complexity

Θ(bn), where b > 1 Exponential complexity

Θ(n!) Factorial complexity
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Understanding the Complexity of 
Algorithms

• TABLE 2 The Computer Time Used by Algorithms.

Problem Size Bit Operations Used

n 𝐥𝐨𝐠 n n n 𝐥𝐨𝐠 n n2 2n n!

2

3

4

5

6

10

10

10

10

10

10

11

11

10

10

10

10

  3 10  s

  7 10  s

1.0 10  s

1.3 10  s

1.7 10  s

  2 10  s

−

−

−

−

−

−













10

9

8

7

6

5

10 s

10  s

10  s

10  s

10  s

10  s

−

−

−

−

−

−

10

9

7

6

5

4

  3 10  s

  7 10  s

1 10  s

1 10  s

2 10  s

2 10  s

−

−

−

−

−

−













9

7

5

3

10  s

10  s

10  s

10  s

0.1 s

0.17 min

−

−

−

−

8

11

10  s

4 10  yr

*

*

*

*

−



73 10  s

*

*

*

*

*

−

Times of more than 10100 years are indicated with an *.
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Complexity of Problems

• Tractable Problem: There exists a polynomial time 
algorithm to solve this problem. These problems are 
said to belong to the Class P.

• Intractable Problem: There does not exist a polynomial 
time algorithm to solve this problem

• Unsolvable Problem: No algorithm exists to solve this 
problem, e.g., halting problem.

• Class NP: Solution can be checked in polynomial time. 
But no polynomial time algorithm has been found for 
finding a solution to problems in this class. 

• NP Complete Class: If you find a polynomial time 
algorithm for one member of the class, it can be used 
to solve all the problems in the class.
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P Versus NP Problem

The P versus NP problem asks whether the class P = NP? Are there problems whose 
solutions can be checked in polynomial time, but can not be solved in polynomial time?

• Note that saying no one has yet found a polynomial time algorithm is different 
from showing that the problem cannot be solved by a polynomial time algorithm.

If a polynomial time algorithm for any of the problems in the NP complete class were 
found, then that algorithm could be used to obtain a polynomial time algorithm for 
every problem in the NP complete class.

• Satisfiability (in Section 1.3) is an NP complete problem. 

It is generally believed that P≠NP since no one has been able to find a polynomial time 
algorithm for any of the problems in the NP complete class. 

The problem of P versus NP remains one of the most famous unsolved problems in 
mathematics (including theoretical computer science). The Clay Mathematics Institute 
has offered a prize of $1,000,000 for a solution.

Stephen 
Cook

(Born 
1939)
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Appendix of Image 
Long Descriptions



© 2019 McGraw-Hill Education

Bubble Sort - Appendix
• There are four passes of using a bubble sort for a column of numbers. There are 

5 columns in the first pass. In the first column, the numbers from the top to the 
bottom are 3, 2, 4, 1, and 5. Numbers 3 and 2 are interchanged. In the second 
column, the numbers are 2, 3, 4, 1, and 5. Numbers 3 and 4 are in the correct 
order. In the third column, numbers 4 and 1 are interchanged. In the fourth 
column, the numbers are 2, 3, 1, 4, and 5. Numbers 4 and 5 are in the correct 
order. There are 3 columns in the second pass. In the first column, the numbers 
are 2, 3, 1, 4, and 5. Numbers 2 and 3 are in the correct order, number 5 is 
guaranteed to be in the correct order. In the second column, numbers 3 and 1 are 
interchanged, number 5 is guaranteed to be in the correct order. In the third 
column, the numbers are 2, 1, 3, 4, and 5. Numbers 3 and 4 are in the correct 
order, and number 5 is guaranteed to be in the correct order. There are 2 
columns in the third pass. In the first column, the numbers are 2, 1, 3, 4, and 5. 
Numbers 2 and 1 are interchanged, numbers 4 and 5 are guaranteed to be in the 
correct order. In the second column, the numbers are 1, 2, 3, 4, and 5. Numbers 2 
and 3 are in the correct order, numbers 4 and 5 are guaranteed to be in the 
correct order. There is one column in the fourth pass. The numbers are 1, 2, 3, 4, 
and 5. Numbers 1 and 2 are in the correct order, numbers 3, 4 and 5 are 
guaranteed to be in the correct order.s

Jump to the image
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Halting Problem - Appendix

• There is an input Program P. It divides into 2 
branches. P as a program and P as an input. 
They both go to a box named Program H left 
parenthesis P, I right parenthesis. An output 
of this box is H left parenthesis P, P right 
parenthesis. It goes to a box called Program K 
left parenthesis P right parenthesis. The box 
has two outputs. The first output is if H left 
parenthesis P, P right parenthesis equals 
"halts", then loop forever. The second output 
is if H left parenthesis P, P right parenthesis 
equals "loops forever" then halt.

Jump to the image
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Illustration of Big-O Notation - 
Appendix

• The first curve is given by the equation x 
squared. The second curve is given by the 
equation x squared plus two x plus one. The 
third curve is given by the equation 4 times x 
squared. The first and the second curves 
intersect at the point 1, 4. After the 
intersection point, the second curve is 
between the first and the third curves and 
highlighted.

Jump to the image
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Illustration of Big-O Notation - 
Appendix

• The first curve is Cg(x). The second curve is 
f(x). The third curve is g(x). The first and the 
second curves intersect at x = k. After the 
intersection point, the second curve is 
between the first and the third curves and 
highlighted.

Jump to the image
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Display of Growth of Functions - 
Appendix

• The vertical scale is logarithmic, and it ranges 
from 0 to 4096. From the top to the bottom 
the curves are: n factorial starting from y = 2, 
two raised to the n power starting from y = 4, 
n squared starting from y = 4, n logarithm n 
starting from y = 2, n starting from y = 2, 
logarithm n starting from y = 1, one starting 
from y = 1.

Jump to the image
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